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SUPPLEMENTARY METHODS – single cell DNA-Seq 

Generation of microfluidic chip, cell beads (CBs) 
In the first microfluidic chip, CBs were generated by partitioning approximately 10,000 cells of each 

sample in a hydrogel matrix. A cell suspension is combined with an activation reagent, hydrogel 

precursors, paramagnetic particles, and loaded into one inlet well. In the other two inlet wells, CB polymer 

reagent and partitioning oil were added. To ensure a low multiplet rate, cells were delivered at a dilution 

such that the majority of CBs contain either a single cell or no cell. Once generated, the emulsion was 

immediately transferred into a PCR strip tube and incubated with orbital shaking at 1000 rpm overnight. 

The incubation yields polymerized magnetic CBs for subsequent steps. 

Encapsulated cells were processed by the addition of lysis and protein digestion reagents to yield 

accessible DNA for whole-genome amplification. The presence of magnetic particles in the cell bead 

matrix enabled CB retention and streamlined washing and buffer exchange steps. After lysis, CBs were 

washed by magnetic capture, concentrated by reduction of liquid volume, and buffer exchanged with the 

addition of 1X PBS buffer. CBs were then denatured by NaOH, neutralized with Tris, and diluted in 

storage buffer. Finally, aggregates of cell beads were removed by filtration through a Flowmi strainer 

before a volume normalization procedure to set the CB concentration. 

 
Generation of cell bead-gel beads (CBGBs) 
CBGBs were generated by loading CBs, barcoded gel beads, enzymatic reaction mix, and partitioning 

oil in a second microfluidic chip. A majority of the CBGBs (~80%) contained a single CB and a single gel 

bead, which once encapsulated then dissolved to release their contents. To amplify and barcode gDNA, 

the emulsion was then incubated at 30°C for 3 hours, 16°C for 5 hours, and finally heat inactivated at 

65°C for 10 minutes before a 4°C hold step. This two-step isothermal incubation yielded genomic DNA 

fragments tagged with an Illumina read 1 adapter followed by a partition-identifying 16bp barcode 

sequence. Conventional end-repair and a-tailing of the amplified library was performed, after which a 

single-end sequencing adapter containing the Illumina read 2 priming site was ligated.  

ScDNA-Seq data processing and CNV calling 
The computational pipeline includes preprocessing and single cell copy number calling. The outputs 

of this pipeline are CNV calls and read counts in 20kb bins across the genome as genomic bin-by-cell 

matrices. In the preprocessing stage, the first 16 base pairs of read 1 are compared to a whitelist of all 

possible droplet barcodes (totaling ~737,000). All observed droplet barcodes were tested for the 

presence of a cell by using mapped read abundances to the human genome. Reads were aligned to 

GRCh38 using bwa-mem version 0.7.12-r1039. Each read in the bam file was annotated with a cellular 

barcode tag ‘CB’. Confidently mapped reads were counted across the genome in 20kb non-overlapping 

windows. GC bias correction, modelled as a polynomial of degree 2 with fixed intercept, was applied. 
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Copy number calls are determined by modeling binned read abundances to a Poisson distribution with 

the copy number, GC bias, and a scaling factor as parameters. Candidate breakpoints were estimated 

by applying a log-likelihood ratio statistic against fluctuations in read coverage over neighboring genomic 

bins. These breakpoints were refined and reported as a set of non-overlapping segments across the 

genome. The copy numbers were scaled to integer-level ploidies. Copy number calls for non-mappable 

regions were imputed with neighboring copy number calls in confidently mapped regions, provided that 

the copy number on both sides of a non-mappable region were the same and the region was < 500 kb. 

 

SUPPLEMENTARY METHODS – Cell cycle analysis 

Assigning cell cycle state to scDNA-sequenced cells:  For a given sample, we classified the genome 

of each sequenced cell 𝑖 ∈ 	𝐼  to one of three states (G0/G1, S, apoptotic) as follows. Under the 

assumption that the G0/G1 population is larger than any of the other populations, we defined the G0/G1 

ploidy, pg0g1, as the median ploidy across all sequenced cells of a given sample.  Then, we calculate three 

features for each cell, x: i) its distance, 𝑑&, to pg0g1; ii) its total number of breakpoints, 𝑏&, and iii) the 

Pearson correlation coefficient, 𝑟&, between the number of rare breakpoints observed in the cell per each 

chromosome and the number of replication origins per chromosome. Rare breakpoints were defined as 

breakpoints that were shared among less than 1% of cells. 

