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The signature composed of immune-related long noncoding ri-
bonucleic acids (irlncRNAs) with no requirement of specific
expression level seems to be valuable in predicting the survival
of patients with hepatocellular carcinoma (HCC). Here, we
retrieved raw transcriptome data from The Cancer Genome
Atlas (TCGA), identified irlncRNAs by co-expression analysis,
and recognized differently expressed irlncRNA (DEirlncRNA)
pairs using univariate analysis. In addition, we modified Lasso
penalized regression. Then, we compared the areas under
curve, counted the Akaike information criterion (AIC) values
of 5-year receiver operating characteristic curve, and identified
the cut-off point to set up an optimal model for distinguishing
the high- or low-disease-risk groups among patients with HCC.
We then reevaluated them from the viewpoints of survival,
clinic-pathological characteristics, tumor-infiltrating immune
cells, chemotherapeutics efficacy, and immunosuppressed bio-
markers. 36 DEirlncRNA pairs were identified, 12 of which
were included in a Cox regression model. After regrouping
the patients by the cut-off point, we could more effectively
differentiate between them based on unfavorable survival
outcome, aggressive clinic-pathological characteristics, specific
tumor immune infiltration status, low chemotherapeutics
sensitivity, and highly expressed immunosuppressed bio-
markers. The signature established by paring irlncRNA regard-
less of expression levels showed a promising clinical prediction
value.
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INTRODUCTION
The incidence and mortality of hepatocellular carcinoma (HCC)
combined with intrahepatic cholangiocarcinoma are estimated to
be 42,810 and 30,160, respectively, in the United States in 2020.1 In
Europe, there were 0.82 and 0.77 million estimated new liver cancer
cases and deaths in 2018,2 whereas the number among Chinese pa-
tients were 0.46 and 0.31 million in 2015, respectively.3 The risk fac-
tors contributing to HCC development include viral infections by
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hepatitis B virus, hepatitis C virus, cirrhosis by any causes such as
alcoholic hepatitis or primary biliary cirrhosis, metabolism disorders,
and intake of aflatoxin-contaminated food.4–7 Nevertheless, consider-
able progress has been made in medicinal therapy for HCC, especially
for immune checkpoint inhibitors (ICIs).

Nivolumab is approved to be administrated to patients with HCC
who have progressed on or after standard sorafenib therapy, as
supported by the CheckMate 040 trial, which showed that the dis-
ease control rates reached approximately 60%.8 Pembrolizumab,
another anti-PD-1 antibody, has also been approved for patients
with HCC undergoing sorafenib therapy because of the KEY-
NOTE-240 trial, which showed that more than two-thirds of pa-
tients exhibited response to treatment.9,10 Other clinical trials
such as CheckMate 459 to evaluate the response to ICIs for
HCC are in progress.

Long noncoding RNAs (lncRNAs), which do not code for proteins,
refer to a type of RNA the transcript length of which is more than
200 nucleotides. lncRNAs are abundant and account for approxi-
mately 80% of the human transcriptome. They regulate 70% of the
gene expression in humans and do not act in a universal manner
because they can interact with DNA, RNA, and proteins and exhibit
enhancement or inhibition effects. Both normal development and
tumorigenesis such as HCC involve the regulation of lncRNAs.11,12
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Figure 1. Flow Chart of This Study
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Recent evidence has suggested that lncRNAs contribute to the malig-
nant phenotypes of cancer not only through genomic or transcrip-
tomic alterations but also by altering the immune microenviron-
ment13 because lncRNAs direct the expression of genes related to
the activation of immune cells, thus resulting in tumor immune-cell
infiltration.14

Signatures focusing on the tumor immune infiltration show prom-
ising predictive and prognostic value in diagnosis, evaluation, and
treatment of cancer.15–17 Moreover, lncRNAs contribute to the
establishment of these signatures. Wei et al.18 identified nine im-
mune-related lncRNAs (irlncRNAs) and constructed a signature
to evaluate the prognosis of patients with pancreatic cancer. Wu
et al.19 integrated mRNA, microRNA (miRNA), lncRNA, and clin-
ical data and set up an immune-related signature that could identify
a superior survival outcome among patients with head and neck
squamous cell carcinoma. Jiang et al.20 used a new modeling
method and set up a three irlncRNA signatures to indicate the prog-
nosis for clear cell renal cell carcinoma. Song et al.21 built a signa-
ture based on eight lncRNAs and validated the immune-related
genes in situ for bladder cancer.

