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1 The data integration model

1.1 Model specification

We specify the following statistical model:

gx(E(X|Z)) = Ux + ZΓ
gy(E(Y|Z)) = Uy + ZΘ

(1)

whereby gx and gy are appropriate link functions. Ux and Uy are offset matrices correcting for differences in
baseline expression/abundance and sequencing depth defining the “independence model” (see next section).
Z (n×M) is a low dimensional matrix of sample scores on latent variables (M = 2 or 3) [1]. Γ (M×p) and Θ
(M×q) are view-wise parameter matrices.

Note that model (1) is not a matrix decomposition of X and Y. Instead it can be regarded as a low
dimensional approximation of the expectation matrices of the saturated models E(X)=X and E(Y)=Y,
without calculating the entire decomposition.

1.1.1 Independence model

The first step of the fitting procedure is to estimate the independence models, i.e. the models describing
homogeneous sample composition. These independence models defining the offset matrix are of the form

gx(Eindep(X)) = Ux = dxetx
gy(Eindep(Y)) = Uy = dyety

(2)

Whereby dx en dy are vectors of length n that quantify total sample abundance/expression, e.g. sequencing
depth or array intensity. ex and ey are vectors of length p and q that quantify baseline feature means. They
correct for baseline differences; independence models are marginal models. For compositional data, the
restriction

∑p
j=1 g

−1
x (exj) = 1 is imposed.

1.1.2 Conditioning on baseline covariates

A next, optional step is to condition on known confounding variables such as batch or research center.
Although simple in our regression framework, it is an important advantage over decomposition based methods.
The confounding variables need not be identical for all views. We call the design matrices of two sets of
(potentially overlapping) confounding variables R and S, then the mean models can be extended such that:

gx(E(X|R)) = Ux + RΦ
gy(E(Y|S)) = Uy + SΞ

(3)
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In case of compositional data, one restriction is needed to guarantee a solution. In this case we use the
additive log-ratio (alr) transform [2] as link function, which is defined as:

alr(x) = log
(

1, x2

x1
,
x3

x1
,
x4

x1
, ...,

xp
x1

)
. (4)

This effectively sets the parameter of the first feature of a view to zero for all confounders (φ.1 = 0).

Another problem occurs for discrete confounders with features that only have zero observations in one of the
groups defined by these confounders. One could filter out all these features, but this leads to significant data
loss. An alternative solution is offered by bias-reduced estimates [3, 4, 5]. Instead of correcting the bias of
the maximum likelihood estimates (which are infinite under the scenario above), they reduce the bias by
directly modifying the estimating equations. This allows for the estimation of the confounder parameters
under this scenario. If the (quasi)-score equation for a mean parameter η is given by sη, then the bias-reduced
(quasi)-score equation is of the form

sη + Aη = 0

with Aη = Rtξ. Hereby ξi = hi

(2fi)f
′
i with hi the diagonal elements of the hat matrix R(RtR)−1Rt and

fi = dµi

dgx(µi) and f ′i = d2µi

dgx(µi)2 . Hence fi =
(d log(µi)

dµi

)−1 = µi and f ′i = µi such that ξi = −hi

2 . In practice,
these systems of estimating equations are still very hard to solve though, because of the near singularity of
the Jacobian matrices.

1.1.3 Restrictions

Model (1) is overspecified, as both the latent variables and coefficients are unknown and need to be estimated
from the data. Hence restrictions need to be applied to guarantee an identifiable model. The columns of Z
are restricted to be orthogonal: ZTZ = diag(ψ) with diag() defining a diagonal matrix with the vector ψ
with non-negative entries on the diagonal. The coefficient matrices are restricted to be orthonormal: ΓΩxΓT
= ΘΩyΘT = IM , with Ωx and Ωy view specific, diagonal weight matrices and IM the identity matrix of
dimension M. The choice of these weights follows Hawinkel et al. [6]: all samples are considered equally
likely to be drawn from the population and receive equal weights in the restrictions. For the features, more
abundant features are considered to be more likely to be drawn from the population and receive weights (on
the diagonal of Ω) proportional to their abundance under the independence model g−1(e).