 

We distinguished G0/G1 cells from cells with higher genome fragmentation. We divided cells into two 

groups – 𝑃* ∶= {𝑥	 ∈ 	𝐼	|	𝑝& ≥ 𝑝2324} and 𝑃6 ∶= {𝑥	 ∈ 	𝐼	|	𝑝& < 𝑝2324} – containing cells above and below 

the sample’s G0/G1 ploidy respectively. We fitted two sigmoid functions, one for each subgroup, to model 

cell ploidy as function of the number of breakpoints per cell: 𝑝8	~ :
	𝑓*(𝑏8), 𝑖𝑓	𝑖 ∈ 	 𝑃*
	𝑓6(𝑏8), 𝑖𝑓	𝑖 ∈ 	 𝑃6

 

We then calculated 𝐵 ≔ 𝑎𝑟𝑔𝑚𝑖𝑛E|	𝑓*(𝑏) −	 	𝑓6(𝑏)| , as the threshold distinguishing G0/G1 cells from 

apoptotic cells: 

𝑎𝑝𝑜𝑝𝑡𝑜𝑡𝑖𝑐 ∶= {𝑥 ∈ 𝑃6	|	𝑏& ≥ 𝐵} 

and from replicating cells: 

𝑆 ∶= {𝑥 ∈ 𝑃*	|	𝑏& ≥ 𝐵	} 

I.e. the yet unclassified cells were assigned to the G0/G1 state: 

𝐺0𝐺1 ∶= {𝑥 ∈ 𝐼	|	𝑏& < 𝐵} −	{𝑆 ∪ 𝑎𝑝𝑜𝑝𝑡𝑜𝑡𝑖𝑐} 

The highest correlation to replication origins was observed for replicating cells (SI Appendix, Fig. S2B-
J), supporting the accuracy of above cell cycle phase assignment strategy. We removed cell cycle 
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specific breakpoints from further analysis, keeping only those breakpoints present among at least 1% of 

G0/G1 cells and encompassing segments of at least 5 Mb. Population-average copy number per segment 

per sample was calculated as the mean copy number across G0/G1 cells of that sample. 

 

Inferring clonal dynamics from distribution of replicating cells among clones:  For each detected 

and confirmed clone of a given sample, we calculated whether its % replicating cell assignment was 

different than expected by chance from its G0/G1 representation.  Hereby we excluded clones below 4% 

size, because their absolute cell count was too small to reliably perform these calculations. Let Ng0g1 and 

Ns be the total number of G0G1 and S cells detected in a cell line respectively. Further let G0G1i and Si 

be the number of G0G1 and S cells assigned to clone i respectively. Then we calculated the % G0/G1 

cells and the % replicating cells as G0G1i / Ng0g1 and Si / Ns respectively (X- and Y-axes in Fig. 2D). To 

infer positive selection, we used the hypergeometric distribution and calculated the p-value of sampling 

at least the observed number of replicating clone members, Si, as: 

P = phyper(Si, m, G0G1i, k) where k is the total number of cells sampled from the clone and m is the 

expected number of clone members that are replicating (assuming proportionality to G0/G1 clone size).  

The p-value of sampling maximum Si replicating cells was calculated by subtracting above value from 1, 

and was used to infer negative selection.  P-values were adjusted for multiple hypotheses testing using 

the FDR method (R function “p.adjust”). 

 

SUPPLEMENTARY METHODS – single cell RNA-Seq 

ScRNA-Seq library preparation and sequencing:  We used the Chromium Controller instrument (10X 

Genomics Inc., Pleasanton, CA) and the Single Cell 3’ Reagent kit (v2) to prepare individually barcoded 

single cell RNA-Seq libraries following the manufacturer’s standard protocol.  Briefly, single cell 

suspensions were loaded on a Chromium Controller instrument and were partitioned in droplets.  Reverse 

transcription is performed, followed by droplet breaking, and cDNA amplification.  Each cDNA molecule 

thus contained the read 1 sequencing primer, a 16bp cell-identifying barcode, and a 10bp UMI sequence1.  

We performed enzymatic fragmentation, end-repair, and a-tailing followed by ligation of a single-end 

adapter containing the read 2 priming site.  PCR was performed using the Illumina P5 sequence and a 

sample barcode as described earlier.  Libraries were purified with SPRIselect beads (Beckman Coulter, 

Brea, CA) and size-selected to ~450bp.  Finally, sequencing libraries were quantified by qPCR before 

sequencing on the Illumina platform using 26x98 paired-end reads. The Cellranger software suite 1.2.1 

was used to process scRNA data, sample demultiplexing, barcode processing, and single cell 3’ gene 

counting.  The cDNA insert, which is contained in the read 2, was aligned to the GRCh38 human 

reference genome.  The reference GTF contained 33,694 entries, including 20,237 genes, 2,337 
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pseudogenes and 5,560 Antisense (non-coding DNA). Cellranger provided a gene-by-cell matrix, which 

contains the read count distribution of each gene for each cell. Cellranger’s preprocessing pipeline is 

described in more detail at: https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/algorithms/overview. 

