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SUMMARY
SARS-CoV-2 infection has led to a global health crisis, and yet our understanding of the disease and potential
treatmentoptions remains limited. The infectionoccurs throughbindingof theviruswithangiotensinconverting
enzyme 2 (ACE2) on the cellmembrane. Here, we established a screening strategy to identify drugs that reduce
ACE2 levels in human embryonic stem cell (hESC)-derived cardiac cells and lung organoids. Target analysis of
hit compounds revealed androgen signaling as a keymodulator of ACE2 levels. Treatmentwith antiandrogenic
drugs reduced ACE2 expression and protected hESC-derived lung organoids against SARS-CoV-2 infection.
Finally, clinical data on COVID-19 patients demonstrated that prostate diseases, which are linked to elevated
androgen, are significant risk factors and that genetic variants that increase androgen levels are associated
with higher disease severity. These findings offer insights on the mechanism of disproportionate disease sus-
ceptibility in men and identify antiandrogenic drugs as candidate therapeutics for COVID-19.
INTRODUCTION

Coronavirus disease 2019 (COVID-19) caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) has become

apandemic affectingmillions of peopleworldwide. Limited under-

standing of the disease pathophysiology has impeded our ability

to develop effective preventative and therapeutic strategies.

Multi-organ failure is the most lethal complication of SARS-

CoV-2 infection (Guan et al., 2020). It has been well documented

that organ involvement and disease manifestation are correlated
876 Cell Stem Cell 27, 876–889, December 3, 2020 ª 2020 Elsevier I
with the expression of SARS-CoV-2 receptor and co-receptors

on the membrane of target cells (Hamming et al., 2004). The

spike (S) protein, which is responsible for the characteristic

crown-like shape of coronaviruses, facilitates the binding of

the virus to its receptors on the cell membrane (Hoffmann

et al., 2020; Vabret et al., 2020). ACE2 has been identified as

the main receptor utilized by SARS-CoV-2 and SARS-CoV-1 to

enter cells (Lan et al., 2020). Additionally, recent findings using

human and animal cell lines have demonstrated that SARS-

CoV-2 relies on the serine protease TMPRSS2 for S protein
nc.

mailto:hani.goodarzi@ucsf.edu
mailto:faranak.fattahi@ucsf.edu
https://doi.org/10.1016/j.stem.2020.11.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stem.2020.11.009&domain=pdf


A

D E

B C

F G

IH

(legend on next page)

ll
Article

Cell Stem Cell 27, 876–889, December 3, 2020 877



ll
Article
priming prior to ACE2-facilitated internalization (Hoffmann et al.,

2020). Research after the SARS-CoV-1 epidemic shows that

knocking-out ACE2 results in markedly decreased viral entry in

lungs of mice infected with the virus (Kuba et al., 2005). In this

study, we identified pharmacological strategies to reduce the

levels of ACE2 in human embryonic stem cell (hESC)-derived

lung organoids and cardiac cells in order to facilitate therapeutic

interventions aimed at reducing viral entry, therebymitigating the

multi-organ complications induced by SARS-CoV-2 infection.

To identify candidate drugs capable of modulating ACE2 pro-

tein levels, we took advantage of our previously established

methods to generate cardiac cells from hESCs at large scale

(Ghazizadeh et al., 2018, 2020; Tsai et al., 2020) and performed

a high-throughput screen with a library of 1,443 FDA-approved

drugs and a subsequent in silico screen with the ZINC15 library

of more than 9 million drug-like compounds. We discovered

that drugs most effective in reducing ACE2 protein levels

converge on androgen receptor (AR) signaling inhibition as a

common mechanism of action. These drugs were effective in

reducing ACE2 and TMPRSS2 levels in both lung epithelial cells

and cardiac cells and resulted in reduced infectivity of SARS-

CoV-2 in hESC-derived lung organoids.

Clinical case studies have identified male sex as a major risk

factor for SARS-CoV-2 complications. In fact, 70% of the pa-

tients on ventilators in the ICU were found to be males (Guan

et al., 2020). The sex gap is closed in prepubescent patients;

children of both sexes are relatively protected from adverse ef-

fects of COVID-19 compared to adults (Toubiana et al., 2020;

Wu et al., 2020). To explore the possible role of sex hormones

on poor disease outcomes in adults and male patients in partic-

ular, we conducted a study on two independent cohorts of pa-

tients tested for SARS-CoV-2. Among males, we found a signif-

icant positive association between prostatic diseases and

genetic factors that elevate androgen levels and the risk of

COVID-19 susceptibility and severity. Our data provide a poten-

tial mechanistic link between clinical observations and pathways

involved in COVID-19 pathogenesis. The results identify AR

signaling inhibition as a potential therapeutic strategy to reduce

SARS-CoV-2 viral entry and mitigate severe manifestations in

COVID-19 patients.

RESULTS

High-Throughput Drug Screen Identifies ACE2
Modulators in Human Cardiac Cells
Our analysis of previously published single-cell RNA sequencing

datasets (Madissoon et al., 2019; Smillie et al., 2019; Wang et al.,
Figure 1. High-Throughput In Vitro and In Silico Screenings Identify Dru

(A and B) High-throughput screening of Selleckchem FDA-approved drug library

cardiomyocytes.

(C) Representative immunofluorescent images of cells treated with vehicle, vincr

(D and E) Dose response of hits that (D) decreased and (E) increased ACE2 expr

(F) Two-dimensional visualization of molecular features (Morgan fingerprints) for t

the points are sub-sampled by a factor of 103.

(G) UMAP visualization of the in vitro (labeled) and in silico (unlabeled) hit compou

fingerprints.

(H) Dose response analysis of selected in silico hit compounds in hESC-derived

(I) Effect of selected in silico hit compounds on ACE2 expression in human prima

*p value < 0.05, **p value < 0.01, ***p value < 0.001. See also Figure S1 and Tab
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2020) showed abundant expression of SARS-CoV-2 receptor

ACE2 and of co-receptors TMPRSS2 and FURIN in adult cardiac

cells, lung alveolar and ciliated epithelial cells, and esophageal

and colon tissues (Figure S1A). Given the highly significant asso-

ciation of poor outcomes in COVID-19 patients with cardiovas-

cular complications (Guo et al., 2020; Shi et al., 2020) and the

significant role of ACE2 in cardiac physiology (Guzik et al.,

2020), we chose to initially focus on the regulation of ACE2 levels

in cardiac cells. Due to limitations associated with isolation and

maintenance of human cells from primary tissue, we used our

previously established hESC differentiation method as an alter-

native strategy to generate cardiac cells (Figure S1B; Tsai

et al., 2020). Previously published transcriptomics data on

hESC-derived cells generated using this method (Tsai et al.,

2020) confirmed the expression of SARS-CoV-2 receptor and

co-receptors mRNAs in cardiomyocytes and non-cardiomyo-

cytes (Figure S1C). The differentiated cells also stained positive

for ACE2 as assessed by immunofluorescence imaging

(Figure S1D).

Searching for modulators of ACE2 levels in hESC-derived

cardiac cells, we screened a Selleckchem small molecule li-

brary composed of 1,443 FDA-approved drugs (Figure 1A).

ACE2 levels were measured in drug-treated cells using

high-throughput imaging and a list of drugs that significantly

downregulate or upregulate ACE2 were identified based on

their normalized ACE2 expression z-scores (Figure 1B, Table

S1). We confirmed the effect of a compound with a high pos-

itive z-score (vincristine) and a compound with a low nega-

tive z-score (dronedarone) on ACE2 fluorescence intensity

(Figure 1C), and subsequently selected several hit com-

pounds with low and high z-scores (Figures S1E and S1F)

for further analysis and validation at 1 mM and 2 mM concen-

trations (Figures 1D and 1E). Interestingly, Vero cells, which

are commonly used in COVID-19 drug discovery, did not

show any significant changes in ACE2 expression in

response to treatment with the hit compounds, highlighting

that the underlying regulatory mechanisms are cell-type

and species specific (Figures S1G and S1H). The high-quality

cell-based measurements and the inherent diversity of the

FDA library provided a unique opportunity to develop a vir-

tual high-throughput screening (vHTS) approach that allowed

for rapid in silico screening and cost-effective identification

of compounds that can elicit the desired biological response.

Combined analysis of these in vitro measurements and in sil-

ico predictions allows us to nominate molecular entities that

can effectively modulate the signaling pathways responsible

for ACE2 regulation.
gs that Modulate ACE2 Expression in hESC-Derived Cardiomyocytes

identifies drugs that increase and decrease ACE2 expression in hESC-derived

istine, and dronedarone at 1 mM. Scale bar: 200 mm.

ession in hESC-derived cardiomyocytes culture.

he in vitro and in silico tested compounds using UMAP. For the ZINC15 library,

nds. Also shown are the K-means cluster memberships based on their Morgan

cardiac cells. Data are represented as mean ± SEM.

ry alveolar epithelial cells. Data are represented as mean ± SEM.

le S1.
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To achieve this goal, we first randomly split our in vitro

screening results into three datasets as training, validation,

and test inputs (Figures S1I–S1K). We used the model trained

on the in vitro screening data to predict changes in ACE2

expression in response to treatments with the in silico library.

We then variance normalized the model predictions to deter-

mine their associated z-scores. We selected the compounds

with a z-scores smaller than �4 as ‘‘in silico hit compounds.’’

To visualize these hits, we used Morgan fingerprints to

generate molecular features for all in vitro and in silico tested

compounds and visualized their relationship in a 2-dimen-

sional space using Uniform Manifold Approximation and Pro-

jection (UMAP) (Figure 1F). We then used K-means clustering

to categorize the in silico and in vitro hits and grouped them

into 15 coarse-grained clusters based on their molecular fea-

tures (Figure 1G). We observed a consistent co-clustering of

the FDA-approved drugs that are known to have structural

similarities, such as the cluster containing finasteride and du-

tasteride, confirming the utility of these clustering representa-

tions. We next tested a subset of in silico hit compounds (Fig-

ure S1L) selected from different clusters on hESC-derived

cardiomyocytes and human primary alveolar epithelial cells

and confirmed their ability to significantly reduce ACE2

expression in both cell types (Figures 1H and 1I). Taken

together, this integrative cell-based and in silico screening

strategy enabled the identification and nomination of highly

efficacious drug-like compounds with similar structures to

the FDA-approved drugs utilized in the in vitro screen.

Drugs that Reduce ACE-2 Regulate Steroid Signaling
and Peptidase Activities
We explored whether a potential shared pathway exists among

the candidates that decrease ACE2 levels on the membrane of

cardiac cells. We acquired isometric simplified molecular-input

line-entry system (SMILES) for each drug in the FDA-approved

library from Selleckchem and used them to predict drug-protein

interactions via the similarity ensemble approach (SEA) compu-

tational tool (Keiser et al., 2007). The SEA-predicted drug-protein

pairs were filtered, selecting human proteins and predicted inter-

action p values < 0.05, which yielded 2,150 predicted proteins

targeted by the drug library.

Weighted combined z-scores were then calculated by adding

normalized z-scores across all compounds that target each

target protein (Zaykin, 2011). The p values were then calculated

based on the combined z-scores and adjusted using p.adjust

(method = false discovery rate [FDR]). As an orthogonal

approach, for each protein, we recorded the number of treat-

ments with negative normalized z-scores as well as the total

number of compounds predicted to target that protein. Using

the sum of counts for all other targets and drugs, we performed

a Fisher’s exact test to evaluate the degree to which negative z-

scores were enriched among the drugs likely to target a protein

of interest. As expected, the two p values, i.e., combined z-score

and Fisher’s, were generally correlated (R = 0.6, p < 1e�200). In

Figure 2A, we have specifically compared these p values across

the genes with negative average z-scores. Finally, we selected

the likely target genes using the following criteria: average

z-score < 0, FDR < 0.25 based on combined z-score analysis,

and Fisher’s p < 0.05. This selection process resulted in 30 pro-
teins nominated as significant drug targets (Figures 2B and 2C,

Table S2).

The previously published bulk transcriptomics data (Tsai

et al., 2020) confirmed that 28 of these 30 proteins were ex-

pressed by the in vitro generated cardiomyocytes and/or

non-cardiomyocytes supporting their potential as drug targets

(Figure S2A). Analysis of the collective expression of all 30

predicted targets using module scoring revealed that some

ACE2-expressing cell types, such as cardiac fibroblasts and

ciliated cells in the lung, express high levels of multiple pre-

dicted drug targets (Figure S2B). Additionally, expression of

the predicted targets was detected in ACE2-expressing cell

types of the adult human heart, and the majority were also de-

tected in ACE2-expressing cell types of other commonly

affected organs (Figure S2C). This analysis also provides

insight into non-ACE2-expressing cell types that may be

affected by treatment with the hit compounds. In particular,

tissue-resident immune populations of the myeloid lineage in

the heart, esophagus, and lung also collectively express

many of the predicted target genes (Figure S2C). This is

particularly interesting given the recent reports that myeloid

lineage and epithelial cells are affected in severe SARS-

CoV-2 infection cases (Bost et al., 2020).

To identify biological pathways associated with changes in

ACE2 expression, we used the combined z-scores across all

proteins using iPAGE gene ontology (GO) analysis (Figure S2D).