Note that because the model is overspecified, classical inference based on (quasi-)likelihood does not hold.
No confidence intervals or p-values can be calculated. The model is intended for data exploration only and
relies solely on the point estimates.

Technical note: Centering and orthogonalization restrictions are directly imposed in the optimization
procedure through Lagrange multipliers. This is crucial to avoid overflow, i.e. certain numbers becoming to
large for the computer to store. Normalization restrictions can be imposed post hoc. This does not cause
numerical problems, and the iterative algorithm will not stop until they are fulfilled. This approach is faster,
as the initial optimization problem is simpler. Even if the estimating equations were not solved in some
iteration, afterwards the centering and orthogonalization will be still be enforced through Gram-Schmidt
orthogonalization to speed up convergence. Finally, some restriction is needed to render the estimation under
compositionality with centered log-ratio transform feasible, but the centering restrictions already conveniently
fulfill this role.

1.2 Model estimation

In summary, the fitting algorithm consists of the following steps
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1. Estimate the view-wise independence models by iterating between the estimation of the row and column
offsets and possible nuisance parameters (e.g. standard deviations for microarray data, abundance-
variance trends for sequence count data).

2. (Optional) Estimate feature parameters for confounding variables, and condition on them by including
their contribution to the mean matrix in the offset. This step also occurs independently for each view.

3. Iterate between estimating the latent variables, feature parameters and possible nuisance parameters.
When convergence for one dimension is achieved, incorporate this dimension in the offset, and estimate
the next dimension conditional on all previous ones.

The iterative procedures in steps 1 and 3 continue until convergence. Convergence is declared when the
square root of the L2 norm of the all estimates drops below a certain tolerance (here 1e-4), e.g. for the latent
variables:

√(Zold.m − Znew.m

Zold.m

)t(Zold.m − Znew.m

Zold.m

)
< 10−4,

with Znew.m the current estimates and Zold.m the estimates of the previous iteration. It may be prudent to
graphically check for convergence. An example of such convergence plot is shown in Figure S16.

1.2.1 Starting values

Iterative algorithms converge much faster when provided with reasonable starting values. For the independence
model, simple row and column sums can be used. Starting values for latent variables and feature coefficients
can be obtained from following singular value decompositions. With offset matrices g−1

x (Ux) and g−1
y (Uy),

obtain standardized residual matrices X−g−1
x (Ux)

svindep(clr−1(et)) (for sequence count data) or Y−g−1
y (Uy)

diag(σindep) (for microarray
data). σindep are the column wise standard deviations under the independence model); see Section 1.2.3 for
the denominator of the sequence count case. These residual matrices are concatenated by row into one large
matrix D, for which the singular value decomposition is then obtained:

D = GΣHt

The first M columns of GΣ are then used as starting values for Z, and the first M columns of H as starting
values for the corresponding feature parameters. For a constrained analysis, redundancy analysis [7] on
the matrix D and the design matrix of baseline sample variables c is used to obtain starting values for the
environmental gradients and feature parameters.

1.2.2 Solving estimating equations for compositional data

The Newton-Raphson algorithm that is used to solve the estimating equations may encounter local extrema
and saddle points when applied to compositional data. Therefore, if the Newton-Raphson algorithm does not
converge when the old parameter estimates are used as stating values, random standard normal variates are
repeatedly used as starting values instead until the estimation equations are solved. This is a brute-force
solution but it works in most cases. This kind of problems in high dimensional estimation problems are very
intractable, more theoretical research is needed into a more general solution in the compositional framework.