 

ScRNA-Seq data preprocessing:  We used a curated set of seven biological and technical features to 

detect and remove low-quality cells1,2.  Biological features included: 1) transcriptome variance and 

expression of 2) cytoplasm localized genes, 3) mitochondrially localized genes, 4) mtDNA encoded 

genes. Technical features included: 5) % mapped reads, 6) % multi-mapped reads and 7) %non-exonic 

reads (intergenic & intronic).  These features robustly identify low quality cells independently of cell type 

and of the experimental setting.  The analysis was performed using Celloline version 0.92 and the R-

package Cellity version 1.42.  For additional processing, we used the software suite Seurat (v2.3.2)3.  

Briefly, UMI counts were capped at the 99% quantile and only cells expressing at least 1,000 genes were 

included in subsequent analysis.  Also, most cells classified by Cellity as low quality had a high 

percentage expressed mitochondrial genes as quantified by Seurat (data not shown). 

 

Assigning cell cycle state to scRNA-sequenced cells:  Leveraging prior knowledge in form of cell-

cycle annotated genes and deploying a rank-based comparison across single cells, has been shown to 

robustly capture the transcriptional cell-cycle signature across different cell types and experimental 

protocols4. We employed such pathway-centric approach to classify the transcriptome of each sequenced 

cell to a cell cycle state as follows below. 

 

Pathway quantification:  The gene membership of 1,417 pathways was downloaded from the Reactome 

database5 (v63).  First the transcriptome profiles of high-quality cells detected within a given sample were 

scaled to the number of UMIs per cell (Seurat function “ScaleData”).  We used the GSVA function6 to 

model variation in pathway activity across cells of the sample (R function “gsva”, mx.diff=TRUE). GSVA 

starts by evaluating the expression magnitude of a given gene in a given cell, in the context of the sample 

population distribution.  To reduce gene specific biases (i.e. caused by GC content and gene length), an 

expression-level statistic was calculated for each gene from a kernel estimation of its cumulative density 

function.  GSVA then calculated a rank-based, cell specific enrichment scores using the Kolmogorov-

Smirnov like random walk statistic.  For any given sample, pathways for which less than ten gene 

members were expressed in the scRNA-Seq data were not quantified. 
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Quantification of cell cycle pathways activity: The gene membership of 39 cell cycle pathways was 

downloaded from the Reactome database5 (v63), whereby each pathway consisted of at least ten genes 

(SI Appendix, Supplementary Table 4).  We used the GSVA method6 to model variation in pathway 

activity across cells of a given cell line, as described later. 

 

Pathway and cell classification: Pathways were classified into three groups depending on their main 

activation timing during: i) G0/G1 (10 pathways, further referred to as PG0G1); ii) S (5 pathways, further 

referred to as PS) and iii) G2M (26 pathways, further referred to as PG2M).  Each class was normalized by 

its maximum activity across cells.  As previously described, the 39 pathways were used as features to 

perform hierarchical clustering of cells (Euclidean distance metric and ward.D2 agglomeration method) 

into four clusters C:={C1, C2, C3, C4}.  To classify each cluster 𝑥	 ∈ 	𝐶 as either an G0/G1, S or G2M 

representative, we tested 39 null-hypotheses, one for each pathway p, namely that the activity of p in 

cells from x exceeds the activity of p in cells from {C – x}.  We tested our hypotheses using the Wilcox 

rank-sum test and p-values were adjusted for multiple testing.  For each pathway class 𝛿 ∈

{𝐺0𝐺1, 𝑆, 𝐺2𝑀} we calculated the average effect size as: 

𝑃(𝑥|𝛿): = 4
|TU|

∑ 𝑒X,&X∈TU , where: 

𝑒X,& = :𝑒𝑓𝑓𝑒𝑐𝑡	𝑠𝑖𝑧𝑒, 𝑖𝑓	𝑊𝑖𝑙𝑐𝑜𝑥	𝑝 ≤ 0.05
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Finally, we assigned cell cycle phase 𝑎𝑟𝑔𝑚𝑎𝑥b	∈{c3c4,d,cef}	𝑃(𝑥|𝛿) to each cluster 𝑥	 ∈ 	𝐶. 