Interestingly, target proteins associated with compounds that

reduce ACE2 expression were associated with various GO terms

related to peptidase activity and steroid metabolic processes

(Figure 2D). These pathways were then validated with the SEA-

predicted protein targets from the in silico library screen. Inter-

estingly, hit compounds identified in the in silico screen also

showed enrichment for targets involved in steroid hormone

activity, steroid metabolic processes, and peptidase activity

(Figure 2E). Given the strong clinical evidence on COVID-19

disproportionately affecting men, the well-established role of

peptidase in modulating ACE2 and SARS-Co-V-2 co-receptors,

and the possible link between ACE2 expression and sex hor-

mones, we sought to uncover the specific drug-protein interac-

tions driving enrichment of steroid and peptidase pathways. We

first mapped the drug-protein interactions for the full list of pre-

dicted targets and compounds with z-score < �1.5 (Figure 3A).

This revealed a list of 48 compounds with significant interactions

with target proteins (Figure S3A). Next, we created drug-protein

matrices on proteins in ‘‘steroidmetabolic process’’ and ‘‘serine-

type peptidase’’ activity GO terms to map the interaction of

drugs with corresponding targets (Figures S3B and S3C). This

analysis highlighted the interaction of several drugs including ke-

toconazole, spironolactone, finasteride, and dutasteride with

androgen-signaling modulators such as SRD5A1 and SHBG

(Figures 3A, S3B, and S3C), whereas other drugs from the

in vitro screen, such as camostat mesilate, sotagliflozin, and

guanabenz acetate, were specific to the serine-type peptidase

activity pathway (Figure S3C).

Androgen Receptor Signaling Modulates SARS-CoV-2
Receptors
To build a working model of the drug-protein interactions in

ACE2 regulation, we conducted a protein-protein interaction
Cell Stem Cell 27, 876–889, December 3, 2020 879
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Figure 2. Target Prediction Analysis Identified Shared Pathways among ACE2 Regulators

(A) We employed two independent tests for identifying the genes that aremost likely targeted by the effective treatments: (1) a combined z-score approach, where

normalized z-scores from all the treatments associated with a gene are integrated, and (2) a Fisher’s exact test to assess the enrichment of a gene among those

that are targets of treatments with negative z-scores. Here we have shown the correlation between the p values reported by these two independent approaches.

(B) A one-sided volcano plot showing the average z-score versus �log of p value for all genes with negative z-scores. The genes that pass our statistical

thresholds are marked in gold (combined z-score FDR < 0.25 and Fisher’s p value < 0.05).

(C) The identified target genes along with their combined z-score, associated p value, and FDRs. Also included are the total number of compounds each gene is

likely targeted by, and the number of those that result in lower ACE2 expression (z-score < 0).

(D) Gene-set enrichment analysis using iPAGE for the target genes identified from FDA-approved library with negative z-score. Genes were ordered based on

their combined z-score from left to right and divided into nine equally populated bins. The enrichment and depletion pattern of various gene-sets is then assessed

across this spectrum using mutual information. Red boxes show enrichment and blue boxes show depletion.

(E) Gene-set enrichment analysis for the in silico hits. Similar to (D), genes were grouped into those that are likely targeted by the identified compounds and those

that are not (i.e., background). We then assessed the enrichment of each pre-compiled gene-set among the targets using iPAGE.

See also Figure S2 and Table S2.
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(PPI) network analysis to identify interactions between our

list of significant predicted targets (Figure 2C), androgen

signaling pathway components (AR and SRD5A2), and pro-

teins implicated in ACE2 function regulation (ACE, ADAM10,

ADAM17, FURIN, REN, TMPRSS2). We used the STRING

physical interaction database to draw a high confidence

network of associating proteins (Figure 3B). In the resulting
880 Cell Stem Cell 27, 876–889, December 3, 2020
network, AR and IL6 had the highest degree centrality, con-

necting to seven other nodes in the network. Furthermore,

AR and IL6 share high betweenness centrality, connecting

the androgen pathway module to the peptidases. The

observed link between AR and IL6 is clinically important given

the elevated IL6 response in severe cases of COVID-19

infection (Liu et al., 2020).
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Figure 3. Androgen Signaling Regulates Peptidase Expression

(A) The drug-gene interaction matrix for the 30 significantly enriched drug target genes from Figure 2C that are deemed functional in their respective analyses.

Shading represents the significance of the predicted interaction.

(B) STRING protein-protein interaction network was used to identify interactions between our list of significantly enriched genes from Figure 2C (depicted as

significantly predicted targets and yellow circles), androgen signaling pathway components (AR and SRD5A2), and proteins implicated in ACE2 regulation (ACE,

ADAM10, ADAM17, FURIN, REN, TMPRSS2). Minimum required interaction score was set to 0.7 corresponding to high confidence and edge thickness indicates

the degree of data support.

(C) SEA predicted drug-protein target interactions (blue lines and boxes) in the androgen signaling pathway. Yellow ovals represent significantly enriched genes

from Figure 2C. Dashed lines represent MaxTC < 1.

(legend continued on next page)
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The remarkable convergence of the gene set enrichment anal-

ysis and the PPI network on steroid hormone-related genes and

pathways prompted us to hypothesize that the drug candidates

may be reducing ACE2 expression via inhibition of AR signaling

and peptidase pathways (Figures 3C and 3D). Seven of the pre-

dicted drug targets are upstream regulators of AR signaling and

are targeted by multiple drug candidates that reduce ACE2 (Fig-

ure 3C). Furthermore, peptidases such as FURIN and TMPRSS2,

which are important players in ACE2 regulation and thereby

SARS-CoV-2 viral entry (Hasan et al., 2020; Heurich et al.,

2014), are among the downstream targets of AR. These recep-

tors and their upstream regulators are also predicted to be tar-

geted by the drug candidates (Figure 3D).

Although most highly expressed in male reproductive organs,

ARmediates hormone signaling inmanymale and female tissues

(Matsumoto et al., 2013). In agreement, expression of AR- and

testosterone-converting enzymes SRD5A1 and SRD5A2 are

detected in ACE2-expressing cell types in the adult heart,

lung, esophagus, and colon (Figures S3D–S3G). Additionally,

collective expression of genes involved in AR signaling

(GO:0030521), common receptors upstream of AR activation

(Azevedo et al., 2011; Cao and Kyprianou, 2015; Girling et al.,

2007; Wang et al., 2020), and common gene targets of AR tran-

scription factor activity (Jin et al., 2013), reveals potential organ

and cell-type-specific differences in AR signaling regulation (Fig-

ures S3D–S3G). A list of genes included in each module is pro-

vided in Table S3.

To evaluate the effect of AR inhibition on ACE2 levels, we

treated cardiac cells derived from two different hESC lines

(WA09 and WA01) with the drug candidates that are known to

inhibit AR signaling and observed significant reductions of

ACE2 in a dose-dependent manner (Figures 3E–3G). Finasteride

and dutasteride reduce AR signaling by inhibiting 5 alpha reduc-

tases, which are the enzymes that convert testosterone to an AR

ligand and agonist, 5a-dihydrotestosterone (DHT). Treatment

with these drugs resulted in a significant decrease in TMPRSS2

in addition to ACE2 (Figures S4A and S4B).

To determinewhether AR signaling regulates the expression of

SARS-CoV-2 receptors directly, we used an existing AR ChIP-

seq dataset generated in LNCaP cells (Tran et al., 2020) to iden-

tify direct transcriptional targets. The genes with AR binding to

this 5 kb downstream or upstream of transcription start sites

(TSS) were selected as direct AR-bound targets. We next used

a transcriptomics dataset generated using RNAi-mediated

knockdown of AR (Zhang et al., 2020) and compared gene

expression changes in response to AR knockdown. We divided

log-fold expression changes into nine equally populated bins,

which were also shown along with the patterns of AR enrichment

and depletion at the corresponding TSS across the data (Fig-

ure 4A). This analysis identified ACE2 and other SARS-CoV-2

co-receptors (TMPRSS2 and FURIN) as direct transcriptional
(D) The expression of ACE2-related peptidases is regulated by AR and other tra

tanimoto similarity between compounds from ref_target to compounds from que

(E and F) Dose response analysis of the effects of antiandrogenic drug candidates

WA01 (F). Data are represented as mean ± SEM.

(G) Representative images of immunofluorescence staining for ACE2 and TMPRS

bar = 50 mm.

*p value < 0.05, **p value < 0.01, ***p value < 0.001. See also Figure S3 and Tab
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targets that are downregulated in response to AR knockdown

(Figure 4A).

To further interrogate the role of AR signaling in regulation of

ACE2, we used CRISPR-Cas9 ribonucleoproteins (RNPs) deliv-

ery to knock out AR and SRD5A2 in hESC-derived cardiac cells

and human primary alveolar epithelial cells. Treatment with AR

and SRD5A2 RNPs resulted in significant reductions in ACE2

levels in both cell types (Figures 4B and 4C). To perform the

gain-of-function experiment, we treated the hESC-derived car-

diac cells and human primary alveolar epithelial cells with DHT.

Remarkably, DHT treatment significantly increased ACE2 levels

and internalization of recombinant spike-RBD protein in both cell

types, while the 5 alpha reductase inhibitor dutasteride had the

opposite effect (Figures 4D–4G). Furthermore, finasteride, which

is another well-known 5 alpha reductase inhibitor, was able

to significantly reduce the internalization of SARS-CoV-2

pseudotyped virus in human primary alveolar epithelial cells

(Figure S4C).

We next evaluated the ability of our candidate antiandrogenic

drugs in reducing SARS-CoV-2 receptors in bronchial epithelial

cells. Human bronchial epithelial cell cultures were generated

from donated tissue samples from lung transplant recipients as

described previously (Bonser et al., 2020; Fulcher et al., 2005)

and are enriched in ciliated cells that express ECAD and TUBA

(Figure 4H). Ciliated cells belong to another COVID-19-relevant

subtype of lung epithelial cells that shows high levels of ACE2

expression (Figure S1A). Treatment with the 5 alpha reductase

inhibitors, finasteride and dutasteride, resulted in significant re-

ductions in ACE2 and TMPRSS2 in bronchial epithelial cells

from two out of three donors (Figures 4I, 4J, and S4D–S4F).

Together, these results indicate that AR signaling regulates the

expression of SARS-CoV-2 receptors in COVID-19 target

tissues.

Inhibition of Androgen Receptor Signaling Protects
hESC-Derived Human Lung Organoids against SARS-
CoV-2 Infection
Our results indicate that antiandrogenic drugs can lower the

levels of SARS-CoV-2 receptors in target cell types. To build

an in vitro model of viral infection in human lung tissue, we set

out to generate lung organoids from hESC using a slightly modi-

fied combination of previously established differentiation

methods (Figure S5A) (de Carvalho et al., 2019; Jacob et al.,

2017; Miller et al., 2019). These human lung organoids (HLOs)

expressed key lineage markers of alveolar epithelial precursors

such as SOX9, NKX2.1, and ECAD, and high levels of ACE2 (Fig-

ure 5A). Bulk RNA sequencing of differentiating cells at various

time point showed the upregulation of subtype-specific tran-

script panels confirming the emergence of different lung epithe-

lial lineages in HLOs (Figure 5B). Single-cell RNA sequencing of

fully differentiated organoids demonstrated that they were
nscription factors that are targets of our candidate drugs. MaxTC, maximum

ry_target in [0,1] with 1 being identical up to the resolution of the fingerprint.

on ACE2 expression in cardiac cells generated from hECS lines WA09 (E) and

S2 in hESC-derived cardiomyocytes treated with antiandrogenic drugs. Scale

le S3.
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Figure 4. Androgen Receptor Signaling Modulates ACE2 and TMPRSS2 Levels in Heart and Lung Cells

(A) Volcano plot visualizing gene expression changes in response to AR knockdown in LNCaP cells. Genes of interest are labeled and shown in red. Also shown

are the enrichment and depletion pattern of AR target genes (i.e., genes with promoter AR binding) as a heatmap along with the mutual information value and its

(legend continued on next page)
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enriched in lung epithelial cells (Figures S5B and S5C) that

contain a diverse array of subtypes (Figures 5C, 5D, and S5D).

The most abundant subtype was the alveolar type 2 cells which

are considered to be the primary targets of SARS-CoV-2. The

bulk and single-cell RNA sequencing data confirmed the expres-

sion of SARS-CoV-2 receptors ACE2 and TMPRSS2 and

androgen signaling genes AR, SRD5A1, and SRD5A2 in the

differentiated HLOs (Figures 5B and 5E).

We next used these hESC-derived HLOs to test the ability

of our drug candidates in reducing SARS-CoV-2 infection.