1.2.3 The abundance-variance trend

The abundance-variance trend models the relationship between log(πj) and log
(
Var(Xj |Z.1,m)

)
=

log
(

1
n−1

∑n
i=1

(Xij−E(Xij |Z.1,m))2

si

)
through a smooth function am. The fit is performed on the log-scale

since this spreads the observations nicely and avoids undue influence of extreme values. It allows to predict
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Var(Xij |Z.1,m) as vm(πij)si = exp
(
am[log(πj)]

)
si. This approach shares information between features to

reliably estimate variances. The smooth function am is updated throughout the iterative procedure and is
unique to every dimension. Note that this approach may imply that for some observations Xij and Xi′j′ ,
exp

(
am(log(πj))

)
si 6= exp

(
am(log(πj′))

)
si′ even though E(Xij |Z.1,m) = E(Xi′j′ |Z.1,m).

Anders et al. [8] use a local regression as a smooth function, but this may yield a smoother with a irregular
derivatives. This destabilizes the Newton-Raphson algorithm used to solve the estimating equations. Instead
we use a natural smoothing spline, which has continuous first and second order derivatives. At the cost of
being slightly more rigid, it yields a much more stable algorithm.

Great care should be taken when extrapolating this abundance-variance trend to small relative abundances.
This will be necessary as the modelling processes may yield small relative abundances for some features
in some samples. It is known that for small means, sequence count data approximately follow the Poisson
distribution [9, 10]. The Poisson distribution has a variance that is equal to the mean. Hence, as a
heuristic, for small abundances it is assumed that Var(Xij |Z.1,m) = πjsi. The smooth function is then
constrained to have slope 1 and equal the diagonal line for some value between (minπ{log(πj)} − 1) and

log
[ (∑n

i=1
∑p
j=1 E(Xij |Z.1,m)

)−1 ]
− 10. This value is selected as the one that minimizes the squared error

p∑
j=1

(
Var(Xij |πj , si)− exp(a(log(πj)))si

)2
.

This complicated solution is motivated by the need to keep the derivatives continuous for numerical stability.

1.2.4 Microarray data

For modelling microarray data, we mainly follow the tracks of the popular limma package [11]. The array
data is log-transformed, and then modelled using a simple linear model with identity link. The estimates of
the feature-wise variances are shrunken towards a common value using an empirical Bayes procedure [12].
The estimating equations are then:

n∑
i=1

Zi
Yij − µij
σ2
j,EB

with Y the microarray data matrix. σ2
j,EB is the empirical Bayes estimate of the variance for feature j.

1.2.5 Latent variable estimation

The estimating equations for the latent variables are obtained by summing the estimating equations of all
different views for every sample. If desired, different weights can be allotted to the different datasets in this
way, but we use even weights by default. If all weight is allotted to a single dataset this reduces to a single
view problem, as e.g. the RCM package [6].

One reasoning is to inverse weigh the elements of the estimating equations for the latent variables by the
number of features in the view. Otherwise views with many features might get a very strong impact on the
estimation of the latent variables, without there being a biological rationale why they should contain more
information. Another argument is to state that datasets with more features carry more information and can
have more weight in the estimation. Finally, it may be that the dataset with the clearest signal will take
preponderance. An answer to these questions is given below in section 1.3.
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1.3 Influence measures

The impact of each of the views on the estimation on the latent variables or environmental gradient components
can be obtained through influence functions [13]. Influence functions reflect the influence a certain observation
has on a parameter estimate, keeping the other sorts of parameters fixed. Because of the iterative algorithm
this latter assumption is incorrect, but the influence functions may still harbour interesting information.

For maximum likelihood estimation, the influence function χ(η|f,x) of a parameter η for a distribution f
and data x is defined as:

χ(η|f,x) = −Sf (η|x)E
[
I(η|f)

]−1

with Sf (η|x) the score function and E
(
I(η|x)

)
the expected Fisher information matrix. We use the same

concept for the quasi likelihood estimation, by replacing Sf (η|x) by the quasi score functions and E
(
I(η|f)

)−1

by the Jacobian matrix. If an observation has a positive influence on a parameter, it means that it tries
to “pull its value up”. In other words, if the observation would not be there, the parameter estimate would
be lower. As the orientation of the final graph is of no importance, it is often sufficient to look at absolute
influences.