 

SUPPLEMENTARY METHODS – LIAYSON: Calling CNVs from scRNA-Seq 

To infer a cell’s copy number state at any given locus, the LIAYSON algorithm uses a cell’s read counts 

across the entire genome, thereby mitigating the influence of non-genetic factors on mRNA expression.  

In addition to raw UMI counts, LIAYSON requires as input the population-average (bulk) segmentation 

profile of the sample and the classification of cells into G0/G1, S and G2M subsets.  It consists of two 

steps – aggregating expression across copy number segments, and calling copy number from segmental 

expression. These two steps are detailed as follows. 

 

Calculating cell-by-segment expression matrix. Let S := {S1, S2, … Sn} be the set of n genomic segments 

that have been obtained from DNA-sequencing 𝑖	 ∈ 𝐼  cells of given sample (e.g. from bulk exome-

sequencing, scDNA-sequencing, etc.). To prepare each cell’s RNA-seq profile for copy number analysis 
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we first grouped genes by their segment membership, such that Eij and Gij are the average number of 

UMIs and the number of expressed genes per segment Sj per cell i. 

To reduce data sparsity and the effect of non-genetic factors on gene expression we excluded genomic 

segments shorter than 10 Mb. For each cell cycle phase (G0/G1, S, G2/M), we also excluded genomic 

segments j for which 𝑮∗ijjjj – the average number of expressed genes per cell – was below 20 (setting this 

threshold too high would also exclude single copy losses). 

 

Calling copy numbers from G0/G1 cell-by-segment expression matrix. We first normalize the cell-by-

segment expression matrix to gene coverage, by fitting a linear regression model for each j ∈ S: 

𝐸∗l~	𝑍∗, where 𝑍8 ≔ ∑ 𝐺8ll∈d  – is the overall gene coverage of a given cell. 

 

The model’s residuals Rij reflect inter-cell differences in expression per segment that cannot be explained 

by differential gene coverage per cell.  A first approximation of the cell-by-segment copy number matrix 

C is then given by: Cij := Rij * (cnj / μj ), where 𝜇l ≔
4
|o|
∑ 𝑅8l8∈o , is the mean residual per segment across 

cells and cnj is the G0/G1 population-average copy number of segment j derived from DNA-seq. Above 

transformation of Eij into Cij is in essence a numerical optimization, shifting the distribution of each 

segment to the average value expected from bulk DNA sequencing. 
Let x’ ∈ C be the measured copy number of a given cell-segment pair, and x its corresponding true copy 

number state. The probability of assigning copy number x to a cell i at locus j depends on: 

 

A. Cell i's read count at locus j, calculated conditional on the measurement x’.  

We fit a Gaussian kernel on the read counts at locus j across cells to identify the major (M) and the 

minor (m) copy number states of j as the highest and second highest peak of the fit respectively. Then 

we calculate the proportion of cells expected at state m as: f ≔ rstuf
vuf

. The probability of assigning 

copy number x to a cell i at locus j is calculated as: 

Px(𝑥|𝑥′) ≔ z
0, 𝑖𝑓	𝑥	 ∉ {𝑚,𝑀}

P|}(	x�|N(𝑚, 𝑠𝑑 = 𝑓	)	), 𝑖𝑓	𝑥 == 𝑚	
		P|}(	x�|N(𝑀, 𝑠𝑑 = 1 − 𝑓	)	), 𝑖𝑓	𝑥 == 𝑀

 

B. Cell i's read count at other loci, i.e. how similar the cell is to other cells that have copy number x at 

locus j. We use Apriori – an algorithm for association rule mining – to find groups of loci that tend to 

have correlated copy number states across cells. Let Rj
Kàx be the set of rules concluding copy number 
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x for locus j, where k ∈ K are copy number profiles of up to n=4 loci in the form {S1=x1, S2=x2, … 

Sn=xn}. For each cell 𝑖	 ∈ 	𝐼 corresponding to any of the copy number profiles in K, we calculate: 

P�(x)~	∑ 𝐶��∈��→�
t , the cumulative confidence of the rules in support of x at j. 