In contrast, two-biomarker combinations are superior than simple
genes in terms of the accuracy of a diagnostic model for cancers.22

Few models have examined the role of lncRNA in this setting
before. In this study, we utilized a novel modeling algorithm, paring,
and iteration to construct an irlncRNA signature, which did not
require any specific expression levels. Then, we estimated its predic-
tive value among patients with HCC, as well as its diagnostic effec-
tiveness, chemotherapeutic efficacy, and tumor immune infiltration.
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RESULTS
Identification of Differentially Expressed irlncRNAs

(DEirlncRNAs)

The process flow of this study is shown in Figure 1. First, we
retrieved the transcriptome profiling data of hepatoma from the
liver hepatocellular carcinoma (LIHC) project of the The Cancer
Genome Atlas (TCGA) database; 50 normal and 374 tumor sam-
ples were included. Next, the data were annotated according to
gene transfer format (GTF) files from Ensembl, and a co-expres-
sion analysis was performed between known ir-genes and
lncRNAs. A total of 808 irlncRNAs were identified (shown in Ta-
ble S1), and 102 were distinguished as DEirlncRNAs (Figure 2A),
among which 75 were upregulated and 27 were downregulated
(Figure 2B).

Establishment of DEirlncRNA Pairs and a Risk Assessment

Model

Using an iteration loop and a 0-or-1 matrix screening among 102
DEirlncRNAs, 3,592 valid DEirlncRNA pairs were identified. After
a single factor test followed by modified Lasso regression analysis,
36 DEirlncRNA pairs were extracted, 12 of which were included in
a Cox proportional hazards model by the stepwise method (Fig-
ure 2C). Next, we calculated the areas under curve (AUCs) for
each receiver operating characteristic (ROC) curve of 36 pairs,
drew the curved line, and found the highest point referring to
0.904 (Figure 3A) to confirm the most ideal DEirlncRNA pair
for this maximum AUC value (Figure 3B). To validate the opti-
mality, we not only plotted the 1-, 3-, and 5-year ROC curves,
which suggested that all AUC values were over 0.85 (Figure 3C)
but also compared the 5-year ROC curves with other clinical



Figure 2. Establishment of a Risk Assessment Model using DEirlncRNA Pairs

Identification of differentially expressed immune-related lncRNAs (DEirlncRNAs) using TCGA datasets and annotation by Ensembl. (A and B) The heatmap (A) and volcano

plot (B) are shown. (C) A forest map showed 12 DEirlncRNA pairs identified by Cox proportional hazard regression in the stepwise method.

www.moleculartherapy.org
characteristics (Figure 3D). We also recognized the maximum in-
flection point as the cut-off point on the 5-year ROC curve using
the Akaike information criterion (AIC) values (Figure 3E). We
collected data of 365 acceptable cases of patients with HCC from
TCGA and calculated the risk scores for all of them. We used
the identified cut-off point to re-distinguish high- and low-risk
groups in the cohort for validation.
Clinical Evaluation by Risk Assessment Model

According to the cut-off point confirmed previously, 157 cases were
classified into the high-risk group and 208 into the low-risk group.
RiskScores and survival of each case are shown in Figure 4A and Fig-
ure 4B. These figures suggest that the clinical outcome of patients in
the low-risk group was superior to that of patients in the high-risk
group. Kaplan-Meier analysis showed that patients in the low-risk
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 939
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group exhibited a longer survival time than those in the high-risk
group (p < 0.0001) (Figure 4C). Then, we performed a series of chi-
square tests to investigate the relationship between the risk of hepato-
cellular carcinoma and clinicopathological characteristics. The strip
chart (Figure 5A) and consequent scatter diagrams obtained by the
Wilcoxon signed-rank test showed that T stage (Figure 5B), M stage
(Figure 5C), tumor grade (Figure 5D), clinical stage (Figure 5E), and
survival status (Figure 5F) were significantly related to the risk. Next,
we demonstrated that clinical stage (p < 0.001, HR = 1.717, 95% CI
[1.3866–2.127]), T stage (p < 0.001, HR = 1.689, 95% CI [1.379–
2.069]), and riskScore (p < 0.001, HR = 1.079, 95% CI [1.064–
1.094]) showed statistical differences by univariate Cox regression
analysis (Figure 5G), whereas only riskScore (p < 0.001, HR =
1.075, 95% CI [1.058–1.092]) presented as an independent prognostic
predictor by multivariate Cox regression analysis (Figure 5H). The
detailed values of univariate and multivariate Cox regression analyses
are shown in Table S2.