As an illustration, a dataset with three views was generated using the negative binomial distribution. The
number of features are 100, 100 and 1000 respectively. The signal strength (i.e. the fold changes) is the same
in all datasets. The first and third datasets have similar levels of overdispersion, the second dataset has
high levels of overdispersion. We call these datasets the “regular”, “noisy” and “large” datasets. In Figures
S2-S4 it is demonstrated that signal-to-noise ratio of each view drives its influence, rather than the number of
features. The noisy dataset has least influence, whereas the influence of the regular and large datasets is
comparable.
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Figure S1: Data integration multiplot of synthetic dataset for the illustration of influence measures.

1.4 Remarks about compositional data analysis

The use of the centered log-ratio transform does not guarantee subcompositional coherence for the integration
model. Subcompositional coherence means that the conclusions for features j and j′ do not change when a
third feature j′′ is omitted from the analysis (e.g. filtered out) [14]. However, when a taxon is omitted, the
geometric mean of the composition changes, and thus also the outcome of the ordination. Also, because of
the iterative nature of the procedure, omitting taxon j′′ will change the estimates of the latent variables.
This will in turn change the estimates of the feature parameters j and j′, so that the procedure is not
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Figure S2: Total influence of each view on the estimation of the latent variables in dimension 1 for the
synthetic dataset of Figure S1. Values of latent variables are shown as black crosses. The noisy dataset
has least influence over the estimation of the latent variables. The large and regular datasets have similar
influence, since they contain a similar signal and the same level of noise.
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Figure S3: Point plot of absolute values of influences of the feature on the estimation of the latent variables,
per view. As expected, average influences are zero (since the algorithm has converged). The regular and
large dataset have similar influence.
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Figure S4: Boxplots of overall absolute influences of the views on the estimation of the latent variables for
the synthetic dataset of Figure S1. It is clear that the features from the noisy dataset have less influence.

subcompositionally coherent. Because of the same reasons, classical CoDa biplots of log-ratio transformed
data are also not subcompositional coherent.

Neither is our method scale invariant as is sometimes stated as a requirement for compositional data analysis
[14, 15]. Scale invariance means that the analysis should not depend on the total size if the composition,
e.g. the library sizes in case of sequence count data. While it is true that the conclusions are only drawn on the
proportions, the sampling variability of the proportions depends on the library size. A sample with 1.000.000
reads carries much more information than a sample with only 10.000 reads, even when the compositions are
identical. Hence analysis of heteroscedastic count data should never be fully scale invariant. Ignoring the
mean-variance trend in sequence count data leads to technical artefacts in CoDa biplots (see Hawinkel et al.
[16], Supplementary material Section 3.4.1), as is also demonstrated below in Section 5.1.
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2 Visualization

2.1 Multiplots

The resulting data integration can be visualized in a multiplot as follows:

1) Build an orthogonal axis system with equally scaled axes in 2 (or 3) dimensions. Plot the first dimensions
of Z as dots. As the dimensions of Z are orthogonal, but not normalized, the distances between the
samples reflect the dissimilarities between the samples over all different views.

2) Add labels at the locations defined by Γ and Θ, with arbitrary scaling. As the components are
orthogonal, the biplot principle holds [17], and the orthogonal projection of e.g. the vector from the
origin to γj onto the vector from the origin to Zi is proportional to the departure from independence
of feature j in sample i for the dimensions plotted. Moreover, when the projection γtjγl is large, this
indicates that features j from view X and l from view Y are similarly associated to latent variables
Z and are thus correlated. As the feature parameters are also normalized, distances between feature
parameters locations cannot be interpreted (it is a so-called form or sample multiplot). To avoid
overplotting, it may be necessary to limit the features plotted to the ones with the largest norms
(furthest away from the origin), i.e. thresholding.