Similar to primary lung epithelial cells, treatment with the anti-

androgenic drugs led to a significant reduction in ACE2 levels

in HLOs (Figures 5F, S5E, and S5F). To determine whether

drug treatment can protect the HLOs against SARS-CoV-2

infection, we subjected the HLOs to the virus and quantified

the number of infected cells based on the detection of dou-

ble-strand RNA (dsRNA) or SARS-CoV-2 N-protein in the

cytoplasm. Remarkably, drug-treated HLOs showed a dra-

matic reduction in the number of N-protein+ infected cells

compared to untreated controls (Figures 5G and 5H). Plaque

assay of the supernatants showed a substantial reduction in

viral titers produced by drug-treated HLOs (Figure 5I). To

assess reproducibility, we tested an independent SARS-

CoV-2 isolate on dutastetride-treated HLOs and observed a

similar reduction in the number of cells that contain viral

dsRNA or N-protein. These results provide crucial evidence

for the efficacy of antiandrogenic drugs in attenuating

SARS-CoV-2 infections in the target cells.

Androgen Imbalance States Are Associatedwith COVID-
19 Complications in Male Patients
Our results suggest that androgen can increase viral receptor

and co-receptor expression which could lead to increased

SARS-CoV-2 infectivity in target tissues. To determine

whether androgen plays a role in COVID-19 disease manifes-

tation, we explored the effect of disorders related to androgen

imbalance on COVID-19-induced cardiac injury, measured by

elevated troponin T levels (Figure 6A). We also included the

previously described risk factors associated with organ failure

(Goyal et al., 2020) such as age, BMI, diabetes, and hyperten-

sion in our data collection. In the de-identified aggregate data

from Yale New Haven Hospital, 1,577 individuals tested pos-

itive for COVID-19 and had serum troponin T measured during

the same encounter. There was a larger number of males with

abnormal serum troponin T levels in both selected age groups

(Figure S6A). Association analysis in the COVID-19 patients

showed that most risk factors were correlated with

abnormal levels of serum troponin T, but the risk factors
associated z-score. The log-fold change values were divided into equally populate

hypergeometric p values and colored accordingly (gold for enrichment and blue

(B and C) Effect of CRISPR-Cas9 ribonucleoproteins containing AR and SRD5A

primary alveolar epithelial cells. Dots represent fluorescence intensity values in in

(D–G) Differential effect of dutasteride (potent inhibitor of testosterone to DHT conv

cardiomyocytes (D and E) and alveolar epithelial cells (F and G) with their corres

(H) Immunofluorescence staining of bronchial epithelial cells isolated from huma

(I and J) Effect of antiandrogenic drug candidates on ACE2 expression in hum

Individual values represent normalized fluorescence intensity in independent ima

Scale bar = 100 mm in (E), (G), and (H). *p value < 0.05, **p value < 0.01, ***p valu
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were also correlated with each other (Figure S6B). To account

for associations between individual risk factors, we tested

multiple multi-variate models (as described in the STAR

Methods section). In our final model, prostatic diseases (hy-

perplasia of prostate or neoplasm of prostate) increased the

odds of having abnormal troponin T by 50.5% (OR = 1.505,

95% CI, p value 0.046), independent of the other risk factors

(Figure 6B).

To further explore the association between androgen and

COVID-19 disease severity, we analyzed an independent cohort

of patient records in the UK Biobank (UKBB) (Figure 6C). A total

of 190,150 men in the UKBB passed quality-control criteria and

were from the UKBB English recruitment centers with COVID-19

tests reported back to UKBB. Among these individuals, median

age at enrolment was 57 (SD 8) years and mean BMI was 27.8

(SD 4.2), 19,794 (10.4%) had type 2 diabetes mellitus and

83,510 (43.9%) had hypertension. A total of 8,146 men were

tested for COVID-19, of which 831 (10.2%) had at least one pos-

itive COVID-19 test. Of all the men who tested positive for

COVID-19, 534 individuals (64.3%) were hospitalized

(Figure S6C).

Our analysis showed that benign prostatic hypertrophy (BPH)

was independently associated with both COVID-19 susceptibil-

ity (OR 1.4, 95% CI 1.2–1.8, p = 0.00087) and COVID-19 hospi-

talization (OR 1.6, 95% CI 1.2–2.1, p = 0.00022) in multivariate

models adjusted for age, hypertension, type 2 diabetes, BMI,

Townsend deprivation index, and principal components 1–10

of genetic ancestry (Figures 6D and S6D). In particular, only

12.0% of controls also had BPH while 17.9% of COVID-19-pos-

itive men and 21.2% of COVID-19 hospitalized men had BPH

(Figure S6E).

To identify potential associations between androgen

signaling genes (Table S3) and the 8 androgen signaling genes

identified from our drug screen (Figure S6F) with COVID-19

severity, we performed gene set enrichment analysis and iden-

tified a significant enrichment of both gene sets in the hospital-

ized patients versus population in the COVID-19 host genetics

initiative (Figure S6G).

To investigate the relationship between androgen signaling

and disease severity, we used Mendelian randomization which

leverages randomization of genetic variants during meiosis

at conception, using genetic instruments for an exposure to

mitigate risks for confounding, thereby facilitating more

robust causal inference (Davies et al., 2018). Here, we

performed two-sample Mendelian randomization between var-

iants within 1 MB of the 8 androgen signaling genes that were

genome-wide significantly associated with bioavailable

testosterone (Ruth et al., 2020) and the GWAS summary
d bins and the enrichment of AR-bound genes in each bin was assessed using

for depletion; red and blue borders mark bins that are statistically significant.

2 sgRNAs on ACE2 expression in hESC-derived cardiomyocyes and human

dividual cells.

ersion) and DHT on themembrane ACE2 levels and spike-RBD protein entry to

ponding immunofluorescence images.

n lung tissue for epithelial marker ECAD and ciliated cell marker TUBA.

an primary bronchial epithelial cells isolated from three independent donors.

ging fields across different Transwell inserts.

e < 0.001. Data are represented as mean ± SEM. See also Figure S4.
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Figure 5. Antiandrogenic Drugs Reduce ACE2 and SARS-CoV-2 Infection in hESC-Derived Lung Organoids

(A) Immunofluorescence staining of hESC-derived lung organoids (HLOs) for epithelial lineage markers SOX9, NKX2.1, and ECAD and SARS-CoV-2 recep-

tor ACE2.

(B) Expression analysis of lineage-specific markers during HLO differentiation measured using bulk RNA sequencing at days 0, 5, 9, 15, 25, 35, and 50.

(C) UMAP visualization of single-cell RNA sequencing data showing different epithelial cell clusters in differentiated HLOs.

(D) Dot plot visualization of single-cell expression of epithelial subtype-specific lineage markers in different cell clusters.

(E) Violin plot visualization of single-cell expression of SARS-CoV-2 receptors and androgen signaling genes in different lung epithelial cell clusters.

(F) Effect of antiandrogenic drugs on ACE2 levels in HLOs.

(legend continued on next page)
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Figure 6. Effects of Androgen Signaling on

Outcomes Associated with COVID-19

(A) Schematic representation of the patients’

outcome analysis with COVID-19 at Yale New

Haven Hospital.

(B) The effects of BMI, prostatic disease, hyper-

tension, and diabetes on the odds of having

abnormal troponin T in male patients with COVID-

19 in Yale patients. Troponin T and BMI were

dichotomized during data collection. BMI, <30

versus R30; troponin T, normal (<0.01 ng/mL)

versus abnormal (R0.01 ng/mL). For the primary

outcome, the odds ratio were calculated for the

pre-specified subgroups.

(C) Schematic representation of the outcome

studied in the UK Biobank (UKBB) cohort.

(D) Association of BPH with COVID-19 hospitali-

zation, in multivariate logistic models adjusted for

age, hypertension, type 2 diabetes, normalized

BMI, Townsend deprivation index, and principal

components of genetic ancestry.

(E) Gene set enrichment analysis of androgen

signaling genes on COVID-19 hospitalization us-

ing the COVID-19 host genetics initiative GWAS

results.

(F) Mendelian randomization between bioavail-

able testosterone and COVID-19 hospitaliza-

tion. MR-Egger (visualized through the blue

fitted line) was performed between 6 indepen-

dent variants near the androgen signaling genes

from the drug screen that are genome-wide

significantly associated with bioavailable

testosterone and their respective associations

from the COVID-19 host genetics initiative

release GWAS. OR = odds ratio, CI = confi-

dence interval.

See also Figure S6 and Table S4.
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statistics for those same genes in the COVID-19 host genetics

initiative. Significant robust MR-Egger association was identi-

fied across 6 genetic variants (COVID-19 hospitalization OR

5.2 per SD sex-specific bioavailable testosterone, 95% CI:

2.48–10.97, p = 1.68 3 10�5), with significant intercept term

suggesting pleiotropy also present (p = 7.5 3 10�5) (Figures

6E and S6H). The top genetic variant in the 2-sample Mende-

lian randomization was rs545206972, a non-coding variant

located at 25 kb downstream of SHBG which was strongly

associated with bioavailable testosterone (beta 0.43 SD, p =

1.8 3 10�265; COVID-19 hospitalization OR = 1.62, p =

0.095). In further sensitivity analysis, removing this top variant
(G and H) Quantification (G) and representative images of immunofluorescence staining (H) of SARS-CoV-2 N-

prior to infection with SARS-CoV-2 isolate USA/CA-UCSF-0001C/2020.

(I) Plaque assay quantification of viral titers in supernatants of infected HLOs treated with antiandrogenic dru

(J and K) Quantification (J) and representative images of immunofluorescence staining (K) of viral double-st

infected HLOs treated with dutasteride prior to infection with SARS-CoV-2 isolate USA-WA1/2020, NR-5228

Scale bar = 100 mm in (A) and 50 mm in (H) and (K). *p value < 0.05, **p value < 0.01, ***p value < 0.001. Data ar
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still maintained significant Robust MR-

Egger association (p = 0.016), with a

significant intercept term suggestive of

significant pleiotropy (p = 0.009) (Fig-

ure S6I). These observations provide
strong clinical evidence for the role of androgen signaling in

COVID-19 susceptibility and severity.

DISCUSSION

There are two important observations in the COVID-19

pandemic: the higher prevalence of severe complications in

male individuals and the relative immunity in children. Our study

identifies a link betweenmale sex hormone signaling and regula-

tion of the SARS-CoV-2 receptor ACE2 and co-receptor

TMPRSS2, providing a potential explanation for these observa-

tions. Our results demonstrate that inhibitors of 5 alpha
protein in HLOs treated with antiandrogenic drugs

gs.

rand RNA (dsRNA) and SARS-CoV-2 N-protein in

1.

e represented as mean ± SEM. See also Figure S5.
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reductases, which dampen androgen signaling, can reduce

ACE2 levels in the target cells and thereby decrease SARS-

CoV-2 infectivity. These drugs, commonly prescribed for pros-

tatic disorders, have good safety profiles and show repurposing

potential for the treatment of COVID-19.

The most lethal complication of COVID-19 is multi-organ fail-

ure affecting the lungs, the kidneys, and the heart. Although there

has been tremendous effort toward understanding the biology of

SARS-CoV-2 infection at the molecular level, the use of relevant

experimental models has been limited. Modeling the infection in

commonly used cell lines that do not adequately recapitulate hu-

man pathophysiology could potentially delay the identification of

effective therapeutic targets. Taking advantage of directed hESC

differentiation, we generated scalable cultures of disease-rele-

vant human cardiac cells and lung organoids and performed

high-throughput screening to identify drugs that regulate ACE2

expression in these cell types. These experiments underscore

the potential of hESC-derived cells for in-depth investigation of

cell-type-specific processes and offer a framework for rapid

identification and validation of therapeutically relevant com-

pounds. Other reports on the use of hESC-derived cell or orga-

noid models highlight the utility of hESC-derived cells in

modeling SARS-CoV-2 infection and COVID-19 pathophysi-

ology (Han et al., 2020).

Results from our in vitro high-throughput screening of the

FDA-approved drugs enabled us to develop a deep learning

strategy to screen millions of drug-like compounds in silico

and identify candidates predicted to show superior potency

and efficacy. The diverse pharmacokinetic properties in these

candidates may enable the development of drugs with

improved distribution to disease-relevant tissues. Further ex-

periments are needed to validate these compounds and char-

acterize their pharmacokinetic and pharmacodynamic proper-

ties in vitro and in vivo.

A common characteristic among our validated hit compounds

is their ability to target androgen signaling. Analysis of disease

outcomes in COVID-19 patients in two independent cohorts re-

vealed a significant association between elevated free androgen

and COVID-19 complications, pointing to a possible link be-

tween androgen-mediated ACE2 regulation and disease

severity. Pathway and gene target analysis on compounds that

reduce ACE2 levels also highlighted the regulatory roles of

peptidase pathways. Interestingly, protein interactionmaps sug-

gested a possible crosstalk between AR signaling pathways, in-

flammatory markers, and peptidases relevant to the viral recep-

tor and co-receptors, offering insights into alternative pathways

involved in ACE2 regulation.

Our FDA drug screen data revealed that many commonly used

medications modulate ACE2 levels and could affect disease

severity in COVID-19 patients. Further studies evaluating the re-

lationships between these drugs and disease outcomes will be

necessary to assess potential clinical impact and the need to

substitute medications that might pose a heightened risk for

COVID-19 patients.

In conclusion, our results provide key insights into ACE2

regulatory mechanisms, present strong molecular and clinical

evidence for the role of androgen signaling in SARS-CoV-2 infec-

tion, and identify therapeutic candidates for the treatment of

COVID-19.
Limitations of the Study
There are a number of challenges and limitations in this study.

