

**Supplementary Figure 1. Diagram of Riprap and RNAsnp**. (a) Diagram, structural measuring unit and distance metric used in Riprap algorithm. Please see details in the Methods section. (b) Diagram, structural measuring unit and distance metric used in RNAsnp algorithm (3).



Supplementary Figure 2. ROC analysis of Riprap-RNAfold, Riprap-UNAfold, and Riprap-RNAstructure on riboSNitch benchmarks. (a) to (c) show the ROC curves for Riprap-RNAfold, Riprap-UNAfold and Riprap-RNAsturcture applied to "probed", "validated", and "symmetric" datasets, respectively. The corresponding ROC curves for Riprap-RNAfold, Riprap-RNAfold,





Supplementary Figure 3. Comparisons between the local metric Riprap score S and the local SDC and assessments on SHAPE data. AUC values of ROC analysis on the top and bottom n SNVs ranked by eSDC and eS scores, respectively. The red solid curve and blue dashed curve represent the AUCs of pSDC on eSDC, and pS on eS, respectively.



**Supplementary Figure 4**. **BPP curves of rs4633, rs4818, and rs4680 in S-COMT**. The X-axis represents the nucleotide position on the mRNA. The Y-axis represents the BPPs. The blue curve is for the WT RNA, while the red curve is for the mutant RNA. The SNV position is highlighted by a red star and a black vertical line. The finally selected region by Riprap is highlighted in grey. The three SNVs were studied in the Human COMT haplotypes (1).

a

RBP

| miRNA | Methylation sites | ClinVar |
|-------|-------------------|---------|
|       | mourylador onco   | omra    |

| RBP | binding | sites |  |  |
|-----|---------|-------|--|--|
|     |         |       |  |  |

|            |           |           |        |          |                     |           | ♡ ■                  | III - <b>Z</b> - |
|------------|-----------|-----------|--------|----------|---------------------|-----------|----------------------|------------------|
| Chromosome | Start     | End 🔶     | Strand | RBP name | CLIP Method         | Cell Line | Data source          | Score            |
| chr2       | 217070030 | 217070254 | +      | CSTF2T   | PAR-CLIP, PARalyzer | HEK293    | GSE37401,GSM917677   | 0.831945         |
| chr2       | 217070110 | 217070244 | +      | CSTF2    | PAR-CLIP, PARalyzer | HEK293    | GSE37401,GSM917676   | 0.777442         |
| chr2       | 217070111 | 217070291 | +      | ATXN2    | PAR-CLIP, PARalyzer | HEK293T   | DRA001158,DRS012390  | 0.989994         |
| chr2       | 217070130 | 217070319 | +      | TARDBP   | PAR-CLIP, PARalyzer | HEK293T   | DRA001158,DRS012387  | 0.906124         |
| chr2       | 217070196 | 217070244 | +      | CPSF7    | PAR-CLIP, PARalyzer | HEK293    | GSE37401,GSM917663   | 0.586511         |
| chr2       | 217070211 | 217070244 | +      | CPSF1    | PAR-CLIP, PARalyzer | HEK293    | GSE37401,GSM917672   | 0.596587         |
| chr2       | 217070211 | 217070301 | +      | HNRNPC   | PAR-CLIP, PARalyzer | HEK293T   | GSE56010,GSM1350199  | 0.739263         |
| chr2       | 217070212 | 217070253 | +      | FUS      | PAR-CLIP, PARalyzer | HEK293T   | DRA001158, DRS012384 | 0.965826         |
| chr2       | 217070214 | 217070245 | +      | HNRNPC   | PAR-CLIP, PARalyzer | HEK293T   | GSE56010,GSM1350200  | 0.62185          |
| chr2       | 217070216 | 217070291 | +      | HNRNPC   | PAR-CLIP, PARalyzer | HEK293T   | GSE56010,GSM1350201  | 0.712915         |

Showing 1 to 10 of 35 rows 10 - rows per page

WT RNA sequence b

#### TTACATACATGCTTTGAAGTTTCTGGAAAGTAGATCTTTTCTTGACCTAGTATATCAGTGACAGTTGCAGCCCTTGTGATGTGATTAGTGTCTCATGTGGA Mutant RNA sequence