3) In case of constrained ordination, the components of Λ can be added to the plot, as arrows or as
labels, again with arbitrary scaling. The projection of these variable vectors λk onto γj reveals how
sensitive feature j is to changes in variable k. Also, the larger the component λk, the more important
the variable k is in driving the variability over the different views.

The scaling in steps 2 and 3 is usually done such that all coordinates have the same order of magnitude as
the sample location, to aid interpretability. Only the relative length of the projections is meaningful.

When some of the views consist of compositional data, the interpretation of the plot is complicated. For
compositional data, a positive feature parameter γmj does not guarantee that the feature j is positively
associated with the latent variable of dimension m. Neither does clr−1(γm)j > 1/p guarantee this, as wrongly
suggested by Xia et al. [18]. The impact of the feature parameter on the mean of a feature j depends on
the values of the other feature parameters of that view, as well as on the value of the latent variable. In an
extreme case, for zim →∞, the composition collapses into a point mass of 1 at taxon j with the highest γmj .

Once the model is fitted, the values of the latent variables and feature parameters are known of course. One
can thus simply check that for those features with the largest loadings that would be plotted, the expected
abundance does in fact vary monotonically with the latent variable within the observed range of latent
variable values. Unfortunately, in practice this is almost never the case for most features. An explanation on
how to interpret these biplots under this curse of compositionality is given below.

2.2 Compositional multiplots

Compositional biplots have been introduced by Aitchison et al. [19] for log-transformed data. The interpre-
tation is the same though in our case of inverse log-transformed parameters, and is less intuitive than for
a regular biplot. In a regular biplot, each combination of sample and feature labels is interpretable. In a
compositional setting, a feature label can never be interpreted by itself, but should always be interpreted
relatively to some other features. Here we discuss the interpretation with respect to 1) all other features of
the same view, 2) one other feature of the same view and 3) a feature from another view.

2.2.1 Intepretation with respect to all other features

The interpretation with respect to all other features is the comparison with the geometric mean (gm) of all
proportions:
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gm(π) = exp
(
1/p

p∑
j=1

log(πj)
)

The gm behaves similarly to the Shannon index [20] in the sense that it can be seen as a measure of evenness.
For a perfectly even species composition (π1 = π2 = . . . = πp = 1/p), the gm equals 1/p. As one feature
becomes more and more abundant (one πj → 1), the gm approaches 0.

In our model, the log ratio of the proportion of one feature a on the gm of the proportions in sample i is a
linear function of the latent variables:

log
(

πia
gm(πi)

)
= ea + Ztiγa

The biplot can be interpreted as a regular biplot in function of this log-ratio: the larger the projection Ztiγa
becomes, the more this log-ratio departs from the independence model for feature a in sample i. Loosely
speaking, the larger Ztiγa becomes, the more dominant feature a becomes. How the proportion πia evolves
as a function of Zi depends on the numerical values of e as well as γ. We can make this clear as follows
(dropping sample subscripts, and looking at one dimension), knowing that:

πa(Z) = exp(ea + Zγa)∑p
j=1 exp(ej + Zγj)

.

Hence, taking the logarithm

log
[
πa(Z)

]
= ea + Zγa − log

( p∑
j=1

exp(ej + Zγj)
)

This takes the shape of the regular log-linear model. To know how this proportion evolves with the latent
variable, we take the derivative with respect to Z:

∂ log
[
πa(Z)

]
∂Z

= γa −
p∑
j=1

γjπj(Z)

The orthonormality restriction guarantees that
∑p
j=1 γj

[
clr−1(e)

]
j

=
∑p
j=1 γjπ

indep
j = 0 for every dimension

(see section 1.1.3). Hence we can also write

∂ log
[
πa(Z)

]
∂Z

= γa −
p∑
j=1

γj
(
πj(Z)− πindepj

)
For small departures from independence the second term drops, but for realistic datasets this is not the case.
In practice, the second term can even be larger than γa in absolute value, upsetting the monotonicity of πa
with γa. This formula cannot easily be simplified further, the interpretation will have to account for the
compositionality. This potential pitfall in interpreting centered log-ratios is illustrated in Figure 2 in the
main text.