The performance of our deep learningmodel used for the in silico

screen could be improved with additional in vitro datasets

containing larger number of experimentally tested compounds.

Genetic validation of AR signaling components could be further

validated using alternative CRISPR-Cas9 strategies with higher

efficiency of RNP delivery and gene editing in target cell types.

Finally, we were not able to perform observational studies to

determine the effect of antiandrogenic drugs on mitigating

COVID-19 outcomes due to limitations in power for such ana-

lyses even in large biobanks. Future investigations will be neces-

sary to define the effects of androgen signaling and its inhibition

on COVID-19 severity both in men and women.
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Antibodies

APC Mouse IgG1, k isotype control (FC) antibody Biolegend 400121

APC Mouse IgG2a, kappa isotype control antibody Biolegend 400219

donkey a-goat AF488 Invitrogen A11055

donkey a-goat AF568 Invitrogen A11057

donkey a-goat AF647 Invitrogen A21447

donkey a-mouse AF488 Invitrogen A21202

donkey a-mouse AF568 Invitrogen A10037

donkey a-mouse AF647 Invitrogen A31571

donkey a-rabbit AF488 Invitrogen A11008

donkey a-rabbit AF568 Invitrogen A10042

donkey a-rabbit AF647 Invitrogen A31573

goat a-chicken AF488 Invitrogen A11039

Mouse monoclonal anti-CD324(E-CAD) BD Biosciences 610181

Mouse monoclonal anti-acetylated Tubulin (TUBA) Sigma T7451

Mouse monoclonal anti-ACE2 Proteintech 66699-1-AP

Mouse monoclonal anti-dsRNA Absolute Antibodies Ab01299-2.0

Mouse monoclonal anti-SARS/SARS-CoV-2 Nucleocapsid Invitrogen MA1-7404

Rabbit monoclonal anti-Sox9 Cell Signaling Technologies 82630T

Mouse monoclonal APC anti-human CD184 (CXCR4) Biolegend 306509

Mouse Monoclonal PE anti-human CD117 (c-kit) Biolegend 313203

PE Mouse IgG1, kappa isotype control antibody Biolegend 400111

PE Mouse IgG2a, k isotype control antibody Biolegend 400211

Goat polyclonal anti-ACE2 R&D Systems AF933

Rabbit polyclonal anti-ACE2 Proteintech #21115-1-AP

Chicken polyclonal anti-GFP abcam ab13970

Rabbit polyclonal anti-NKX2.1 Seven Hills Bioreagents WMAB-1231

Goat polyclonal anti-TMPRSS2 Novus Biologicals #NBP1-20984

Bacterial and Virus Strains

SARS-CoV-2/human/USA/CA-UCSF-0001C/2020 UCSF Clinical Specimen N/A

USA-WA1/2020, NR-52281 isolate BEI Resources N/A

G-complemented G*DG-GFP rVSV Kerafast EH1024-PM

Biological Samples

Donated lung tissue from transplant recipients Laboratory of David J. Erle N/A

Chemicals, Peptides, and Recombinant Proteins

8-Br-cAMP Sigma-Aldrich Inc B5386

Accutase Stemcell Tech 7922

Activin A R&D Systems 338AC010

All-trans retinoic acid Stemcell Tech 72264

Ascorbic acid Sigma-Aldrich Inc A4034

BMP4 Stemcell Tech 78211.2

Camostat mesilate Selleck Chem (FDA-Approved

Library)

N/A

cAMP Sigma-Aldrich Inc D0627

Cas9-NLS purified protein QB3 MacroLab N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

CHIR99021 Stem-RD CHIR

Collagen, Type IV, Human Placenta Sigma-Aldrich Inc 234154

DAPI Thermo Fisher Scientific D1306

Dexamethasone Sigma-Aldrich Inc D4902

DHT Sigma-Aldrich Inc D-073

Dispase Corning 354235

Dutasteride Selleck Chemicals LLC S1202

0.5M EDTA, pH 8.0 Thermo Fisher Scientific 15575020

FGF10 Stemcell Tech 78037.2

FGF4 Stemcell Tech 78103.2

FGF7 Stemcell Tech 78046.1

Fibronectin Corning DLW354008

Finasteride Selleck Chemicals LLC S1197

Guanabenz acetate Selleck Chem (FDA-Approved

Library)

N/A

IBMX Sigma-Aldrich Inc I5879

Ketoconazole Selleck Chemicals LLC S1353

Laminin Corning 354232

LDN193189 Stemgent #04-0074-02

Library of FDa-approved drugs (1443 compounds) Selleck Chem L1300

Monothioglycerol Sigma-Aldrich Inc M6145

Paraformaldehyde Thermo Fisher Scientific AAJ19943K2

Paraformaldehyde, 4% solution SCBT sc-281692

Poly-L-ornithine hydrobromide Sigma P3655

SAG Stemcell Tech 73412

SARS-CoV-2 (2019-nCoV) Spike RBD-Fc

Recombinant Protein

Sino Biological 40592-V02H

SB431542 PeproTech 3014193

Sotagliflozin Selleck Chem (FDA-Approved

Library)

N/A

0.05% Trypsin/0.53mM EDTA Corning 25-051-Cl

XAV939 R&D 3746

Critical Commercial Assays

PowerUp� SYBR� Green Master Mix Thermo Fisher Scientific A25743

Cell Staining Buffer Biolegend 420201

Chromium Next GEM Single Cell 3¢ Kit v3.1 10X Genomics 1000121

eBioscience� Permeabilization Buffer (10X) Invitrogen 00-8333-56

Gene Knockout Kit v2 - AR Synthego N/A

Gene Knockout Kit v2 - SRD5A1 Synthego N/A

Lipofectamine 3000 Transfection Kit (0.1 mL) Fisher Scientific L3000001

Lipofectamine Cas9 Plus Reagent (ThermoFisher

Scientific, USA)

Fisher Scientific CMAX00008

Lipofectamine CRISPRMAX transfection reagent Fisher Scientific CMAX00008

P3 Primary Cell 96-Well Kit Lonza V4SP-3096

QuantSeq FWD Kit (with UMI module) Lexogen #015

Quick-RNA 96 Kit (Zymo) Zymo Research R1052

RNA/DNA/Protein Purification Plus Kit (Norgen Biotek,

Thorold, ON, Canada)

Norgen Biotek 47700

SuperScript III First-Strand Synthesis System ThermoFisher Scientific 18080051

TotalSeq HTO antibodies Biolegend #394601-394629

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Deidentified aggregate patient data from Yale

New Haven Hospital

available upon request N/A

Bulk and single cell RNA sequencing data on

hESC-derived lung organoids

GEO GEO: GSE161264

UK Biobank patient data available upon request N/A

Experimental Models: Cell Lines

Human embryonic stem cells, H1 WiCell WA01

Human embryonic stem cells, H9 WiCell WA09

Human Pulmonary Alveolar Epithelial Cells Sciencell #3200

Calu-3 (ATCC� HTB-55�) ATCC ATCC� HTB-55�

VERO C1008 [Vero 76, clone E6, Vero E6] ATCC CRL-1586

Recombinant DNA

Plasmid: PLVX H2B Cherry Laboratory of Deepak Lamba N/A

Mammalian expression plasmid for SARS-CoV-2

surface glycoprotein (Spike) for VSV pseudotyping

(Ginkgo Bioworks)

addgene pGBW-m4137382

Software and Algorithms

GE Developer Toolbox v1.9.1 GE Healthcare https://www.gehealthcare.com/

ImageJ (FIJI) NIH https://imagej.net/Fiji

iPAGE gene ontology analysis Goodarzi et al. (2009) https://tavazoielab.c2b2.columbia.edu/

iPAGE/

R package: cutadapt v2.10 CRAN package repository https://cran.r-project.org/web/packages/

R package: DESeq2 v1.30.0 CRAN package repository https://cran.r-project.org/web/packages/

R package: DropletUtils v1.10.0 CRAN package repository https://cran.r-project.org/web/packages/

R package: HTSeq v0.12.4 CRAN package repository https://cran.r-project.org/web/packages/

R package: kb-python v0.24.4 CRAN package repository https://cran.r-project.org/web/packages/

R package: Seurat v3.2.2 CRAN package repository https://cran.r-project.org/web/packages/

R package: STAR v2.7.6a CRAN package repository https://cran.r-project.org/web/packages/

R package: umi_tools v1.1.0 CRAN package repository https://cran.r-project.org/web/packages/

R v3.6.3 The R Project for Statistical

Computing

https://www.r-project.org/

SEA computational tool Keiser et al., 2007 http://sea.bkslab.org/

STRING v11 protein-protein interaction (PPI)

network analysis

Szklarczyk et al. Nucleic

acids research 47.D1 (2018):

D607-D613.2

https://string-db.org/

Other

AR ChIP-seq dataset generated in LNCaP cells Tran et al., 2020 N/A

Previously published single cell RNA sequencing

datasets

Madissoon et al., 2019; Smillie

et al., 2019; Wang et al., 2020

N/A

Previously published transcriptomics data on

hESC-derived cells

Tsai et al., 2020 N/A

SMILES for each drug in FDA-approved library Selleckchem https://www.selleckchem.com/screening/

fda-approved-drug-library.html

ZINC15 library Sterling and Irwin, 2015 https://zinc15.docking.org/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Faranak

Fattahi (Faranak.Fattahi@ucsf.edu).
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Materials Availability
DNA constructs and other research reagents generated by the authors will be distributed upon request to other researchers.

Data and Code Availability
Original source data for previously published scRNA-seq of human organ tissues used in this study are available by: heart data from

Wang et al. (2020) from the Gene Expression Omnibus (GEO) at GEO: GSE109816, lung and esophagus data from Madissoon et al.

(2019) at https://www.tissuestabilitycellatlas.org, colon data from Smillie et al. (2019) at https://singlecell.broadinstitute.org/

single_cell/study/SCP259/intra-and-inter-cellular-rewiring-of-the-human-colon-during-ulcerative-colitis.

Original source data for the AR ChIP-seq experiment is available from GEO at GEO: GSM3148987.

Original source data for AR knockdown RNA-seq are available from GEO under accession code GEO: GSE114052, GEO:

GSE128515, and GEO: GSE139962.

Training datasets and code used for in silico drug screening are available upon request to other researchers.

Code used for SEA drug target prediction is available upon request to other researchers.

The raw dataset from bulk and scRNA-seq of hESC-derived lung organoid are available on GEO under accession number GEO:

GSE161264.

Yale New Haven Hospital and UK Biobank patient datasets and code used for analysis are available upon request to other

researchers.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Female H9 (WA09) and male H1 (WA01) human embryonic stem cells (hESCs) were obtained from WiCell, cultured in mTeSR (Stem

Cell Technologies) and grown on GeltrexTM Growth Factor Reduced (GFR) Basement Membrane Matrix (GIBCO) at 37�C with 5%

CO2. hESCs were fed daily and passaged every 5-6 days using 0.5mM EDTA (Thermo Fisher).

Human bronchial epithelial cells (HBECs) were isolated from explanted tissue from lung transplant donor recipients (n = 3), as

previously described by Fulcher et al. (2005) and cryopreserved until culture. Briefly, explanted bronchial tissue was dissected

and the epithelial layer was isolated and dissociated. HBECs (passage 0) were thawed and seeded on human placental collagen

(HPC; MilliporeSigma)-coated 12-mm Transwell inserts (Corning, Corning, NY) at a density of �0.5x106 cells/cm2 and, once

confluent, maintained at air-liquid interface (ALI).

Human alveolar epithelial cells (AECs) were purchased fromSciencell (cat#3200) andmaintained in HLOmedia (described below in

‘‘Differentiation of HLOs’’) and grown on poly-ornithine (Sigma), fibronectin (Corning) and laminin (Corning) plate coating at 37�Cwith

5% CO2. AECS were fed every other day and re-plated into final assay plates with Accutase (StemCell Tech).

VERO C1008 were purchased from ATCC (CRL-1586) and maintained in EMEM+10%FBS on tissue culture treated plates at 37�C
with 5% CO2. Cells were fed every other day and passaged once plates reached 80% confluency with 0.05% Trypsin (Corning).

METHOD DETAILS

Analysis of published scRNA-seq datasets
Quality control. Cells were identified as poor quality and subsequently removed based on the criteria implemented by the original

authors of each dataset.

Lung and esophagus datasets: RData objects deposited to Tissue Stability Cell Atlas were pre-filtered by the authors. Filtering

criteria can be found in the methods of Madissoon et al. (2019). Briefly, cells were excluded if they did not meet the following criteria:

more than 300 and fewer than 5,000 genes detected, fewer than 20,000 UMI, and less than 10% mitochondrial reads. Genes were

removed if they were detected in fewer than three cells per tissue.

Heart dataset: The gene by cell countsmatrix deposited toGEOwas pre-filtered by the authors. Filtering criteria can be found in the

methods of Wang et al. (2020). Briefly, cells were removed if they did not meet the following criteria: detected at least 500 genes,

UMI’s within 2 standard deviations of the mean of log10UMI of all cells, unique read alignment rate at least 50%, and fewer than

72% mitochondrial reads. Further, cardiomyocytes (CM) from CM-enriched datasets were included if UMIs detected were greater

than 10,000.