TTACATACATGCTTTGAAGTTTCTGGAAAGTAGATCTTTTCTTGACCTAGCATATCAGTGACAGTTGCAGCCCTTGTGATGTGATTAGTGTCTCATGTGGA



Supplementary Figure 5. Example riboSNitch rs1051677 in riboSNitchDB. (a) RBPs' binding peaks in the 201 nt region (100 nt upstream to 100 nt downstream) around the riboSNitch rs1051677. (b) The wild-type and mutant sequence of RNA. (c) BPPM heatmap of both the wild-type (upper triangle) and mutant RNA (lower triangle). (d) The BPP curve of both the wild-type (highlighted by blue) and mutant RNA (highlighted by orange).

|                             | Probed |      |      | Validated |      |      |      | Symmetric |      |      |      |      |
|-----------------------------|--------|------|------|-----------|------|------|------|-----------|------|------|------|------|
| Method                      | Т      | Acc  | Sn   | Sp        | Т    | Acc  | Sn   | Sp        | Т    | Acc  | Sn   | Sp   |
| Riprap                      | 3.90   | 0.86 | 0.91 | 0.82      | 4.47 | 0.63 | 0.73 | 0.54      | 6.11 | 0.58 | 0.53 | 0.63 |
| Simple                      | 2.13   | 0.73 | 0.73 | 0.73      | 2.24 | 0.60 | 0.59 | 0.62      | 2.63 | 0.57 | 0.49 | 0.65 |
| RNAsnp<br>p-value           | 0.39   | 0.77 | 0.82 | 0.73      | 0.30 | 0.61 | 0.48 | 0.75      | 0.47 | 0.57 | 0.56 | 0.59 |
| RNAsnp p-<br>value 0.05     | 0.05   | 0.50 | 0.00 | 1.00      | 0.05 | 0.52 | 0.13 | 0.92      | 0.05 | 0.52 | 0.09 | 0.95 |
| RNAsnp<br>dmax              | 0.07   | 0.73 | 0.73 | 0.73      | 0.07 | 0.60 | 0.52 | 0.67      | 0.06 | 0.57 | 0.53 | 0.61 |
| classSNitch                 | 0.35   | 0.50 | 0.45 | 0.55      | 0.32 | 0.47 | 0.48 | 0.59      | 0.35 | 0.46 | 0.58 | 0.50 |
| remuRNA*                    | 2.82   | #    | 0.64 | 0.82      | 1.65 | #    | 0.56 | 0.56      | 2.38 | #    | 0.45 | 0.64 |
| SNPfold*                    | 0.92   | #    | 0.73 | 0.73      | 0.93 | #    | 0.60 | 0.60      | 0.93 | #    | 0.54 | 0.61 |
| Riprap <sup>^</sup>         | -      | -    | -    | -         | 3.90 | 0.61 | 0.75 | 0.48      | 3.90 | 0.56 | 0.63 | 0.49 |
| Simple <sup>^</sup>         | -      | -    | -    | -         | 2.13 | 0.60 | 0.60 | 0.59      | 2.13 | 0.55 | 0.54 | 0.57 |
| RNAsnp<br>p-value^          | -      | -    | -    | -         | 0.39 | 0.57 | 0.49 | 0.65      | 0.39 | 0.57 | 0.49 | 0.64 |
| RNAsnp<br>dmax <sup>^</sup> | -      | _    | -    | -         | 0.07 | 0.59 | 0.51 | 0.67      | 0.07 | 0.57 | 0.48 | 0.65 |
| classSNitch<br>^**          | -      | -    | -    | -         | 0.37 | 0.49 | 0.33 | 0.65      | 0.37 | 0.48 | 0.38 | 0.58 |

#### Supplementary Table 1. Threshold, accuracy, sensitivity, and specificity table.

T: Threshold; Acc: Accuracy; Sn: Sensitivity; Sp: Specificity.

\*The values for the methods were directly extracted from Corley et al. (2)

\*\*The lower performance may result from the fact that classSNitch was trained on the experimental SHAPE data instead of analysing BPP profiles.