2.2.2 Interpretation with respect to other features in the same view

As the interpretation with respect to “the rest of the features” (represented by the geometric mean) is so
problematic, it may be easier to compare just two features. We look at the log-ratio between the relative
abundances of two features πa and πb in sample i. According to the model:
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log
(
πia
πib

)
− log

(
πindepa

πindepb

)
= Zti(γa − γb),

with πindepj = clr−1(e)j the proportion of feature j under the independence model. Note that we have
eliminated gm(π) from the expression. The expression on the left hand side has the form of a log odds ratio
as in logistic regression, but with the difference that πia

πib
and πindep

a

πindep
b

are not genuine odds.

The difference (γa − γb) between vectors is known as the link in a plot, i.e. the straight line connecting the
points defined by γa and γb. It is small when the labels γa and γb lie on approximately the same side of the
origin and at the same distance from it (γa ≈ γb). In that case the ratio of the relative abundances πia

πib
will

not differ from that under the independence model π
indep
a

πindep
b

by much in any sample. In a compositional setting,
a stable ratio means that the features are strongly correlated [14].

In case this link is large, the projection of the latent variable vector Zi. onto the link (i.e. Zti(γa − γb))
indicates how much and in which direction the ratio πia

πib
differs from that under the independence model [19].

Note that this implies that feature labels lying at the same side of the origin but at different distance (i.e.
γa

||γa||
= γb

||γb||
but ||γa|| 6= ||γb||) are not necessarily strongly correlated in all samples! The interpretations

discussed above are illustrated graphically in Figures 3 and S7-S8.

2.2.3 Interpretation between features of different views

The interpretation between features of different, compositional views, or between features from a compositional
view and a non-compositional view is even more difficult. Of course the interpretation with respect to the
centered log-ratio is always valid, but not intuitive. If labels of feature a in view 1, and feature b in view 2 lie
at the same side of the origin, their centered log-ratio transforms are correlated. This means that moving
along this direction, both features become “more dominant” in their own views, although this need not imply
that their abundances also increase. Features from two non-compositional views are correlated if they lie on
the same side of the origin.
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3 Real data examples

In this section the data integration plots of real data are shown for the integrations that were not shown in
the main paper.

3.1 HMP2 data

The Human Microbiome Project 2 (HMP2), or integrative HMP (iHMP), aims to investigate the relationship
between the microbiome and host responses. It extends the original, cross sectional HMP by also including
longitudinal samples. Here we focus on the datasets in the “The Inflammatory Bowel Disease Multi’omics
Database” (IBDMDB), which contains healthy and IBD patients (patients with both forms of IBD, Crohn’s
disease (CD) and ulcerative colitis (UC), are included), see the project website. A total of 90 subjects was be
profiled for one year. The HMP2 dataset contains many different types of omics data, from which we selected
the following.

The microbiome composition of the stool was assessed through sequencing of the 16S rRNA gene. The
proteome was measured in fecal, nasal and blood samples. Proteins were separated by liquid chromatography
and then identified using mass spectroscopy. This yields counts of proteins. The proteins were then classified
biochemically (EC) or phylogenetically (KO). We use the latter convention here. Proteomics data are also to
be considered compositional [21]. The composition of the virome of the stool was measured by sequencing
marker genes as for the microbiome data. Data integration multiplots of these datasets can be found in
Figures S5-S10.