Colon dataset: Based on the methods of Smillie et al. (2019), cells were removed if they did not meet one of the following criteria:

minimal expression of 500 genes per cell; nUMIs within two standard deviations from themean of log10 nUMIs of all cells; unique read

alignment rate (# of assigned reads/ # total aligned reads) greater that 50%; and a mitochondrial read percentage of less than 72%.

Mitochondrial genes were subsequently removed from the dataset prior to dimensionality reduction.

Data integration, dimensionality reduction and cell clustering. Different methods available in Seurat (Butler et al., 2018) were imple-

mented respective to individual datasets.

Lung and esophagus datasets: Batch correction, data normalization, variable gene identification, data scaling, principal compo-

nent analysis (PCA), and uniformmanifold approximation and projection (UMAP) dimensionality reduction was performed by the orig-

inal authors and included in the RData objects deposited to Tissue Stability Cell Atlas. The original UMAP coordinates generated by

the authors were used for visualizations.
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Colon Dataset: Batch correction by patient sample was performed using the Seurat v3 integration functions. The dataset was split

by ‘‘Subject,’’ individual gene matrices were log normalized using a scaling factor of 10,000 and 2,000 variable features were

identified per individual gene matrix using variance stabilizing transformation. 2,000 integration anchors were found using the first

30 dimensions of the canonical correlation analysis and individual datasets were integrated using the same number of dimensions.

PCA was performed and UMAP coordinates were found based on the first 20 principal components.

Heart Dataset: Batch correction by patient sample was performed using mutual nearest neighbor (MNN) (Haghverdi et al., 2018)

matching through the ‘‘RunFastMNN’’ function from the SeuratWrappers package. The dataset was log normalized using a scaling

factor of 10,000 and 2,000 variable features were identified per individual gene matrix using variance stabilizing transformation.

‘‘RunFastMNN’’ was performed on the dataset split by ‘‘Individual’’ and UMAP coordinates were found based on the first 30 MNN

dimensions. A shared nearest neighbor graph was constructed with the same number of MNN dimensions and clusters were

identified using clustering resolution of 0.2.

Cell type identification and gene expression analysis. Lung, esophagus and colon datasets: Cell type cluster annotations deter-

mined by the original authors were available through the metadata downloaded with each dataset. These original cluster annotations

were used for any visualizations.

Heart Dataset: Clusters were annotated based on cluster specific expression of marker genes identified in the original publication.

Cluster markers were identified using a Wilcoxon Rank Sum test.

Following cell type annotation, gene dropout values were imputed using adaptively-thresholded low rank approximation (ALRA)

(Linderman et al., 2018). The rank-k approximation was automatically chosen for each dataset and all other parameters were set

as the default values. The imputed gene expression in shown in all plots and used in all downstream analysis.

Gene signature scoring. The Seurat ‘‘AddModuleScore’’ function was used to score each cell in the datasets for their expression

of high confidence drug target genes (Figure 2C) and genes associated with AR signaling (Table S3). 100 control genes selected from

the same bin per analyzed gene were used to calculate each module score. ‘‘Upstream AR Activators’’ were identified through liter-

ature search (Azevedo et al., 2011; Cao and Kyprianou, 2015; Girling et al., 2007;Wang et al., 2012), ‘‘AR Signaling’’ geneswere taken

from the androgen receptor signaling pathway gene ontology term (GO:0030521), and ‘‘Common AR Target Genes’’ are the common

‘‘core’’ target genes transcribed by AR identified by Jin et al. (2013) through comparison of multiple microarray studies.

Differentiation and characterization of cardiac cells
Differentiation of cardiac cells. hESCs were re-plated 72 h prior to initiating differentiation. The cardiac differentiation was started

with a mesoderm induction cocktail comprised of 1.5 mM CHIR99021 (CHIR, Stem-RD), 20 ng/mL BMP4 and 20 ng/mL Activin A in

RPMI (Cellgro) supplemented with B27minus insulin, 2 mMGlutaMAX, 1x NEAA and 1x Normocin (InvivoGen) for 3 days (RPMI+B27

w/o insulin). Next, cells were treated with 5 mM XAV939 from days 3-6 in RB27-INS. From day 6 onward, differentiation of cells was

carried out in RPMI supplemented with B27, 2 mMGlutaMAX, 1x NEAA and 1x Normocin (RPMI+complete B27). The protocol is out-

lined in Figure S1B.

Analysis of published RNA-seq data. The bulk RNA-seq dataset analyzed here was previously reported (Tsai et al., 2020). Briefly,

human pluripotent stem cell (H9 with knock-in MYH6:mCherry reporter)-derived cardiomyocytes were prepared as described pre-

viously (Ghazizadeh et al., 2020; Tsai et al., 2020). Reporter tagged cardiomyocytes were isolated from the negative fraction of the

culture by FACS. Both the purified cardiomyocytes and negative fractions were prepared and sent for bulk RNA-seq. The resulting

datasets included two negative fraction biological replicates and two positive fraction biological replicates. Gene expression be-

tween the cardiomyocytes and non-cardiomyocytes was compared by averaging the read count per gene and normalizing by the

average read count of GAPDH.

Immunofluorescence staining of cardiac cells. Cells were washed 3 times with PBS and fixed with 4% paraformaldehyde for

30 min at 4�C. Non-specific antigen binding was blocked by incubation with PBS+0.5% BSA for 30 min at room temperature (RT)

prior to adding primary antibodies. The following primary antibodies were used: rabbit anti-ACE2 (1:500, ProteinTech, 21115-1-

AP) and goat anti-TMPRSS2 (1:200, Novus Biologicals, NBP1-20984). Cells were incubated with the primary antibody solution over-

night at 4�C then washed 3x5 min with PBS. Secondary antibodies and fluorophore conjugated anti-human Fc antibody were incu-

bated for 30 min at RT. Finally, cells were washed 3x5 min with PBS and stained with DAPI for nuclear counterstaining. Cells were

imaged on an EVOSTM FL digital inverted fluorescence microscope (Invitrogen) and images were processed using NIH ImageJ

software.

High-throughput drug screening
In vitro high-throughput drug screening. hESC-derived cardiac cells were replated at day 25 of differentiation in 384 well plates at

2,000 cells per well. 72 h after re-plating, the cells were treated with compounds from an FDA-approved chemical library (Selleck-

chem) at 1 mM. 24 h after treatment, cells were fixed and stained with ACE2 antibody, as described previously. High-throughput im-

aging was carried out using the In Cell Analyzer 2000 (GE Healthcare, USA). ACE2 signal intensity was normalized to the total cell

number within each well as measured by DAPI staining with GE Developer Toolbox v1.9.1.

Candidate drug selection and validation. The z-score was calculated and normalized for each plate. Hit compounds were deter-

mined by a normalized z-score of ± 1.5. A handful of hits that both increased and decreased ACE2 levels were selected to be vali-

dated by dose response. hESC-derived cardiac cells were replated at day 25 of differentiation in 96 well plates at 10,000 cells per

well. 72 h after re-plating, the cells were treatedwith selected compounds (See Figure 1D-E) at 1uMand 2uM for 24 h. After treatment,
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cells were fixed and stained with ACE2 antibody, as described previously. Representative images for select compounds (See Fig-

ure 1C) were taken on an EVOSTM FL digital inverted fluorescence microscope (Invitrogen) and images were processed using NIH

ImageJ software. High-throughput imaging and quantification was performed using the In Cell Analyzer 2000 and GE Developer

Toolbox, as previously described. The above drug treatment, immunofluorescence staining, imaging and image analysis protocols

were repeated on VERO cells at 70% confluency in 96 well format.

In silico high-throughput screening. To train the vHTS platform, we first split the data into training (n = 1048), validation (n = 131),

and test datasets (n = 131) (Figure S1I-K), and used the validation set to evaluate increasingly complex models. We used Morgan

fingerprints to represent the chemical features of each compound in the screened FDA-approved library (CircularFingerprint function

available in DeepChem with SMILES as input). We tested a random forest regressor (scikit-learn) which failed to perform adequately

(validation R2 score �0). We then used an XGBoost model (XGBRegressor) with the following parameters: colsample_bytree = 0.3,

learning_rate = 0.1, max_depth = 5, alpha = 10, n_estimators = 10. While the model performance improved (correlation coefficient of

0.1), it was largely driven by positive z-score values and the prediction of the negative side was substantially less reliable. We then

tested graph convolutional neural networks after featurizing the molecules using ConvMolFeaturizer (DeepChem) and testing a

default model architecture with dropout set to 0.2. This initial model was promising with an R of 0.05; therefore, we performed a sys-

tematic hyperparameter tuning using a grad search on the size of the graph convolutional, dense layers and dropout rates. The best-

performing model contained two graph convolutional (size 64) and dropout of 0.5 (and uncertainty set to true) and achieved an R of

0.1.We also testedmessage-passingmodels (MPNN) in a similar fashion; however, the performancewas not improved. Therefore, to

further boost the performance of themodels, we first focused on improving the dataset itself. In addition to the ACE2 in vitro screening

data, we included data from five additional screens with the same library, added an inverse normal transformation when appropriate,

and performed amulti-task learning. Thesemodifications allowed themodel to generalize better and learn faster with better R scores

(this allowed us to reduce the dropout to 0.25). Second, instead of using a single model, we utilized a bagging ensemblemodel where

fivemodels were trained on random samplings (with replacement) of training data. This ensemblemodel achieved an R of > 0.2 on the

validation dataset. We then continued trainingwhile the Pearson coefficient for validation set remained above 0.2 (early stopping).We

tested this final ensemble model on the test dataset, which achieved a similar R of 0.22 (p-value 0.01).

The finalmodel described abovewas used to evaluate 9.2million compounds from the ZINC15 database.We downloaded SMILES

from this database and featurized them (same as above). The resulting predictions were variance normalized and the molecules with

z-scores below�4 for ACE2 expression were selected as hits. This resulted in 169 potential small molecules. To visualize the relation-

ship between the identified hits in a lower dimension, we used Morgan fingerprints to represent all compounds and used UMAPs to

project each compound down to 2 dimensions. For the screened ZINC15 database, we sampled 1 from 1000 compounds for visu-

alization purposes. We also used the Morgan fingerprints to cluster in silico and in vitro hits using K-means clustering (number of

clusters set to 15).

In silico screen hit validation. 6 of the 169 hit compounds identified in the in silico screen were purchased from mcule.com (A01:

MCULE-3280389582, A02: MCULE-3932122770, A03: MCULE-8963404982, A04: MCULE-8989818798, A05: MCULE-

5352701202, A06: MCULE-5411082744).

hESC-derived cardiac cells were replated in 96 well plates, as previously described, and were treated with each compound at 1, 3,

or 5mM. 24 h after treatment, cells were fixed and stained with ACE2 antibody, as described previously, followed by high-throughput

imaging and quantification using the In Cell Analyzer 2000 (GEHealthcare, USA). ACE2 signal intensity was normalized to the total cell

number within each well as measured by DAPI staining. Each well was then normalized to the average normalized fluorescence in-

tensity of the no treatment condition.

Primary alveolar epithelial cells were replated in 96 well plates, as previously described, and were treated with each compound at

5mM. 72 h after treatment, cells were fixed and stained with ACE2 antibody, as described previously, followed by high-throughput

imaging and quantification using the In Cell Analyzer 2000 (GE Healthcare, USA). ACE2 signal intensity was normalized to the total

cell number within each well as measured by DAPI staining. Each well was then normalized to the average normalized fluorescence

intensity of the no treatment condition.

Drug-protein-pathway interaction analysis
Identification of drug targets in FDA-approved library. Isomeric SMILES for each drug in the library were acquired from Selleckchem

and used to run a similarity ensemble approach (SEA) library search. The SEA predicted targets were filtered, selecting human targets

and predicted interaction p-values < 0.05, which yielded 2150 predicted proteins targeted by the drug library.

Target drug selection. The normalized z-score values reported for all the compounds were first transformed to N(0,1) using the

bestNormalize package (v1.4.0) in R (v3.5.1). The treatments with transformed z-scores smaller than �1.5 were selected, which re-

sulted in 41 compounds.

Target gene selection. For every compound, possible target genes were identified as above. Weighted combined z-scores were

then calculated for each gene by combining normalized z-scores across all treatments. The p-values were then calculated based on

the combined z-scores and adjusted using p.adjust (method = FDR). As an orthogonal approach for each gene, we recorded the

number of treatments with negative normalized z-scores as well as the total number of compounds predicted to target that gene.

Using the sum of counts for all other genes and drugs, we performed a Fisher’s exact test to evaluate the degree to which negative

z-scoreswere enriched among the treatments likely to affect a gene of interest. As expected, the two p-values, i.e., combined z-score

and Fisher’s, are generally correlated (R = 0.6, p < 1e-200).
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Gene-set enrichment analysis.We used the combined z-scores across all genes to identify pathways and gene-sets that are asso-

ciated with changes in ACE2 expression. For this analysis, we used our iPAGE toolkit (Goodarzi et al., 2009), in conjunction with an-

notations from MSigDB and Gene Ontology (GO). The following parameters were set:–ebins = 9–nodups = 1–independence = 0.