Estimation of Tumor-Infiltrating Immune Cells and

Immunosuppressive Molecules with Risk Assessment Model

Because lncRNAs and immune-related genes were initially connected,
we consequently investigated whether the model was related to the tu-
mor immune microenvironment.We revealed that the high-risk group
was more positively associated with tumor-infiltrating immune cells
such as macrophages, monocytes, and CD8+ T cells, whereas they
were negatively associated with fibroblasts and CD4+ T cells, as re-
vealed by the Wilcoxon signed-rank test (see Figure S1 and Table
S3). A detailed Spearman correlation analysis was conducted, and the
resulting diagram exhibited a lollipop shape, as shown in Figure 6A.
The results are listed in Table S4. Because ICIs are administered for
treating hepatocellular carcinoma in clinical practice, we investigated
whether the risk model was related to ICI-related biomarkers and
discovered that high risk scores were positively correlated with high
expression of CTLA4 (p < 0.05, Figure 6B), HAVCR2 (p < 0.001, Fig-
ure 6C), LAG3 (p > 0.05, Figure 6D), and PDCD1 (p > 0.05, Figure 6E),
whereas the latter two showed no statistical differences.

Analysis of the Correlation between the Risk Model and

Chemotherapeutics

Besides checkpoint blockades therapy, we attempted to identify asso-
ciations between risk and the efficacy of common chemotherapeutics
in treating hepatocellular carcinoma in the TCGA project of the LIHC
dataset. We showed that a high risk score was associated with a lower
half inhibitory centration (IC50) of chemotherapeutics such as doxo-
rubicin (p = 0.026), mitomycin (p < 0.001), and cisplatin (p < 0.001),
whereas it was associated with a higher IC50 for vinblastine (p < 0.01),
which indicated that the model acted as a potential predictor for che-
mosensitivity (Figure 6F; Table S5).
Figure 3. Establishment of a Risk Assessment Model by DEirlncRNA Pairs

(A) Plot a curve of every AUC value generated by ROCs of 36 DEirlncRNA pair models an

models was related to themaximumAUC. (C) The 1-, 3-, and 5-year ROC of the optimalm

curves with other common clinical characteristics showed the superiority of the riskScore

point obtained by the AIC.
DISCUSSION
Recent studies have focused on setting up signatures with both coding
genes and noncoding RNAs to evaluate the prognosis of patients with
malignant tumor.23,24 However, most of these signatures are based on
quantifying the expression levels of transcripts. In this study, we were
inspired by the strategy of immune-related gene pairing and attemp-
ted to construct a reasonable model with two-lncRNA combinations
and did not adopt their exact expression levels in the signature for the
first time.25

First, we retrieved raw data of lncRNAs from TCGA, performed a dif-
ferential co-expression analysis to classify DEirlncRNAs, and vali-
dated lncRNA-pairs using an improved method of cyclically single
pairing along with a 0-or-1 matrix. Second, we performed univariate
analysis combined with a modified Lasso penalized regression
including procedures of cross validation, multi-times repeat, and
random stimulation to determine DEirlncRNAs pairs. Third, we
calculated not only each AUC value of ROC to get the optimal model
but also counted the AIC value of each point on the AUC to distin-
guish the optimal cut-off point to differentiate the high- or low-
risk-group among patients with HCC. Fourth, we evaluated this novel
model under various clinical settings including survival, clinical path-
ological characteristics, tumor-infiltrating immune cells, chemo-
therapy, and checkpoint related biomarkers.

Deng et al.26 analyzed the expression levels of nine lncRNAs to set
up a signature for predicting the survival of patients with HCC.
Generally, lncRNAs with high abundance possess significant bio-
logical function. Our algorithm suggested that we could initially
identify DEirlncRNAs and establish the most significant irlncRNA
pair. Thus, pairs with higher or lower expression only had to be
detected instead of examining specific expression values of every
lncRNA. This novel model had an advantage of clinical practica-
bility to distinguish the high or low risk for clinical cases. Because
lncRNAs are associated with immune-related genes, these
lncRNAs were potentially involved in regulating the remodeling
of the immune microenvironment or the activation of immune
cells. Zhang et al.27 investigated irlncRNAs from the LIHC project
of TCGA and validated them in GSE76427 from GEO databases.
In this study, some of the DEirlncRNAs in the process of modeling
that have been already identified play an important role in malig-
nant phenotypes of various cancer types, such as LUCAT1,28–30

FOXD2-AS1,31–33 HAGLR,34–36 and DSCR8,37 especially for
HCC, while others were revealed for the first time. For instance,
Jiao et al.38 reported that lncRNA LUCAT1 exhibits clinical value
and suggested an unfavorable survival outcome for patients with
liver cancer. Hu revealed that FOXD2-AS1 accelerates HCC
tumorigenesis by upregulating MAPK31 expression,39 and Wang
d to identify the highest point of the AUC. (B) The ROC of the optimal DEirlncRNA pair

odel suggested that all AUC values were over 0.85. (D) A comparison of 5-year ROC

. (E) RiskScore for 365 patients with HCC; the maximum inflection point is the cut-off
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Figure 4. Risk Assessment Model for Prognosis Prediction

(A and B) Risk scores (A) and survival outcome (B) of each case are shown. (C) Patients in the low-risk group experienced a longer survival time tested by the Kaplan-

Meier test.
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et al.40 disclosed that DSCR8 promotes HCC progression by acti-
vating Wnt/b-catenin cascades. Therefore, the proposed model can
identify novel biomarkers for further research.