3.1.1 Microbiome-virome integration
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Figure S5: Data integration plot of microbiome and virome data from the HMP2 project. Viral taxa are
shown in green, bacterial taxa in blue
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Figure S6: Constrained ordination of HMP2 microbiome and virome data. Viral taxa are shown in green,
bacterial taxa in blue, patient variables in black.
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Figure S7: Data integration plot of microbiome and proteome data from the HMP2 project. Coloured dots
represent patients, labels represent features of microbiome (blue) and proteome (green). The red dashed line
shows the link between taxa Unc04y3m and FNWNL488, the orange line its projection onto the non-IBD
sample vector bottom right. This projection is small, such that the ratio FNWNL448/Unc04y3m is not
different in this sample from the average sample.
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Figure S8: Data integration plot of microbiome and proteome data from the HMP2 project. Coloured dots
represent patients, labels represent features of microbiome (blue) and proteome (green). The red dashed line
shows the link between taxa Unc86145 and Unc04y3m, the orange line its projection onto the CD sample
vector on the bottom. Despite the two taxa lying at the same side of the origin, the projection onto the
sample vector is not zero, and hence ratio Unc86145/Unc04y3m is larger in this sample than in the average
sample.
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3.1.2 Microbiome-proteome-virome integration
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Figure S9: Quadriplot of HMP2 microbiome, proteome and virome data integration. Corresponding features
are represented in blue, green and red.
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Figure S10: Pentaplot of HMP2 microbiome, proteome and virome constrained data integration. Correspond-
ing features are represented in blue, green and red.
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3.2 Zhang data

This study investigated the effect of one or three pulsed antibiotic treatments (1 and 3 PAT) on the onset of
type I diabetes in mice [22]. Many views were measured, including gut microbiome, metagenomics, metabolic
pathways and intestinal immunity pathways. Microbiome composition determined through 16S sequencing.
Intestinal immunity pathways measured using Nanostring. This is basically expression profiling but focused
on a subset of genes involved in immunity. The original publication focused on the effect of the PAT on all
different views, without attempting to integrate the different views.

3.2.1 Microbiome-immunological data integration
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Figure S11: Data integration of microbiome and immunological Zhang data. The respective features are
shown as blue and green labels.
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Figure S13: Sample ordination of Zhang microbiome and immunological data by correspondence analysis.
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3.2.2 Microbiome-metabolome integration
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Figure S15: Unconstrained data integration of Zhang microbiome and metabolome data. The respective
features are shown as blue and green labels.

21



−2

0

2

4

0 10 20 30 40
Iteration

P
ar

am
et

er
 e

st
im

at
e

Newton−Raphson
 convergence

Yes

Stalled

No

Trace plots of latent variable estimates of dimension 1

Figure S16: Convergence plot for the latent variable estimates of dimension 1 of the microbiome-metabolome
integration of the Zhang data.

22



3.3 Gavin data

This is an observational study on T1D onset in humans. The microbiome composition was measured, as well
as the human and microbial proteome from the gut.
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Figure S17: Constrained integration of Gavin microbiome and human and microbiological proteomics data,
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reveals how IGHA1 is more abundant in new onset patients than in seropositive patients, as was found by
the authors too. The third dimension mainly distinguishes healthy controls from seronegative patients
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4 Methods comparisons

‘Data integration’ is a very broad concept, and here we do not intend to give an exhaustive overview of all
published methods for integration of genomics data. Instead we will focus on existing methods that provide
at least either sample or feature scores such that they are (partially) comparable with our method.

4.1 Principal components analysis and correspondence analysis

Principal components analysis (PCA) can be applied after concatenating all datasets. This is probably not
preferable but provides a good benchmark [23], as it yields sample scores as well as feature loadings. Also
correspondence analysis [24] can be applied on concatenated matrices, but without log-ratio transform.

4.2 Canonical correlation analysis

Canonical correlation analysis (CCA) finds orthogonal pairs of linear combinations of features in X and Y with
maximal correlation [25]. Sparse canonical correlation analysis (sCCA) tries to increase the interpretability
by imposing sparsity on the loadings [26]. CCA does not yield unique sample scores.

4.3 Partial least squares

Partial least squares (PLS) is similar to CCA, but it finds linear combinations of variables with maximal
covariance rather than correlation [27] (it might be called Canonical covariance analysis). In our case we will
implement the symmetric version; i.e. we will treat matrices X and Y equally. Also a sparse version of PLS
(sPLS) has been proposed [28, 29]. PLS does not yield unique sample scores.