# The values were not listed in *Corley et al.* (2)

<sup>^</sup> The threshold is determined based on the "Probed" riboSNitches, and the performance is evaluated on "Validated" and "Symmetric" riboSNitches.

| Method      | command                                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| RNAfold     | RNAfold -p < input.fa > seq.out                                                                                                                |
| RNAsnp      | RNAsnp -f input.fa -s snp_input.txt -w 100 -l 10 -c 0.0                                                                                        |
| classSNitch | R:<br>getFeatures(sample=mut,base=wt,trim=0,outfile = "out")<br>data("mutmap")<br>clf = classifyRNA(mutmap)<br>f = read.delim("out", header=F) |
|             | pred = predict(clf,f)                                                                                                                          |

# Supplementary Table 2. Commands to run the methods.

# Supplementary Table 3. Annotation datasets of riboSNitchDB.

| Annotation<br>category                                                 | Data sources                                                                             | Data description                                                                                  | The entire<br>annotation<br>dataset size                   | Genomic<br>annotation<br>version |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------|
| RBP binding sites                                                      | POSTAR2 (4)<br>( <u>http://lulab.life.tsinghua</u><br>.edu.cn/postar/)                   | The RBP binding sites<br>overlapping with the<br>flanking region of<br>riboSNitches.              | 31,186,943<br>RBP binding<br>sites                         | hg19                             |
| miRNA<br>targeting sites                                               | UCSC Table Browser (5)<br>( <u>https://genome.ucsc.ed</u><br><u>u/cgi-bin/hgTables</u> ) | The miRNA targeting<br>sites around the<br>positions of<br>riboSNitches                           | 1,329,071<br>miRNA<br>targeting sites                      | hg19                             |
| N6-<br>methyladenosin<br>e (m <sup>6</sup> A)<br>modification<br>sites | m6AVar (6)<br>( <u>http://m6avar.renlab.or</u><br><u>g/)</u>                             | The N6-<br>methyladenosine<br>(m <sup>6</sup> A) modification<br>sites around the<br>riboSNitches | 301,529 m <sup>6</sup> A<br>modification<br>sites          | hg19                             |
| Clinical<br>significance                                               | ClinVar (7)<br>( <u>https://www.ncbi.nlm.ni</u><br><u>h.gov/clinvar/</u> )               | Clinical significance of the target SNVs                                                          | 395,755 clinical<br>significance<br>records of the<br>SNVs | hg19                             |

### Reference:

- Nackley, A.G., Shabalina, S.A., Tchivileva, I.E., Satterfield, K., Korchynskyi, O., Makarov, S.S., Maixner, W. and Diatchenko, L. (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. *Science*, **314**, 1930-1933.
- Corley, M., Solem, A., Qu, K., Chang, H.Y. and Laederach, A. (2015) Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark. *Nucleic Acids Res*, 43, 1859-1868.
- Sabarinathan, R., Tafer, H., Seemann, S.E., Hofacker, I.L., Stadler, P.F. and Gorodkin, J. (2013) The RNAsnp web server: predicting SNP effects on local RNA secondary structure. *Nucleic Acids Res*, **41**, W475-479.
- 4. Zhu, Y., Xu, G., Yang, Y.T., Xu, Z., Chen, X., Shi, B., Xie, D., Lu, Z.J. and Wang, P. (2019) POSTAR2: deciphering the post-transcriptional regulatory logics. *Nucleic Acids Res*, **47**, D203-D211.
- 5. Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D. and Kent, W.J. (2004) The UCSC Table Browser data retrieval tool. *Nucleic Acids Res*, **32**, D493-496.
- 6. Zheng, Y., Nie, P., Peng, D., He, Z., Liu, M., Xie, Y., Miao, Y., Zuo, Z. and Ren, J. (2018) m6AVar: a database of functional variants involved in m6A modification. *Nucleic Acids Res*, **46**, D139-D145.
- 7. Landrum, M.J., Lee, J.M., Riley, G.R., Jang, W., Rubinstein, W.S., Church, D.M. and Maglott, D.R. (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. *Nucleic Acids Res*, **42**, D980-985.