To improve the accuracy and efficacy of prediction on risk, we used a
modified method of Lasso penalized modeling proposed by Sveen
et al.41 It showed that incorporating the factors into a Cox regression
model based on the rank of occurrence frequency in the process of
repeating instead of the intersection of occurrence, as the frequency
suggesting the impact of the factor in themodel. Moreover, we further
improved the procedure of modeling as follows: we calculated every
AUC value to identify the maximum value for an optimal model fol-
lowed by comparison with other clinical parameters. We also used the
AIC values to get an optimal cut-off point for model fitting instead of
distinguishing the risk just by the median value. After distinguishing
the high and low risk group by this novel upgradation, we reevaluated
the survival outcome, performed univariate and multivariate analyses
of clinicopathological characteristics, and analyzed the efficacy of che-
motherapeutics for HCC treatment, tumor immune infiltration, and
biomarkers related to checkpoint inhibitors, which implied that this
modeling algorithm worked well.

Intertumoral tumor-infiltrating immune cells affect the response to
anti-checkpoint blockades. Patients with more CD8+ T cell infiltration
experienced a superior treatment response from pembrolizumab than
those with less infiltration, which was indicated by the KEYNOTE-001
study.42 To explore the relationship between risk scores and tumor-
infiltrating immune cells, we used seven common acceptable methods
to estimate the immunoinfiltrating cell, including TIMER,43,44 CIBER-
SORT,45,46 XCELL,47,48 QUANTISEQ,49,50 MCPcounter,51 EPIC,52

and CIBERSORT-ABS.53 Because of the complexity and defects of
these algorithms, inter-comparison was rarely performed. By inte-
grating analyzing, our results revealed that DEirlncRNA pairs were
942 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
more positively related to tumor-infiltrating immune cells such as
CD8+ T cells, macrophages, monocytes, and myeloid dendritic cells.
Wang et al.54 reported that immune scores based on immunogenomic
analysis could indicate therapeutic benefits for chemotherapy and
immunotherapy. Yue et al.55 suggested that gene signatures related to
stromal infiltration were associated with metastasis of ovarian cancer,
whereas Wu et al.56 suggested that LINC00665 influenced the infiltra-
tion level of macrophages, dendritic cells, and inhibited regulatory
T cells to prevent T cell exhaustion. Our model suggested that high
risk was associated with sensitivity to chemotherapeutics such as doxo-
rubicin, vinblastine, mitomycin, and cisplatin, instead of that to the
multiple kinase inhibitor—sorafenib. We assumed that immuno-
therapy benefits better than chemotherapy through eliminating cancer
cells, generating more neoantigens, and suppressing tumor develop-
ment. Although signatures were correlated with checkpoint-related
biomarkers such as CTLA4 and HAVCR2 rather than LAG3 and
PDCD1, we believed that specific biomarkers instead of signatures
should be identified and validated because of differences between
various immune cells and immune-related phenotypes.57 Furthermore,
the abundant neoantigens caused by tumoral mutation, numerous
T cells that recognize the neoantigens, and rich intertumoral infiltra-
tion by immune cells are critically important.

However, we recognized some shortcomings and limitations in this
study. For example, the raw dataset for initial analysis was relatively
insufficient because it was simply downloaded from TCGA.We failed
to retrieve datasets simultaneously supporting information of
lncRNA expression levels, clinicopathological characteristics, and
survival outcomes for patients with HCC. Constructed models
require external validation because of the difference in expression
levels of each sample, which may make the final model unreliable.
We exploratively constructed a 0-or-1 matrix to screen all lncRNA-
pairs to minimize the sample errors due to variations of expression.
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In addition, various methods were used to confirm this new modeling
algorithm, which was optimal and utilized in this study. Based on
these results, we assumed that our model was acceptable in spite of
the lack of external data validation. However, external validation by
other clinical datasets would be beneficial. Hence, in future work,
we will recollect clinical samples and expand the sample size for
further verification, the evaluation of which will be time-consuming.