Drug-protein-pathway analysis. For drugs with a normalized z-score < -1, drug-protein interactions per biological pathway were

analyzed. The SEA predicted drug-protein interaction dataset was filtered to exclude drugs with a normalized z-score 3-1. Protein

pathway gene lists were generated per gene set, comprised of the genes present in the pre-ranked gene list. For each protein

pathway gene list, drug-protein matrices were plotted by the SEA p-value for the interaction. The reported interaction significance

scores represent the interaction z-scores calculated by SEA.

Protein-protein interaction network analysis
Protein-protein interaction network analysis was performed using the Search Tool for the Retrieval of Interacting Genes (STRING)

database. The minimum required interaction score was set to 0.7, corresponding to high confidence with the edge thickness, indi-

cating the degree of data support from the following active interaction sources: textmining, experiments, databases, co-expression,

neighborhood, gene fusion, and co-occurrence.

SEA predicted drug-protein interactions were connected by lines. Lines were dashed if the MaxTC score was below 1. Proteins

corresponding with the 30 significantly enriched genes from 2C were highlighted in yellow. To identify pathways involving our candi-

date proteins, we combined data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) database

and previous reports in the literature. Adobe Illustrator 24.1 was used for visualization.

AR ChIP-seq analysis
We used an existing AR ChIP-seq dataset generated in LNCaP cells to identify direct transcriptional targets of AR. We downloaded

processed peaks from the Gene Expression Omnibus (GSM3148987) and lifted the peaks from hg19 over to hg38. We then used

annotatePeak function (package ChIPseeker v1.8) to identify peaks 5kb downstream or upstream of transcription start sites

(TSS). The genes with AR binding to this 10kb window around their TSS were selected as direct AR-bound targets.

AR knockdown RNA-seq analysis
We used an existing RNA-seq dataset generated using RNAi-mediated knockdown of AR (SRR7120653, SRR7120649,

SRR7120646, and SRR7120642). We downloaded raw fastq files and aligned them to the transcriptome (gencode.v28) using Salmon

(v0.14.1 using–validateMappings and -l ISR flags). We then used DESeq2 (1.22.2) to compare gene expression changes in response

to AR knockdown. We then used the AR-bound gene-set from the previous step to assess how the AR targets respond to its down-

regulation. For this, we used our iPAGE tool (Goodarzi et al., 2009) which uses mutual information (MI) and an associated z-score to

assess the enrichment/depletion patterns of a gene-set across gene expression modulations. To visualize this data, we included a

volcano plot, with genes of interest shown in red. For this analysis, we divided log-fold changes into nine equally populated bins,

which were also included along with the patterns of enrichment and depletion across the data.

Analysis of anti-androgenic drug treatment
hESC cardiac treatment and immunofluorescence analysis. Cardiac cells derived from both WA09 and WA01 hESCs were re-plated

at day 25 of differentiation in 96 well plates at 10,000 cells per well. 72 h after re-plating, the cells were treated with ketoconazole,

finasteride, dutasteride or spironolactone at 1uM, 2uM or 5uM for 24 h. After treatment, cells were fixed and stained with ACE2 anti-

body, as described previously. Representative images for select compounds were taken on an EVOSTM FL digital inverted fluores-

cence microscope (Invitrogen) and images were processed using NIH ImageJ software. High-throughput imaging and quantification

were performed using the In Cell Analyzer 2000 and GE Developer Toolbox, as previously described.

HBECs treatment and immunofluorescence analysis. HBECs were isolated and cultured as mentioned above. For treatment with

selected anti-androgenic drugs, media was supplemented with 5 uM finasteride, dutasteride or ketoconazole for 72 h. Prior to

fixation, the apical surface was washed with PBS for 10 min to remove accumulated mucus. Basolateral media was aspirated,

and the basolateral membrane rinsed briefly with 750 mL PBS. HBECs were fixed for 1 h at RT in 4% PFA; 0.2 mL and 0.7 mL

PFA were added to the apical and basolateral compartments, respectively. PFA was removed and the cells were stored in PBS until

staining.

For all staining incubations, solutions were only changed in the apical membrane side of the Transwell insert and all incubations

occurred on an orbital shaker at RT. HBECs were permeabilized and blocked in 0.5% Triton-X with 5%Donkey Serum (Jackson Lab-

oratories) in PBS for 1 h. HBECs were incubated overnight in primary antibody in 0.1% Triton-X with 5% Donkey Serum in PBS. The

following primary antibodies were used: rabbit anti-ACE2 (1:200, ProteinTech, 21115-1-AP), mouse anti-ACE2 (1:200, ProteinTech,

66699-1-AP), goat anti-TMPRSS2 (1:200, Novus Biologicals, NBP1-20984), mouse anti-CD324 (E-CAD) (1:500, BD Biosciences,

610191), and mouse anti-TUBA (1:500, Sigma, T7451). Antibodies were detected using AF488-, AF568-, and AF647-conjugated

donkey antibodies raised against mouse, rabbit, or goat IgG (all 1:1000, all Invitrogen) in 0.1% Triton-X with 5% Donkey Serum in

PBS for 1 h at RT. DNA was labeled with DAPI in 0.05% PBS-Tween-20 for 5 min at RT. Organoids were washed 3x10 min with

0.05% PBS-Tween-20 at RT after primary and secondary antibody incubations. For imaging, the Transwell membranes were

removed from the inserts with a razor and slide-mounted in a drop of Fluoromount-G (SouthernBiotech). Slides were imaged using

a Leica Sp8 confocal microscope and processed using NIH ImageJ software.
e7 Cell Stem Cell 27, 876–889.e1–e12, December 3, 2020
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All images comparedwere fromparalleled staining rounds and imaged using equal laser intensity settings during image capture. All

quantifications were done using NIH ImageJ software. For comparison of ACE2 and TMPRSS2 levels in drug treated HBECs, z-pro-

jections of each image stack were generated using the sum slices method. The integrated density of each channel was then

measured and normalized to the DAPI channel integrated density of the same field of view. At least three images were taken per

transwell insert for quantification.

HBECs qRT-PCR gene expression analysis. mRNA was quantified as previously described (Koh et al., 2020). Briefly, HBECs were

lysed in Buffer SKP and homogenized by vortexing. Total RNA was isolated using the RNA/DNA/Protein Purification Plus Kit (Norgen

Biotek, Thorold, ON, Canada) according to manufacturers’ protocols. RNA was reverse-transcribed using SuperScript III First-Strand

Synthesis System (ThermoFisher Scientific) and the resulting cDNA was analyzed by quantitative real-time PCR (qRT-PCR) using

PowerUp SYBR Green (ThermoFisher Scientific). mRNA levels were normalized to housekeeping gene levels and comparisons in

ACE2 expression were made using the deltaCt method.

CRISPR knockout of androgen signaling
Targeting and analysis in hESC derived cardiac cells.AR and SRD5A2 ribonucleoprotein (RNP) complexes were assembled bymixing

180 pmol of multi-guide sgRNA (Synthego, USA) and 20 pmol of Cas9 2NLS (Berkeley QB3) in Lonza electroporation buffer P3

(Lonza, Switzerland) per reaction. hESC-derived cardiac cells were dissociated using accutase, washed with PBS, and passed

through a cell strainer before resuspension in Lonza electroporation buffer P3 immediately before electroporation. Cells were mixed

with the RNPs and were electroporated using a Lonza 4D 96 well electroporation system with pulse code CA137. Cells were then

diluted in warmmedium and plated in 96 well plates. Medium was changed on the following day and the cells were fixed 3 days after

transfection. Cells were fixed and stained as described previously with the following primary antibodies: rabbit anti-ACE2 (1:500, Pro-

teinTech, 21115-1-AP), mouse anti-AR (1:300, ProteinTech, 66747-1-IG), and goat anti-SRD5A2 (1:100, Abcam, ab27469). Plates

were imaged by high-throughput imaging using the In Cell Analyzer 2000 (GE Healthcare, USA). For quantification, images were

analyzed with NIH ImageJ software by measuring the fluorescence intensity of individual cells by manual region of interest selection.

Targeting and analysis in alveolar epithelial cells. For the human primary alveolar epithelial cells, AR and SRD5A2 RNP complexes

were assembled by mixing 0.7 pmol of multi-guide sgRNA (Synthego, USA), 0.5 pmol of Cas9 2NLS (Berkeley QB3) and Lipofect-

amine Cas9 Plus Reagent (ThermoFisher Scientific, USA) in Opti-MEM I reduced serum medium (ThermoFisher Scientific, USA)

per reaction (one well of a 96 well plate). In a separate tube, Lipofectamine CRISPRMAX transfection reagent was first diluted in

Opti-MEM I reduced serummedium at a 1.5:25 ratio and was then immediately added to the RNPs (1:1 ratio). The mixture was incu-

bated for 10 min at RT before addition to the alveolar epithelial monolayer cultures. Medium was changed on the following day and

the cells were fixed 3 days after transfection. Cells were fixed and stained as described previously with the following primary anti-

bodies: rabbit anti-ACE2 (1:500, ProteinTech, 21115-1-AP), mouse anti-AR (1:300, ProteinTech, 66747-1-IG), and goat anti-

SRD5A2 (1:100, Abcam, ab27469). Plates were imaged by high-throughput imaging using the In Cell Analyzer 2000 (GE Healthcare,

USA). For quantification, images were analyzed with NIH ImageJ software by measuring the fluorescence intensity of individual cells

by manual region of interest selection.

Spike-RBD cell internalization assay
hESC-derived cardiac cells and primary alveolar epithelial cells were re-plated in 96 well plates, as previously described, and were

treated with 300nM DHT or 10uM dutasteride. After 24 h, 0.5 mM/mL human Fc-tagged recombinant spike-RBD protein (Sino Bio-

logical Inc. 40592-V02H) was added to the medium and incubated for 30 min. The cells were subsequently fixed, permeabilized, and

stained with antibodies against ACE2 and human Fc receptor, as described previously, followed by high-throughput imaging and

quantification using the In Cell Analyzer 2000 (GE Healthcare, USA). ACE2 and spike-RBD signal intensity were normalized to the

total cell number within each well as measured by DAPI staining.

Generation of pseudotyped SARS-CoV-2 VSVDG-GFP
Chimeric vesicular stomatitis virus (VSV) was produced based on existing protocols (Hoffmann et al., 2020; Whitt, 2010). In brief,

HEK293T cells were grown to 70% confluency in DMEM hi-glucose with 10% FBS in a 6 well tissue culture plate (Fisher

0877233). HEK293T cells were transfected with 2.5 mg of SARS-CoV-2 S protein expression plasmid optimized for mammalian

expression, 2.5 mg mCherry plasmid (generous gift of Lamba Lab, UCSF), 7.5 mL Lipofectamine 3000 (ThermoFisher Scientific

L3000001), and 10 mL P3000 reagent (ThermoFisher Scientific L3000001). For bald virus control, a separate well was transfected

with mCherry plasmid, but no S protein expression construct. After 20 h, HEK293T cells were given fresh media. 24-48 h after trans-

fection, when 80% of cells were mCherry positive, both S protein expressing and bald control cells were inoculated with replication-

deficient, G-complemented G*DG-GFP rVSV (Kerafast EH1024-PM) at an MOI of 5 and incubated at 37�C. Inoculum was removed

after 1 h and replaced with fresh media. Supernatant was collected 16 h after inoculation and clarified by centrifugation at 1320xg for

10 min at RT. Aliquots were immediately frozen at �80�C.
Functional titration of the pseudotyped virus was performed on Vero E6 cells (ATCC CRL-1586). Vero E6 cells were grown to 70%

confluency in 96 well tissue culture-treated black optical plates (Fisher 1256670) in EMEM + 10% FBS. Cells were infected with serial

2-fold dilutions of either S-complemented chimeric VSV or bald VSV control. GFP expression of infected cells was measured 24 h

post-inoculation.
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SARS-CoV-2 VSVDG-GFP inhibition assays
Human alveolar epithelial cells (AECs) were cultured to 70% confluency in 96 well tissue culture-treated black optical plates (Fisher

1256670) in HLOmedia. AECs were treated with finasteride, dutasteride, or ketoconazole at 1 mM in HLOmedia for 72 h. AECs were

then inoculated with SARS-CoV-2 S-complemented VSVDG-GFP pseudovirus in fresh HLO media containing 1 mM finasteride, du-

tasteride, or ketoconazole. 24 h post-inoculation, cells were fixed for 30min in 4%PFA (SCBT sc-281692) at RT then rinsed twicewith

PBS. Cells were permeabilized and blocked with perm block buffer (Invitrogen 00-8333-56) for 1 h at RT, incubated with aGFP

(ab13970) 1:2000 in perm block buffer for 1 h at RT, and washed three times in perm block buffer. Cells were stained with a-chicken

AF488 secondary antibody at 1:1000 in perm block buffer for 1 h followed by three 10 min washes in perm block buffer. Images were

taken with GE inCell 2000 imager. Image segmentation and cell counting were performed with GE Developer Toolbox v1.9.1.