We first obtain a seed of cell-segment pairs by assigning a-priori copy number states only when 

argmax&∈[4,�]	Px(𝑥|𝑥�′) > 𝑡. We use this seed as input to B. Finally, a-posteriori copy number for segment 

j in cell i is calculated as:     𝑎𝑟𝑔𝑚𝑎𝑥&∈[4,�]	𝑃*(𝑥|𝑥�′) + 𝑃6(𝑥). 
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Supplementary Figure 1: Karyotyping and SNP-array analysis confirm scDNA-Seq derived 
aneuploidy. (a) ScDNA-Seq derived aneuploidy of MKN-45 (black) is confirmed by SNP-array data (red).  
(b-e) Correlation between average scDNA-Seq derived (x-axis) and karyotyping derived (y-axis) copy 
number per chromosome is shown for SNU-16 (b; Pearson r=0.86; P<1E-5), SNU-668 (c; Pearson r=0.7; 
P=3E-4), MKN-45 (d; Pearson r=0.44; P=0.04) and HGC-27 (e; Pearson r=0.26; P=0.32).  (f) Average 
ploidy per cell line inferred by cellranger-dna from scDNA-Seq (x-axis) correlates to cell line’s Karyotype 
(y-axis) (Pearson r=0.98; P<1E-5).  (g) ScDNA-Seq derived copy number per segment correlates with 
karyotyping and with SNP-arrays, as is shown for MKN-45 and the other cell lines (**: P<=0.005; *: 
P<=0.05).  In general, SNP-array data was obtained from older passages of the respective cell lines and 
therefore had weaker correlation to the scDNA-Seq data than did karyotyping.  SNP-array data was not 
available for SNU-638. 
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Supplementary Figure 2: ScDNA-Seq cell cycle phase assignment strategy and validation. (a) Cell 
cycle analysis of five gastric cancer cell lines by flow cytometry. (b) Demonstration of cell cycle phase 
assignment strategy with scDNA-Seq using NCI-N87 as an example. Two sigmoid functions (dotted red 
lines) are fitted to model cell ploidy (x-axis) as a function of the number of breakpoints per cell (y-axis), 
for cells above- (right) and below (left) median sample ploidy. Cell cycle phase assignment according to 

db c

ge f

jh i

KATOIIIHGC-27 NCI-N87 SNU-601 NUGC-4a
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the fitted functions is color-coded. (c-j) Validation of assignment strategy using a third, independent 
feature: correlation to replication origins.  The highest correlation was observed for S cells, whereas 
G0/G1 cells had the lowest values as would be expected from cells that are not actively replicating.  
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Supplementary Figure 3: ScDNA- and RNA-Seq mutual validation. (a-b) Validation at meta-
population resolution. (a) Average expression per segment across KATOIII cells (left) reflects the cell 
population’s average copy number (Pearson r=0.63; P=8.6E-6). Correlation coefficients between scDNA- 
and scRNA-Seq derived average read counts per segment are shown for KATOIII along with the other 
seven gastric cancer cell lines (right). (b) Variance-to-mean ratio (VMR) of expression per segment 
across KATOIII cells (left) correlates with the cells’ variability in copy number states (Pearson r=0.49; 
P=8.0E-4). Correlation coefficients between scDNA- and scRNA-Seq derived VMR are shown for all 
gastric cancer cell lines (right). (c-f) Validation at subpopulation resolution. (c) Clone detection F1 
score increases with increasing clone size across all nine cell lines. (d) The relative proportions of scDNA-
Seq (y-axis) and scRNA-Seq (x-axis) cells per clone correlate within and across cell lines. (e-f) 
Dependence of clone detection F1 score on sequencing depth in NCI-N87 and HGC-27. F1 score 
increases with increasing number of reads sequenced per each cell’s haploid genome. F1 score of 
scDNA-Seq (e) and scRNA-Seq (f) clone detection was calculated using the respectively other technique 
as control. For (e,f), between 20% and 95% of reads were sampled randomly for each of the two CLs 
and used to estimate performance at different sequencing depths. (g) Differences in passage number 
between scDNA- and scRNA-Seq experiments accompany differences in clonal composition observed 
between the two techniques for SNU-16 and SNU-668 (Pearson r=-0.71; P=0.032). 
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Supplementary Figure 4: Quantification of intra-clone diversity as surrogate of CNV accumulation 
rate. (a) As a surrogate of CNV accumulation rate per clone, we clustered cells according to rare CNVs 
and calculated the Simpson diversity index of cell-clusters found within a given clone. (b) Intra-clone 
diversity was not confounded by clone size.  
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Supplementary Figure 6: Segment length distribution. scDNA-Seq derived segment length 
distribution is shown for the nine cell lines.   
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Supplementary Figure 7: Resolution of scDNA- and scRNA-Seq on clone-specific CNVs. Clone 
specific differences in CNVs are shown for the two largest NCI-N87 clones (pink and cyan).  Highlighted 
as gray bands are the genomic regions too small to be assigned clone-specific CNVs by scRNA-Seq and 
thus detectable only with scDNA-Seq. See Fig. 3 B-D in main text for details on the two NCI-N87 clones.  
  