In conclusion, this study demonstrated that a novel signature con-
structed by irlncRNAs that did not require prediction of lncRNA
expression levels could predict prognosis for patients with HCC
and might help in distinguishing those who could benefit from
anti-tumor immunotherapy.

MATERIALS AND METHODS
Retrieval of Transcriptome Data, Preparation, and Differentially

Expressed Analysis

Transcriptome profiling (RNaseq) data harmonized to fragments per-
kilobase million (FPKM) of hepatoma from TCGA (https://tcga-data.
nci.nih.gov/tcga/) for the LIHC project were downloaded. GTF files
were downloaded from Ensembl (http://asia.ensembl.org) for annota-
tion to distinguish the mRNAs and lncRNAs for subsequent analysis.
A list of recognized immune-related genes (ir-genes) was downloaded
from the ImmPort database (http://www.immport.org) and was used
to screen irlncRNAs by a co-expression strategy. Correlation analysis
was performed between ir-genes and all lncRNAs. Those with im-
mune gene correlation coefficients more than 0.4 and p value less
than 0.001 were considered as irlncRNAs. To identify the DEir-
lncRNA, we used R package limma for differential expression analysis
among irlncRNAs. The thresholds were set as log fold change (FC)
>1.5 along with false discovery rate (FDR) <0.05.

Pairing DEirlncRNAs

The DEirlncRNAs were cyclically singly paired, and a 0-or-1 matrix
was constructed assuming C is equal to lncRNA A plus lncRNA B;
C is defined as 1 if the expression level of lncRNA A is higher than
lncRNA B, otherwise C is defined as 0. Then, the constructed 0-or-
1 matrix was further screened. No relationship was considered be-
tween pairs and prognosis if the expression quantity of lncRNA pairs
was 0 or 1 because pairs without a certain rank could not properly
predict patient survival outcome. When the amounts of lncRNA-
pairs of which expression quantity was 0 or 1 accounted for more
than 20% of total pairs, it was considered a valid match.

Obtaining Clinical Data of Patients

Clinical data of patients with LIHC were retrieved from the LIHC
project of TCGA. The valid data were extracted by excluding data
with a follow up time of 0 days, as well as repeated data.
Figure 5. Clinical Evaluation by the Risk Assessment Model

(A–F) A strip chart (A) along with the scatter diagram showed that (B) T stage, (C) M

associated with the riskScore. (G) A univariate Cox hazard ratio analysis demonstrated th

HR = 1.689, 95%CI [1.379–2.069]), and riskScore (p < 0.001, HR = 1.079, 95% CI [1.06

CI [1.058–1.092]) presented as an independent prognostic predictor by multivariate Co
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Establishment of a Risk Model to Evaluate the riskScore

A single factor analysis was first performed, following which, Lasso
regression was performed with 10-fold cross validation and a p value
of 0.05. The Lasso regression was run for 1,000 cycles, and for each
cycle, a random stimulation was set up for 1,000 times. Next, the fre-
quency of each pair in the 1,000-times-repeated Lasso regression
model was recorded and pairs with frequency more than 100 times
were selected for Cox proportional hazard regression analysis, as
well as for construction of the model. The AUC value of each model
was also calculated and was drawn as a curve. If the curve reached the
highest point, indicating the maximum AUC value, the calculation
procedure was terminated while the model was taken as the optimal
candidate. The 1-, 3-, and 5-year ROC curves of the model were
plotted. The following formula was used to calculate the riskScore
with the constructed risk model for all clinical cases:
RiskScore=

Pk
i= 1biSi. The AIC values of every points of the 5-year

ROC curve were evaluated to identify the maximum inflection point,
which was considered as the cut-off point to distinguished high or low
risk of RiskScores.

Validation of the Constructed Risk Model

To validate this cut-off point, we performed Kaplan-Meier analysis to
show the survival difference of patients in the high- or low-risk group,
and the survival curve was used for visualization. The specific risk-
Score values of each sample in the model were also visualized by R
tools. The R packages utilized in these steps included survival, glmnet,
pbapply, survivalROC, survminer, and pHeatmap.

To verify the clinical application value of the constructed model,
we performed the chi-square test to analyze the relationship be-
tween the model and clinicopathological characteristics. The
band diagram was used for visualization and was labeled as fol-
lows: <0.001 = ***, <0.01 = ** *, and <0.05 = *. Wilcoxon
signed-rank test was used to calculate the riskScore differences
among different groups of these clinicopathological characteristics.
The box diagram was used to show the analysis results. To confirm
whether the model can be used as an independent clinical prog-
nostic predictor, we performed univariate and multivariate Cox
regression analyses between the riskScore and clinicopathological
characteristics. A forest map was used to demonstrate the results.
The R packages utilized in these operations were survival, pHeat-
map, and ggupbr.