Differentiation and characterization of human lung organoids (HLOs)
Differentiation of HLOs. Human lung organoids (HLOs) were derived from hESCs as previously described (de Carvalho et al., 2019;

Jacob et al., 2017; Miller et al., 2019), with minor modifications. Briefly, H9 hESCs were maintained in mTeSR Plus media and were

seeded on Day 0 onto matrigel (Corning) coated surface. On days 1-4, cells were treated with 100 ng/mL Activin A and increasing

concentrations of defined FBS (dFBS, HyClone) in RPMI 1640 medium (ThermoFisher Scientific) to induce definitive endoderm for-

mation (day 1: 3 mMCHIR99021 and no dFBS; day 2: 0.2%dFBS; days 3-4: 2%dFBS). On day 4, cells were > 95%double positive for

CXCR4/CD184 and c-Kit/CD117 as determined by flow cytometry. On days 5-9, cells were treated with anterior foregut induction

medium containing 10 mM SB431542, 100 nM LDN193189, 2 mMCHIR99021, 1 mM SAG, 500 ng/mL FGF4 in foregut basal medium

(Advanced DMEM, 1x B27, 1x N2, 10 mM HEPES, 1x Glutagro (all ThermoFisher Scientific), 50 mg/mL ascorbic acid (Sigma), 0.4 mM

monothioglycerol (Sigma)). On day 9, anterior foregut spheroids were harvested by gentle pipetting and transferred into an ultra-low

attachment plate, in lung organoid medium I (3 mMCHIR99021, 10 ng/mL BMP4, 10 ng/mL FGF7, 10 ng/mL FGF10, 50 nM all-trans

retinoic acid, in foregut basal medium). The medium was changed every two days until day 15. On day 15, the medium was changed

to lung organoid medium II (3 mMCHIR99021, 10 ng/mL FGF7, 10 ng/mL FGF10, in foregut basal medium). On day 25, the organoids

were embedded in matrigel, in transwell inserts, and grown in lung organoid medium III (3 mMCHIR99021, 10 ng/mL FGF7, 10 ng/mL

FGF10, 50 nM dexamethasone (Sigma), 100 mM 8-bromo-cAMP (Sigma), 100 mM IBMX (Sigma), in foregut basal medium). The

medium was changed every 3 days. The CHIR99021 was withdrawn on days 35-42. All media components were from Stem Cell

Technologies unless noted otherwise.

Immunofluorescence staining of HLO sections.Matrigel embedded organoids were extracted in 1 mL Organoid Recovery Solution

(Cultrex) 1 h 30 at 4�C with end-to-end rotation and then fixed 1 h at RT in 4% PFA. Organoids were incubated in increasing concen-

trations of sucrose (15%–30%) and embedded in OCT (Tissue-Tek). Organoids were sectioned on a cryostat and tissue sections kept

at �80�C until immunofluorescent analysis. OCT tissue blocks were kept at �80�C. Organoid sections were equilibrated to RT for

10 min and OCT was removed by washing with PBS. Organoid sections were permeabilized and blocked in 0.1% Triton X-100

with 5% Donkey Serum (Jackson Laboratories) in PBS for 1 h at RT. Organoid sections were incubated overnight at 4�C in primary

antibody in 0.1% Triton X-100 with 5% Donkey Serum in PBS. The following primary antibodies were used: mouse anti-CD324 (E-

CAD) (1:500, BD Biosciences, 610191), mouse anti-NKX2-1 (1:1000, Seven Hills Bioreagents, WMAB-1231), mouse anti-SOX9

(1:500, Cell Signaling, 82630T), and mouse anti-ACE2 (1:200, ProteinTech, 66699-1-AP). Antibodies were detected using AF488-,

AF568-, and AF647-conjugated donkey antibodies raised against mouse, rabbit, or goat IgG (all 1:1000, Invitrogen) in 0.1% Triton

X-100 with 5% Donkey Serum in PBS for 1 h at RT. DNA was labeled with DAPI (1:1000, Invitrogen, D1306) in 0.05% PBS-

Tween-20 for 1 min at RT. Sections were washed 3x5 min with 0.05% PBS-Tween-20 at RT after primary and secondary antibody

incubations. Slides were mounted using Fluoromount-G (SouthernBiotech) and tissue was imaged using a Leica Sp8 confocal mi-

croscope and processed using NIH ImageJ software.

Bulk RNA sequencing.Cells during HLO differentiation were harvested on days 0, 5, 9, 15, 25, 35, 50, and RNAwas extracted using

Quick-RNA 96 Kit (Zymo) with on-column DNaseI treatment. RNA-seq libraries were constructed with QuantSeq FWD Kit (with UMI

module, Lexogen) and sequenced on Illumina HiSeq sequencer in the Center for Advanced Technology (UCSF). UMIs were extracted

from the fastq files with umi_tools and cutadapt was used to remove short and low-quality reads. The reads were aligned to human

GENCODE v.34 reference genome using STAR aligner and the duplicate reads were collapsed using umi_tools. Gene level counts

were measured using HTSeq and compared using DESeq2.

Single cell RNA sequencing sample preparation and data collection. All tubes and pipet tips used for cell harvesting were pre-

treated with 1% BSA in 1X PBS. The HLOs were transferred with a wide-end pipet tip from matrigel to 1 mL Organoid Harvesting

solution (Cultrex) and incubated 1 h at 4�C with end-to-end rotation. Then the cells were dissociated in Accutase (Stem Cell) with

DNaseI (200 U/mL, Worthington) and Dispase (100 U/mL, Corning) at 37�C, in 10 min increments with end-to-end rotation, until a

single cell suspension was obtained. The cells were washed in Cell Staining Buffer (Biolegend) and stained with TotalSeq HTO an-

tibodies for 30min on ice. The cells were washed twice in Cell Staining Buffer and filtered through a 40 mmpipette tip strainer (BelArt).

The cells were counted using Trypan Blue dye and a hemocytometer and pooled for sequencing. scRNA-seq libraries were prepared

with ChromiumNext GEMSingle Cell 3¢ Kit v3.1 (10x Genomics), with custom amplification of TotalSeq HTO sequences (Biolegend).

The libraries were sequenced on an Illumina NovaSeq sequencer in the Center for Advanced Technologies (UCSF). The cell feature

matrices were extracted using kallisto/bustools and demultiplexed using Seurat.

Single-cell RNA sequencing data analysis. All further downstream analysis was carried out with Seurat and SeuratWrapper pack-

ages. Cells were identified as poor quality and subsequently removed if they did not meet one of the following criteria: greater than
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200 unique features detected; unique read alignment rate (log10(nFeatures)/log10(nCounts)) greater that 80%; and a mitochondrial

read percentage of less than 30%. Cell-by-gene count matrices from independent experiments weremerged, log normalized using a

scaling factor of 10,000, and 2,000 variable features were identified using variance stabilizing transformation. Batch correction by

experiment was performed using the ‘‘RunFastMNN’’ function from the SeuratWrappers package (Haghverdi et al., 2018) and

UMAP coordinates were found based on the first 20 MNN dimensions. A shared nearest neighbor graph was constructed using

the same number of MNN dimensions and clusters were identified using clustering resolution of 0.1. Broad cell type clusters were

annotated based on cluster specific expression ofmarker genes identified using aWilcoxon Rank Sum test. Following cell type anno-

tation, gene dropout values were imputed using adaptively-thresholded low rank approximation (ALRA) (Linderman et al., 2018). The

rank-k approximation was automatically chosen for each dataset and all other parameters were set as the default values. The

imputed gene expression is shown in all plots and used in all downstream analysis. Epithelial cells were subsetted based on expres-

sion of EPCAM and CDH1 for subtype clustering and analysis. The subsetted epithelial cell-by-gene count matrix was re-analyzed

using the same workflow as the full dataset. UMAP coordinates were found based on the first 20 MNN dimensions. A shared nearest

neighbor graph was constructed using the same number of MNN dimensions and clusters were identified using clustering resolution

of 0.2. Epithelial cell type clusters were annotated based on cluster specific expression of marker genes identified using a Wilcoxon

Rank Sum test in combination with module scoring of cell type marker gene lists using the ‘‘AddModuleScore’’ function. 100 control

genes selected from the same bin per analyzed gene were used to calculate each module score.

Wild-type SARS-CoV-2 HLO infection
SARS-CoV-2 Isolation and Amplification. SARS-CoV-2/human/USA/CA-UCSF-0001C/2020 was isolated from a UCSF clinical spec-

imen (nasopharyngeal swab collected in viral holding medium) that was RT-qPCR positive. The clinical specimen was serially diluted

and isolated on Calu-3 cells grown in EMEM in the presence of penicillin, streptomycin, amphotericin B and 5%heat-inactivated fetal

bovine serum (FBS). Virus was subsequently amplified by passage on Calu-3 cells and sequence verified using next-generation

sequencing.

Infection of HLOs with SARS-CoV-2. Infections using the live USA/CA-UCSF-0001C/2020 isolate and USA-WA1/2020, NR-52281

isolate (BEI resources) of SARS-CoV-2 were performed in two independent Biosafety Level 3 labs (Andino lab and Ott lab respec-

tively). SARS-CoV-2 stocks were passaged in Vero cells (ATCC) and titer was determined via plaque assay on Vero cells. Organoids

were plated in suspension in fresh media or fresh media supplemented with 5 uM ketoconazole, finasteride and dutasteride for 72 h

prior to infection. For infection, organoids were plated in suspension in fresh media plus virus (MOI 0.1) for 2 h, washed with PBS and

then replated in suspension with fresh media for 72 h. Organoids were next fixed in 4% PFA for a minimum of 30 min before removal

from the BSL-3 lab.

HLOWhole Mount Immunofluorescence staining and quantification.Organoids grown in suspension were fixed overnight at 4�C in

4% PFA and then kept at 4�C in PBS until immunofluorescent analysis. All incubations were performed in Eppendorf tubes on an

orbital rocker at RT. Organoids were permeabilized and blocked in 0.5% Triton-X with 5% Donkey Serum (Jackson Laboratories)

in PBS for 1 h. Organoidswere incubated overnight in primary antibody in 0.1%Triton-Xwith 5%Donkey Serum in PBS. The following

primary antibodies were used: rabbit anti-ACE2 (1:200, ProteinTech, 21115-1-AP), goat anti-ACE2 (1:20, R&D Systems, af933),

mouse anti-dsRNA (1:200, Absolute Antibodies, ab0129.2.0), and mouse anti-N-protein (1:100, Invitrogen, MA1-7404). Antibodies

were detected using AF488-, AF568-, and AF647-conjugated Donkey antibodies raised against mouse, rabbit, or goat IgG (all

1:1000, Invitrogen) in 0.1% Triton-X with 5% Donkey Serum in PBS for 3 h at RT. DNA was labeled with DAPI in 0.05% PBS-

Tween-20 for 10min at RT. Organoidswerewashed 3x30minwith 0.05%PBS-Tween-20 at RT after primary and secondary antibody

incubations. Organoids were suspended in PBS in Ibidi imaging dishes imaged using a Leica Sp8 confocal microscope and pro-

cessed using NIH ImageJ software.

All images compared were from paralleled staining rounds and imaged using equal laser intensity settings during image cap-

ture. All quantifications were done using NIH ImageJ software. For comparison of ACE2 levels in drug treated lung organoids, z-

projections of each image stack were generated using the sum slices method. Next, an automatic threshold was applied to the

ACE2 channel of each image to determine the areas of positive ACE2 staining. The raw integrated density of the threshold area

was measured and normalized to the area of positive staining. For comparison of SARS-CoV-2 infection by dsRNA and nucle-

ocapsid protein staining in drug treated organoids, the number of cells positive for either antigen was determined by manual

counting using z-projections of each image stack generated using the sum slices method in combination with orthogonal views.

The number of infected cells was normalized to the area the organoid, found by drawing and measuring an ROI around the or-

ganoid in the z-projection window.

Plaque assay. Vero E6 cells were maintained in MEM supplemented with 10% fetal calf serum (FCS), penicillin-streptomycin (100

IU/mL) and glutamine (292 mg/mL; pen-strep-glutamine). 6 well plates were seeded with cells a day prior to the assay to be fully

confluent on the day of infection. Samples were serially diluted 10-fold in MEM containing 2% FCS and pen-strep-glutamine. After

removing the culture media, 250 uL of sample dilution was added to the corresponding cell monolayer and incubated for 1 h at 37�C
at 5%CO2. Tomake the overlay, boiled 2%agarmade in cell-grade water wasmixed 1:1 with 2XMEMmedia (powderedMEM in cell

grade water, 2.2g/L NaHCO3 and pen-strep-glutamine) kept at 4�C until mixing. Cells with 3 mL of overlay were incubated for 72 h at

37�C in a 5% CO2 incubator and fixed in 4% PFA for 2 h. Agar plugs were flipped and plaques were counted following staining with

0.1% crystal violet solution and presented as plaque forming units (pfu)/mL.
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Yale New Haven Hospital patient data analysis
EPIC’s SlicerDicer feature was used to collect the Yale New Haven Hospital (YNHH) electronic health record anonymous aggregate-

level data. Using this feature, a total of 8657 patients had a COVID-19 ICD-10 diagnosis code at YNHH during November 28, 2019-

April 28 2020 time period. Among them, 1577 patients had a Troponin T checked during the same encounter and were selected for

subsequent analysis. Out of 1577 patients, 787 were female and 790 were male.