Chromosome

Supplementary Figure 7:
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NCI-N87 Clone 2
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Supplementary Figure 8: Comparing pathway-centric and gene-centric cell cycle scoring. (a) 
Confusion matrix resulting from comparing Seurat’s gene-centric assignment to that of our classification 
using pathways from the REACTOME database7. Confusion matrix was calculated across all nine cell 
lines. Seurat’s `CellCycleScoring` function was used with a list of cell cycle genes from Tirosh et al.8 to 
denote g2m and s markers. (b) The assignments were well correlated for most cell lines, except for SNU-
16, HGC-27 and KATOIII. (c,d)  Comparing both assignments to the doubling times of the cell lines, we 
observed that the same three cell lines show divergent proportions for Seurat’s assignment, but not for 
the REACTOME-based assignment. 
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Supplementary Figure 9: Single-cell sequencing informs when assumptions of bulk sequencing 
deconvolution algorithms are not met. (a-b) For each genomic segment affected by subclonal CNVs 
(y-axis) colors distinguish the five most common copy number states measured for that segment (x-axis) 
in SNU-668 (a) and SNU-16 (b). Segments are sorted according to the Simpson-entropy index of their 
copy number states. (c) Subclones at or above 5% cellular frequency are displayed for each of the nine 
cell lines. Size-adjacent clone pairs whose cell frequency ratio is below 1.1 are highlighted red.  
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Supplementary Table 1: ScDNA-Seq metrics. 

 
 
  

SNU-16 KATOIII HGC-27 SNU-668 NUGC-4 SNU-601 SNU-638 MKN-45 NCI-N87

Sequenced cells 825 973 912 1,238 829 1,531 724 787 1,005
Mean mapped, deduplicated reads 
per cell

706,285   945,622   998,063   463,375   2,164,914  565,648   507,254   720,892   885,548   

Median effective reads per 1Mbp 227 313 327 144 653 180 154.5 220 290
Median cnv resolution (mb) 1.42 1.16 1.14 1.84 0.59 1.55 1.77 1.41 1.11
Ploidy (scDNA-Seq) 3.71 3.68 3.12 2.73 2.43 2.19 2.11 1.87 1.86
Breakpoint count (all cells) 2,037 2,545 5,497 1,621 1,477 1,198 425 3,677 1,306
Breakpoint count (G0G1 cells) 96 86 144 92 61 81 35 118 60
G0G1 58% 62% 63% 82% 79% 77% 74% 68% 74%
S 17% 21% 18% 10% 11% 14% 12% 22% 18%
Apoptotic 25% 17% 19% 8% 10% 9% 14% 10% 8%
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Supplementary Table 2: Passage number, confluence and general information about nine gastric 
cancer cell lines. Confluence was typically similar between scDNA- and scRNA-Seq experiments (80-
90%), but diverged considerably for NUGC-4, explaining the discrepancy in the % cycling cells between 
the two techniques for this cell line (Fig. 1C). 
 

 
 
  

SNU-16 KATOIIIv HGC-27 SNU-668 NUGC-4 SNU-601v SNU-638v MKN-45 NCI-N87
> Karyotyping P8 P2 P7(o) P2 P24(o) P2 P2 P24(o) P2

>   ScDNA-Seq P7 P4 | 65 P7(o) | NA P9 | 80-90 P23(o) | 20-30 P3 | 80 P1 | 50-60 P23(o) | NA P3 | NA

>   ScRNA-Seq P2 P4 | 65 P7(o) | 80-90 P2 | 80-90 P23(o) | 80-90 P3 | 80 P1 | 50-60 P23(o) | 80-90 P2 | 80-90
27 32 17 74 36 47 58 24 47
3.76 3.71 3.29 2.83 2.60 2.29 2.25 1.95 1.94
33 55 NA 68 35 34 48 62 NA
Female Male Unspecified Male Female Male Male Female Male
Carcinoma Carcinoma Carcinoma Carcinoma Adenocarcinoma Carcinoma Carcinoma Adenocarcinoma Carcinoma
MSS MSS MSS MSS MSS MSS MSI MSS MSS

suspension
adherent + 
suspension

adherent adherent
suspension + 
adherent

adherent adherent
adherent + 
suspension

adherent

1990 1974 1976 1997 1988 1997 1997 1976 1990
growing cellsgrowing cells growing cellsgrowing cells growing cellsgrowing cellsfrozen cells growing cells growing cellsfrozen cellsgrowing cells growing cellsfrozen cells frozen cells growing cellsfrozen cells growing cells growing cells10x 10x 10x 10x 10x 10x Billy, Anuja 10x 10xAnuja 10x Anuja Jay Jay 10x Anuja Jay Jay