Investigation of Tumor-Infiltrating Immune Cells

To analyze the relationship between the risk and immune-cell char-
acteristics, we considered the currently acknowledged methods to
calculate the immune infiltration statues among the samples from
the TCGA project of the LIHC dataset including TIMER,
stage, (D) tumor grade, (E) clinical stage, and (F) survival status were significantly

at clinical stage (p < 0.001, HR = 1.717, 95%CI [1.3866–2.127]), T stage (p < 0.001,

4–1.094]) were statistically different. (H) Only riskScore (p < 0.001, HR = 1.075, 95%

x regression.
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http://www.immport.org


Figure 6. Estimation of Tumor-Infiltrating Cells and Immunosuppressed Molecules by the Risk Assessment Model

(A) Patients in the high-risk group were more positively associated with tumor-infiltrating immune cells such as macrophages, monocytes, and CD8+ T cells, whereas they

were negatively associated with fibroblasts and CD4+ T cells, as shown by Spearman correlation analysis. (B–E) High risk scores were positively correlated with upregulated

(B) CTLA4, (C) HAVCR2, (D) LAG3, and (E) PDCD1 levels, whereas the latter two showed no statistical difference in patients with HCC. (F) The model acted as a potential

predictor for chemosensitivity as high risk scores were related to a lower IC50 for chemotherapeutics such as doxorubicin,mitomycin, and cisplatin, whereas theywere related

to a higher IC50 for vinblastine.
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CIBERSORT, XCELL, QUANTISEQ, MCPcounter, EPIC, and CI-
BERSORT. The differences in immune infiltrating cell content
explored by these methods between high- and low-risk groups of
the constructed model were analyzed by Wilcoxon signed-rank
test; the results are shown in a box chart. Spearman correlation anal-
ysis was performed to analyze the relationship between the riskScore
values and the immune infiltrated cells. The correlation coefficients
of the results were shown in a lollipop diagram. The significance
threshold was set as p <0.05. The procedure was performed using
R ggplot2 packages.
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 945
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Exploration of the Significance of the Model in the Clinical

Treatment

To evaluate the model in the clinic for hepatocellular carcinoma treat-
ment, we calculated the IC50 of common administrating chemother-
apeutic drugs in the TCGA project of the LIHC dataset. Antitumor
drugs such as adriamycin, mitomycin, vinblastine, cisplatin, and sor-
afenib are recommended for liver cancer treatment by AJCC guide-
lines. The difference in the IC50 between the high and low risk groups
was compared by Wilcoxon signed-rank test and the results are
shown as box drawings obtained using with pRRophetic and ggplot2
of R.

Analyses of the Immunosuppressive Molecules Expressing

Related to ICIs

To study the relationship between the model and the expression level
of genes related to ICIs, we performed ggstatsplot package and violin
plot visualization.
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Figure S1. The representative results of the evaluation of tumor infiltrating immune cells with
risk assessment model.



Table S1. A total of 808 immune-related lncRNAs were identified by co-expression analysis (submitted
as a separate Excel file).



Table S2. The detail values of univariate and multivariate cox regression analysis.
id Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P
age 1.01 0.99 ~1.03 0.211 1.00 0.99 ~1.02 0.846
gender 0.84 0.56 ~1.27 0.415 0.82 0.53 ~1.25 0.353
grade 1.11 0.85 ~1.45 0.458 1.28 0.95 ~1.73 0.109
BMI 1.00 0.97 ~1.03 0.920 1.01 0.98 ~1.04 0.487
stage 1.72 1.39 ~2.13 0.000 0.86 0.37 ~1.99 0.724
T 1.69 1.38 ~2.07 0.000 1.84 0.83 ~4.08 0.136
M 1.18 0.93 ~1.49 0.165 1.29 0.94 ~1.75 0.114
N 1.13 0.90 ~1.42 0.290 1.07 0.78 ~1.46 0.683
riskScore 1.08 1.06 ~1.09 0.000 1.07 1.06 ~1.09 0.000



Table S3. The p value of comparing tumour infiltrating immune cells and risk sore.