Next, we focused on males above age 40 for subsequent risk factor analysis. Risk factors associated with disease outcome,

including age, BMI, status of hypertensive disorder, status of diabetes mellitus disorder and prostate disease, were collected as

dichotomized variables during data download. Variable cutoffs were set as follows: age, 40-65y versus 65+ y, BMI, < 30 versus

> = 30, troponin T < 0.01 ng/mL versus > = 0.01 ng/mL. Diabetes, hypertension and prostatic disease (hyperplasia of prostate or

neoplasm of prostate) were binary originally andwere collected as a visit diagnosis. Appropriate SNOMED-CT (systematized nomen-

clature of medicine–clinical terms) were used to include or exclude patients according to their pre-existing conditions. The following

terms were used to identify patients with pre-existing conditions in the database: ‘‘disorders of glucose metabolism’’ to select the

patients with any form of the Diabetes Mellitus, ‘‘Hypertensive disorder’’ to select the patients with any form of hypertension and

‘‘hyperplasia of prostate or Neoplasm of Prostate’’ to select patients with disorders of prostate gland. The study was in accordance

with Institutional Review Board policy.

A total of 681 subjects exist in this dataset with 239 high troponin and 442 low troponin cases. The interdependence of all variables

was explored through their correlation matrix (Figure S6B) and pairwise Fisher’s exact tests. To find the optimal model, we used a

backward selection approach. We started with a logistic regression model with troponin as response and all the other variables

and their pairwise interaction terms as covariates. In successive steps, least significant terms were eliminated one at a time and

the model was refitted until all remaining terms were significant at p < 0.05. Odds of having abnormal troponin T in the baseline group

(40-65y, no prostate disease, low BMI, no diabetes, no hypertension, n = 58) was 0.038.

UK Biobank data analysis
Individual-level longitudinal phenotypic data from the UK Biobank, a large-scale population-based cohort with genotype and

phenotype data in approximately 500,000 volunteer participants recruited from 2006-2010, was used (Bycroft et al., 2018). Baseline

assessments were conducted at 22 assessment centers across the UK using touch screen questionnaire, computer assisted verbal

interview, physical tests, and sample collection including for DNA. Additional details regarding the study protocol are described

online (https://www.ukbiobank.ac.uk).

Of 488,377 individuals genotyped in the UK Biobank, we used data for 190,150 men from English recruiting centers where COVID-

19 testing was reported in the UK Biobank, as done previously (Armstrong et al., 2020). Additionally, we further filtered to individuals

with white British ancestry consenting to genetic analyses, with genotypic-phenotypic sex concordance, without sex aneuploidy,

and removed one individual from each pair of 1st or 2nd degree relatives selected randomly. Participants provided informed consent

as previously described. Secondary use of the data was approved by the Massachusetts General Hospital institutional review board

(protocol 2013P001840) and facilitated through UK Biobank Application 7089.

UK Biobank phenotypes. Definitions for phenotypes are included in Table S4; all phenotypes were compiled using the most up-

dated phenotypes from the July 2020 release. In brief, benign prostatic hyperplasia was defined by combining self-reported enlarged

prostate and ICD-9 and ICD-10 billing codes for prostatic hyperplasia. Hypertension was defined by self-reported hypertension and

billing codes for essential hypertension, hypertensive disease with and without heart failure, hypertensive heart and renal diseases,

and secondary hypertension. Type 2 diabetes was defined by billing codes for non-insulin-dependent diabetes mellitus or self-re-

ported type 2 diabetes. Body mass index was from enrollment.

UK Biobank COVID-19 Case/Control Models. COVID-19 phenotypes used in the present analysis are from UK Biobank down-

loaded on Sept 22, 2020 and include combined nose/throat swabs and lower respiratory samples analyzed using PCR. Two

case/control definitions were used in the analysis to iterate over COVID-19 susceptibility and severity across all individuals with

COVID-19 testing reported from the UK Biobank English recruitment centers (Armstrong et al., 2020). COVID-19 positive cases

were defined as any individual with at least one positive test. COVID-19 hospitalized cases were defined as any individual with at

least one positive test who also had evidence that they were a hospitalized inpatient. Individuals with COVID-19 of unknown severity

were excluded from the COVID-19 hospitalization analyses. Controls included all white British men from the UK Biobank English

recruitment centers who either tested negative for COVID-19 or did not have a COVID-19 test.

UK Biobank Association with Benign Prostatic Hypertrophy. Association of benign prostatic hypertrophy (BPH) with COVID-19

severity and susceptibility was performed among men using logistic regression in R-3.5. Adjustment for age, hypertension, type 2

diabetes, normalized BMI at enrollment, normalized Townsend deprivation index (a marker of socioeconomic status), and the first

ten principal components of genetic ancestry were performed.

Gene set enrichment analysis of androgen signaling genes in the COVID-19 human genetics consortium GWAS. Gene set enrich-

ment analysis was performed usingMAGMA (de Leeuw et al., 2015) on a set of 8 genes identified from our FDA drug screen as well as

all 76 androgen signaling genes listed in Table S3 on the COVID-19 Host Genetics Initiative GWAS release 3 results (https://www.

covid19hg.org/results/) across 3,199 COVID-19 hospitalized cases and 897,488 controls.

Mendelian randomization of bioavailable testosterone with COVID-19 hospitalization. Two-sample Mendelian randomization anal-

ysis of bioavailable testosterone on COVID-19 hospitalization was performed. The exposure was identified using genome-wide sig-

nificant independent variants in the bioavailable testosterone GWAS (Ruth et al., 2020) performed using sex-specific inverse rank
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normal transformation of the phenotype) within 1 MB of the 8 androgen signaling genes from the drug screen across 425,097 indi-

viduals in the UK Biobank (Table S8 of Ruth et al., 2020). The outcome was using GWAS summary stats from the COVID-19

hospitalized versus population GWAS across 3199 cases and 897,488 controls from the COVID-19 Host Genetics Initiative release

3 GWAS (https://www.covid19hg.org/results/). The robust MR-Egger method was utilized from the MendelianRandomization

R-package to perform Mendelian randomization as it adjusts for directional pleiotropy (Bowden et al., 2015).

QUANITIFICATION AND STATISTICAL ANALYSIS

Statistical methods relevant to each figure are outlined in the accompanying figure legend or described in the Results section. Unless

otherwise indicated, experiments were carried out in a minimum of 3 biological replicates. Two-tailed Student’s t test was performed

to compare treatment groups. Error bars in figures represent standard error of the mean.
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Figure S1, Related to Figure 1
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Figure S1. Cell type specific expression of SARS-CoV-2 receptor and its modulation with in vitro and 
in silico hit compounds. 
Related to Figure 1 

(A) Violin plots showing the cell type specific expression of ACE2, TMPRSS2 and FURIN for human 
adult heart, lung, colon and esophagus. The expression is displayed as the log normalized values.
(B) Schematic representation of cardiac differentiation protocol.
(C) Expression of ACE2, FURIN, and TMPRSS2 in hESC-derived cardiomyocytes and non-
cardiomyocytes. Expression is normalized by GAPDH read count.
(D) Immunofluorescence imaging of cardiac cells stained with ACE2 antibody.
(E-F) Normalized z-score of compounds in FDA-approved library that up/down-regulate ACE2 in 
human cardiac cells.
(G-H) Effect of hit compounds on ACE2 expression levels in Vero cells.
(I-L) Comparison of predicted and measured z-scores for the training (I), validation (J) and test (K) 
datasets in virtual high-throughput screening experiment. Also shown are the Pearson correlation 
coefficients and their associated p-values. (L) Chemical structure of selected in silico hit compounds.
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Figure S2. Cell type specific expression of predicted targets and their associated pathways. 
Related to Figure 2 

(A) Expression of predicted targets in hESC-derived cardiomyocytes and non-cardiomyocytes. 
Expression is normalized by GAPDH read count.
(B) Violin plots showing the cell type specific module scores for the 30 predicted gene targets for human 
adult heart, lung, colon and esophagus.
(C) Violin plots showing the cell type specific expression of the 30 predicted gene targets for each organ. 
The expression is displayed as the log normalized values.
(D) Pathways discovered by iPAGE and their pattern of representation across proteins associated with 
high/low z-scores in the FDA-approved library screen.  Each expression bin includes genes within a 
specific range of expression values (top panel). Bins to the left contain genes associated with lower z-
scores and bins to the right contain genes associated with higher z-scores. Rows correspond to 
pathways and columns to expression bins. Red entries indicate enrichment of pathway genes in the 
corresponding expression bin.



Figure S3, Related to Figure 3
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Figure S3. Interaction of hit compounds with target proteins. 
Related to Figure 3 

(A) Chemical structure of hit compounds that interact with predicted targets. Canonical SMILES 
and PubChem Sketcher were used to draw the structures.
(B-C) Drug-target interactions in selected GO terms.  (B) Drug-protein interaction matrix for GO:0008202 
steroid metabolic process gene set. (C) Drug-protein interaction matrix for GO:0008236 serine-type 
peptidase activity gene set.
(D-G) Cell type specific expression of AR signaling modulators. Violin plots showing the cell type specific 
expression of AR, SRD5A1, SRD5A2 and cell type specific module scores for 8 RTK’s upstream of AR 
activity, 30 genes associated with the androgen receptor signaling pathway and 34 common downstream 
targets of AR transcriptional regulatory activity in the human adult heart (D), lung (E), colon (F) and 
esophagus (G).



Figure S4, Related to Figure 4
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Figure S4. Antiandrogenic drugs reduce SARS-CoV-2 levels and pseudotyped virus entry in target cells. 
Related to Figure 4 

(A-C) Effect of AR signaling inhibitors on the expression of ACE2 (A) and TMPRSS2 (B) in hESC-derived 
cardiac cells. (C) Effect of antiandrogenic drugs on SARS-CoV-2 pseudotyped virus internalization in 
human primary alveolar epithelial cells. 
(D-F) Antiandrogenic drugs reduce ACE2 and TMPRSS2 in human bronchial epithelial cells. (D) 
Immunofluorescence analysis of ACE2 expression in response to treatment with antiandrogenic drug 
candidates in primary bronchial epithelial cells isolated from three different donors. Individual values 
represent normalized fluorescence intensity in independent imaging fields. (E) Immunofluorescence 
analysis of TMPRSS2 expression in response to treatment with antiandrogenic drug candidates in primary 
bronchial epithelial cells isolated from three different donors. (F) qRT-PCR analysis of ACE2 mRNA 
expression in response to treatment with antiandrogenic drug candidates in primary bronchial epithelial 
cells isolated from three different donors. Scale bar = 100 μm. 



Figure S5, Related to Figure 5
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Figure S5. Differentiation and characterization of HLOs for assessment of antiandrogenic drugs. 
Related to Figure 5 

(A-D) Differentiation and characterization of HLOs. (A) Schematic illustration of HLO differentiation protocol. 
(B) UMAP visualization of scRNA-seq data from differentiated HLOs showing distinct cell clusters.
(C) Dot plot visualization of single cell expression of cluster specific lineage markers in differentiated HLOs.
(D) UMAP visualization of module score analysis of different lung epithelial subtypes using panels of 
lineage specific markers listed in Figure 5B.
(E-F) Effect of antiandrogenic drug candidates on ACE2 and TMPRSS2 expression in HLOs. (E) qRT-
PCR analysis of ACE2 expression in HLOs treated with antiandrogenic drugs. (F) qRT-PCR 
analysis of TMPRSS2 expression in HLOs treated with antiandrogenic drugs.
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Figure S6. The role of androgen signaling in COVID-19 susceptibility and severity in male patients. 
Related to Figure 6 

(A-B) Effects of risk factors on abnormal troponin T in COVID-19 patients.  (A) Distribution of sex among 
patients with abnormal troponin T. (B) Correlogram of variables in the Yale COVID-19 patients dataset. The 
size and color of each circle illustrates the direction and strength of the correlation. Only significant 
correlations (at p<0.05) are painted. 
(C-E) Patient record analysis of COVID-19 susceptibility and severity in the UK Biobank. (C) UK Biobank 
summary statistics across men used in analysis. Age refers to age at enrollment in 2010. (D) Association 
of BPH with COVID-19 susceptibility in multivariate logistic models adjusted for age, hypertension, type 2 
diabetes, normalized body mass index (BMI), Townsend deprivation index, and principal components of 
genetic ancestry. (E) UK Biobank summary statistics across men used in analysis, stratified by COVID+ 
status as of 9/22/2020. * Controls included all white British men from the UK Biobank English 
recruitment centers who either tested negative for COVID-19 or did not have a COVID-19 test. ** Age 
refers to age at enrollment in 2010. OR = odds ratio, CI = confidence interval. 
(F-G) Mendelian randomization analysis of androgen signaling related genes in UK Biobank. (F) List of 
androgen signaling target genes identified in drug screen. (G) Sensitivity analysis for MR-Egger Mendelian 
randomization analysis of bioavailable testosterone with COVID-19 hospitalization. Mendelian 
randomization analysis between bioavailable testosterone and COVID-19 hospitalization variants near the 
androgen genes excluding the top SHBG variant from Figure 6E. 
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