(o) passage number includes that from vendor
v scDNA & scRNA sequenced from the same suspension

ScRNA-prep

Growth type

Tumor Differentiation

What was scRNA-
What was scDNA-
ScDNA-prep

Passage #  | % 
confluence

Ploidy (Karyotyping)
Doubling time (h)

Age
Sex

Year of 1st report

MSI status
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Supplementary Table 3: ScRNA-Seq statistics. (*: Low quality cells excluded). 
 

 
  

SNU-16 KATOIII HGC-27 SNU-668 NUGC-4 SNU-601 SNU-638 MKN-45 NCI-N87

Replicates 2 1 2 1 1 1 1 1 1
Sequenced cells* 2,088 3,084 1,808 5,319 3,797 5,186 867 2,814 3,246
Mean reads per cell 138,104 76,707 150,155 51,949 53,046 84,420 71,714 54,031 40,555
Mean genes per cell 5,683 4,851 5,584 3,920 3,686 4,464 3,841 3,611 3,299
Median genes per cell 5,661 4,781 5,545 3,821 3,590 4,355 3,904 3,538 3,135
G0G1 28% 49% 29% 72% 47% 64% 79% 55% 72%
G2M 37% 18% 21% 9% 25% 13% 9% 12% 11%
S 35% 33% 51% 19% 28% 24% 11% 33% 17%
Cycling 72% 51% 71% 28% 53% 36% 21% 45% 28%
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Supplementary Table 4: Cell cycle pathways. A total of 39 cell cycle pathways from the REACTOME 
database are listed along with their activation timing during S, G2M or G0/G1 phases of the cell cycle. 
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Supplementary Table 5: Mutual validation of scDNA- and scRNA-Seq derived clone identification. 
 

 
  

TP=true positive; FP=false positive; FN=false negative;  

scDNA=single-cell DNA sequencing; scRNA=single-cell RNA sequencing.  
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Supplementary Table 6: Multiple regression model of the clone count per cell line as a function of ploidy 
and time in culture. Coefficients were calculated by fitting a least square linear regression on the nine 
gastric cancer cell lines. Number of clones per cell line increases with ploidy and decreases with the 
number of years since a cell line was first established. 
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Supplementary Table 7: We used the experimentally measured clone frequencies to calculate a-
posteriori saturation curves of scDNA-Seq library sizes for each cell line as previously described (Ruli 
Gao et al., Nature Genetics 2016).   Minimum number of cells required to keep the risk of observing fewer 
than five cells per clone below 0.01, was calculated as previously described9, based on a multinomial 
distribution (3rd column).  The number of G0/G1 cells actually sequenced was greater than that minimum 
for all cell lines, suggesting that all cell lines were sequenced at or above saturation. 

 

 
 
 
 
 

  

Cell	line Number	of	clones Minimum	cells Sequenced	G0/G1	cells
SNU-16 11 279 477
KATOIII 5 274 604
HGC-27 5 233 576
SNU-668 10 759 1009
NUGC-4 4 264 656
SNU-601 12 698 1186
SNU-638 4 126 537
NCI-N87 4 451 742
MKN-45 2 149 533
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Supplementary Table 8: Clone-specific cell surface marker expression. For each of the 41 confirmed 
clones (rows), combinations of up to four cell surface markers are listed along with a quantitative estimate 
of their ability to separate a clone of interest from the remaining clones in a cell line. Cells were clustered 
based on the expression of corresponding cell surface markers. Across all G0G1 cells we then calculated 
the Pearson correlation coefficient between clone membership and cluster membership. Horizontal line 
marks 16 clones for which sorting efficacy was estimated at least as high as for the two isolated NUGC-
4 clones presented in main Fig. 4.   