gene pVal gene pVal

Macrophage_EPIC 0.0000 Myeloid dendritic cell resting_CIBERSORT-ABS 0.1448
Hematopoietic stem cell_XCELL 0.0000 B cell plasma_CIBERSORT-ABS 0.1491
T cell CD4+ Th2_XCELL 0.0000 B cell_TIMER 0.1576
stroma score_XCELL 0.0000 T cell CD4+ central memory_XCELL 0.1594
Macrophage M0_CIBERSORT 0.0000 Myeloid dendritic cell activated_CIBERSORT-ABS 0.1645
Macrophage M0_CIBERSORT-ABS 0.0000 Myeloid dendritic cell activated_CIBERSORT 0.1653
uncharacterized cell_EPIC 0.0000 B cell_XCELL 0.1784
Endothelial cell_XCELL 0.0000 NK cell_XCELL 0.1878
Granulocyte-monocyte progenitor_XCELL 0.0000 Endothelial cell_MCPCOUNTER 0.1943
Common lymphoid progenitor_XCELL 0.0000 T cell CD4+ naive_XCELL 0.2013
T cell CD8+ naive_XCELL 0.0001 Myeloid dendritic cell resting_CIBERSORT 0.2080
microenvironment score_XCELL 0.0002 B cell plasma_CIBERSORT 0.2159
Monocyte_QUANTISEQ 0.0002 cytotoxicity score_MCPCOUNTER 0.2217
Monocyte_MCPCOUNTER 0.0006 T cell CD4+ (non-regulatory)_QUANTISEQ 0.2225
Macrophage_Monocyte_MCPCOUNTER 0.0006 Cancer associated fibroblast_XCELL 0.2226
Neutrophil_TIMER 0.0006 Macrophage M2_CIBERSORT 0.2282
T cell CD8+ central memory_XCELL 0.0006 Macrophage M1_XCELL 0.2295
Macrophage M1_QUANTISEQ 0.0009 T cell CD4+ naive_CIBERSORT 0.2385
Macrophage_TIMER 0.0009 T cell CD4+ naive_CIBERSORT-ABS 0.2418
Cancer associated fibroblast_EPIC 0.0017 Myeloid dendritic cell_MCPCOUNTER 0.2433
T cell CD4+_TIMER 0.0018 Mast cell_XCELL 0.2638
Myeloid dendritic cell_TIMER 0.0022 T cell CD8+_QUANTISEQ 0.2886
T cell CD8+_CIBERSORT 0.0026 T cell follicular helper_CIBERSORT 0.2923
Common myeloid progenitor_XCELL 0.0036 NK cell activated_CIBERSORT 0.2931
Monocyte_CIBERSORT 0.0050 Neutrophil_XCELL 0.2948
T cell CD4+ memory_XCELL 0.0091 Class-switched memory B cell_XCELL 0.3058
Mast cell resting_CIBERSORT-ABS 0.0092 B cell naive_XCELL 0.3126
Mast cell resting_CIBERSORT 0.0109 B cell_EPIC 0.3144
Mast cell activated_CIBERSORT 0.0109 T cell CD4+ Th1_XCELL 0.3271
Neutrophil_CIBERSORT-ABS 0.0110 Myeloid dendritic cell_QUANTISEQ 0.3822
T cell regulatory (Tregs)_CIBERSORT-ABS 0.0130 B cell naive_CIBERSORT 0.4136
Neutrophil_CIBERSORT 0.0149 T cell CD8+_MCPCOUNTER 0.4202
Mast cell activated_CIBERSORT-ABS 0.0155 Macrophage M2_QUANTISEQ 0.4722
Macrophage M2_XCELL 0.0161 T cell CD8+ effector memory_XCELL 0.4723
T cell CD4+ memory resting_CIBERSORT 0.0182 NK cell activated_CIBERSORT-ABS 0.4736
B cell plasma_XCELL 0.0263 T cell regulatory (Tregs)_XCELL 0.4944
Plasmacytoid dendritic cell_XCELL 0.0279 Macrophage M1_CIBERSORT 0.4969
T cell CD4+ effector memory_XCELL 0.0281 Macrophage M1_CIBERSORT-ABS 0.5200
T cell CD8+_XCELL 0.0292 Myeloid dendritic cell_XCELL 0.5488
T cell regulatory (Tregs)_CIBERSORT 0.0313 T cell CD4+_EPIC 0.5665



NK cell_MCPCOUNTER 0.0331 B cell naive_CIBERSORT-ABS 0.6310
T cell NK_XCELL 0.0333 Monocyte_XCELL 0.6611
T cell regulatory (Tregs)_QUANTISEQ 0.0375 T cell gamma delta_CIBERSORT 0.7033
Macrophage M2_CIBERSORT-ABS 0.0388 T cell gamma delta_CIBERSORT-ABS 0.7143
Eosinophil_XCELL 0.0398 Eosinophil_CIBERSORT 0.7445
Neutrophil_QUANTISEQ 0.0424 Eosinophil_CIBERSORT-ABS 0.7475
Endothelial cell_EPIC 0.0455 T cell CD4+ memory resting_CIBERSORT-ABS 0.7831
T cell CD4+ memory
activated_CIBERSORT-ABS

0.0460 B cell memory_CIBERSORT 0.7858

T cell CD8+_TIMER 0.0471 NK cell resting_CIBERSORT 0.7866
T cell CD4+ memory activated_CIBERSORT 0.0502 Macrophage_XCELL 0.7871
Neutrophil_MCPCOUNTER 0.0521 Myeloid dendritic cell activated_XCELL 0.7963
T cell follicular helper_CIBERSORT-ABS 0.0681 B cell memory_XCELL 0.7972
Monocyte_CIBERSORT-ABS 0.0910 B cell memory_CIBERSORT-ABS 0.7988
T cell_MCPCOUNTER 0.0946 NK cell resting_CIBERSORT-ABS 0.8092
T cell CD8+_CIBERSORT-ABS 0.1098 immune score_XCELL 0.8620
B cell_QUANTISEQ 0.1197 T cell CD8+_EPIC 0.9047
NK cell_QUANTISEQ 0.1210 T cell gamma delta_XCELL 0.9296
T cell CD4+ (non-regulatory)_XCELL 0.1241 NK cell_EPIC 0.9377
uncharacterized cell_QUANTISEQ 0.1294 B cell_MCPCOUNTER 0.9477
Cancer associated
fibroblast_MCPCOUNTER

0.1307



Table S4. The detail comparison results of correlation ship between tumour infiltrating immune
cells and risk sore.

symbol type correlation pValue

B cell memory_CIBERSORT CIBERSORT 0.1407 0.0071
Macrophage M0_CIBERSORT CIBERSORT 0.1894 0.0003
T cell CD4+ memory resting_CIBERSORT CIBERSORT -0.1336 0.0106
Macrophage M0_CIBERSORT-ABS CIBERSORT-ABS 0.1791 0.0006
Macrophage M2_CIBERSORT-ABS CIBERSORT-ABS 0.1665 0.0014
Mast cell resting_CIBERSORT-ABS CIBERSORT-ABS 0.1037 0.0476
NK cell activated_CIBERSORT-ABS CIBERSORT-ABS 0.1220 0.0197
T cell follicular helper_CIBERSORT-ABS CIBERSORT-ABS 0.1390 0.0078
T cell gamma delta_CIBERSORT-ABS CIBERSORT-ABS 0.1253 0.0166
T cell regulatory (Tregs)_CIBERSORT-ABS CIBERSORT-ABS 0.1038 0.0474
Macrophage_EPIC EPIC -0.2435 0.0000
uncharacterized cell_EPIC EPIC 0.2512 0.0000
Macrophage_Monocyte_MCPCOUNTER MCPCOUNTER 0.2504 0.0000
Monocyte_MCPCOUNTER MCPCOUNTER 0.2504 0.0000
Myeloid dendritic cell_MCPCOUNTER MCPCOUNTER 0.1739 0.0009
T cell CD8+_MCPCOUNTER MCPCOUNTER 0.1242 0.0176
Macrophage M1_QUANTISEQ QUANTISEQ 0.2009 0.0001
Macrophage M2_QUANTISEQ QUANTISEQ 0.1177 0.0245
NK cell_QUANTISEQ QUANTISEQ -0.1073 0.0404
T cell CD8+_QUANTISEQ QUANTISEQ 0.1132 0.0307
uncharacterized cell_QUANTISEQ QUANTISEQ -0.1116 0.0331
Macrophage_TIMER TIMER 0.2517 0.0000
Myeloid dendritic cell_TIMER TIMER 0.1790 0.0006
Neutrophil_TIMER TIMER 0.1954 0.0002
Cancer associated fibroblast_XCELL XCELL -0.1034 0.0484
Common lymphoid progenitor_XCELL XCELL 0.1763 0.0007
Endothelial cell_XCELL XCELL -0.1553 0.0029
Granulocyte-monocyte progenitor_XCELL XCELL -0.1139 0.0295
Hematopoietic stem cell_XCELL XCELL -0.2158 0.0000
Macrophage M1_XCELL XCELL 0.1413 0.0069
Macrophage_XCELL XCELL 0.1130 0.0309
Monocyte_XCELL XCELL 0.1296 0.0132
stroma score_XCELL XCELL -0.1921 0.0002
T cell CD4+ Th2_XCELL XCELL 0.3608 0.0000



Table S5. The p value of comparing chemotherapeutics sensitivity and risk sore.

Drug p-value

Doxorubicin 0.026
Vinblastine 0.0043
Mitomycin.C 1.40E-09
Cisplatin 3.60E-05
Sorafenib 0.24
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