  

Column1cell line profile p-value pearson
1 NCI-N87 CST6 (CST6)-, PSMD2 (PSMD2)-, TM4SF1 (TM4SF1)- 0 0.509
2 NCI-N87 ABCC3 (ABCC3)-, AP2M1 (AP2M1)+, CST6 (CST6)+, TM4S 0 0.524
3 SNU-601 ARPC1A (ARPC1A)-, FLNA (FLNA)+, SEC61G (SEC61G)- 0 0.295
4 SNU-668 COBL (COBL)+, DSP (DSP)+ 0 0.297
5 NCI-N87 HLA-C (HLA-C)+ 6.91976E-37 0.274
6 SNU-601 PROCR (PROCR)+, RARRES3 (RARRES3)+, SIPA1 (SIPA1)+ 2.29189E-35 0.240
7 SNU-601 ARPC1A (ARPC1A)+, CEACAM5 (CEACAM5)+, S100A14 (S10 2.59009E-33 0.233
8 SNU-668 DAB2 (DAB2)+, IL7R (IL7R)+ 3.01065E-30 0.220
9 SNU-601 SLC2A3 (SLC2A3)+ 6.3601E-30 0.221

10 NUGC-4 ANPEP+, CXCR4-, TM4SF4-, ITM2C- 2.36074E-29 0.273
11 NUGC-4 ANPEP (ANPEP)-, AQP5 (AQP5)+ 7.35314E-28 0.266
12 NCI-N87 PCDH7 (PCDH7)+ 6.54338E-27 0.233
13 MKN-45 NRP2 (NRP2)-, RAB3B (RAB3B)- 1.93044E-25 0.278
14 MKN-45 NRP2 (NRP2)+, RAB3B (RAB3B)+ 1.93044E-25 0.278
15 SNU-601 CST6 (CST6)+, PAFAH1B2 (PAFAH1B2)+ 1.67825E-22 0.190
16 NUGC-4 ANPEP-, CXCR4+, TM4SF4+, ITM2C+ 2.79415E-13 0.179
17 SNU-601 KDSR (KDSR)+, YTHDC1 (YTHDC1)- 1.50904E-17 0.166
18 SNU-668 DYSF (DYSF)+, LAG3 (LAG3)+, NOTCH4 (NOTCH4)+ 6.35257E-17 0.162
19 SNU-668 HERPUD1 (HERPUD1)+, SLC9A3R2 (SLC9A3R2)+ 3.04908E-16 0.158
20 SNU-601 TMBIM6 (TMBIM6)- 3.80253E-14 0.148
21 SNU-601 DNAJC15 (DNAJC15)+ 7.63287E-14 0.146
22 SNU-668 EPB41L4A (EPB41L4A)+, STAMBP (STAMBP)- 8.88155E-12 0.132
23 SNU-668 ABCG2 (ABCG2)+ 1.46816E-11 0.131
24 SNU-638 DNAJC10 (DNAJC10)+, HMGCS1 (HMGCS1)-, LCP1 (LCP1)+ 6.57171E-11 0.256
25 SNU-638 BET1 (BET1)-, HMGCS1 (HMGCS1)+, PAIP1 (PAIP1)+ 9.75065E-11 0.253
26 HGC-27 EEPD1 (EEPD1)+, FOLH1 (FOLH1)+, PIK3IP1 (PIK3IP1)+ 2.26357E-10 0.301
27 KATOIII MARCH8 (MARCH8)+, PROM2 (PROM2)+ 4.4999E-10 0.186
28 KATOIII FXYD3 (FXYD3)+ 8.91705E-09 0.171
29 KATOIII KCNH2 (KCNH2)+, PDE4A (PDE4A)+ 1.74299E-08 0.168
30 SNU-668 ELOVL7 (ELOVL7)+ 2.46115E-08 0.108
31 SNU-601 DNAJC6 (DNAJC6)+ 3.47837E-07 0.100
32 SNU-601 PEBP1 (PEBP1)- 6.81414E-07 0.097
33 KATOIII MUC13 (MUC13)- 9.6855E-07 0.146
34 HGC-27 MKRN3 (MKRN3)+, ZNF10 (ZNF10)+ 1.13173E-06 0.233
35 HGC-27 BSCL2 (BSCL2)+ 1.16961E-06 0.233
36 HGC-27 ODC1 (ODC1)- 1.92832E-06 0.228
37 SNU-601 TRPV6 (TRPV6)+ 2.41592E-06 0.092
38 SNU-668 VAMP5 (VAMP5)+ 3.38643E-06 0.090
39 SNU-638 SPAG4 (SPAG4)+ 2.0822E-05 0.168
40 SNU-16 LRP5 (LRP5)+, PTPRU (PTPRU)- 9.19355E-05 0.328
41 SNU-16 LRP5 (LRP5)-, PTPRU (PTPRU)+ 9.19355E-05 0.328
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