PCA, CCA and PLS can be applied on the raw data, or on data transformed through centered log-ratio
transform (clr). For count data, the zero counts are then first imputed using the cmultRepl() function in the
zCompositions package [30].

4.4 MOFA

The MOFA model employs the same mean model as our data integration method [1]. Still, there are no
orthogonality restrictions, and hence no biplots can be made. The parameters are estimated in a Bayesian
framework, which has the advantage of natively dealing with missing values. For count data only the Poisson
model is implemented. In practice this model almost never converges on datasets we presented.

4.5 JIVE

JIVE is a matrix decomposition method that decomposes standardized matrices into residuals, joint structure
and view-wise structure [31]. The fitting method is also iterative, the ranks of the decomposition matrices are
found through permutations. Linked matrix factorization JIVE (LMF_JIVE) is an extension to both row-wise
and column-wise integration [32]. Both methods rely heavily on least squares, and require imputation to deal
with missing values.
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5 Simulation study

5.1 Correlation of sample scores with library sizes
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Figure S18: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for parametric simulation
(strategy 1) based on the HMP2 microbiome and proteome datasets, without compensation.
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Figure S19: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for parametric simulation
(strategy 1) based on the HMP2 microbiome and proteome datasets, with compensation.
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Figure S20: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for parametric simulation
(strategy 1) based on the HMP2 microbiome and virome datasets, without compensation.

Dim1 Dim2

M
icrobiom

e
V

irom
e

O
verall sam

ple sum

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Method

C
or

re
la

tio
n

Method

PCA

PCA−clr
Correspondence
analysis
MOFA

combi

Figure S21: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for parametric simulation
(strategy 1) based on the HMP2 microbiome and virome datasets, with compensation.
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Figure S22: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for parametric simulation
(strategy 1) based on the Zhang microbiome and immunological datasets, without compensation.
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Figure S23: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for parametric simulation
(strategy 1) based on the Zhang microbiome and immunological datasets, with compensation.
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Figure S24: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for parametric simulation
(strategy 1) based on the Zhang microbiome and metabolome datasets, without compensation.
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Figure S25: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for parametric simulation
(strategy 1) based on the Gavin microbiome and human proteome datasets, without compensation.
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Figure S26: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for parametric simulation
(strategy 1) based on the Gavin microbiome and microbial proteome datasets, without compensation.
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Figure S27: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for SimSeq data (strategy 2)
generated based on the HMP2 microbiome and proteome datasets.
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Figure S28: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for SimSeq data generated
based on the Zhang microbiome and immunological datasets (strategy 2).
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Figure S29: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum (right
panels) for different methods (x-axis) of different dimensions (top panels) for permuted Zhang microbiome
and immunological datasets (strategy 3).
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Figure S30: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for SimSeq data generated
based on the Zhang microbiome and metabolome datasets (strategy 2).
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Figure S31: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum (right
panels) for different methods (x-axis) of different dimensions (top panels) for permuted Zhang microbiome
and metabolome datasets (strategy 3).
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Figure S32: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for SimSeq data generated
based on the Gavin microbiome and human protein datasets (strategy 2).
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Figure S33: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum (right
panels) for different methods (x-axis) of different dimensions (top panels) for permuted Gavin microbiome
and human protein datasets (strategy 3).
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Figure S34: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum
(right panels) for different methods (x-axis) of different dimensions (top panels) for SimSeq data generated
based on the Gavin microbiome and microbial protein datasets (strategy 2).
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Figure S35: Boxplots of correlations with sample-wise sums (y-axis) of different datasets and overall sum (right
panels) for different methods (x-axis) of different dimensions (top panels) for permuted Gavin microbiome
and microbial protein datasets (strategy 3).
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5.2 Identification of correlated features
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Figure S36: Boxplots of Wilcoxon rank sum test statistic quantifying correlated taxon identification for
different methods (x-axis) and templates (top panels) on parametrically generated data without compensation
(strategy 1).
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Figure S37: Boxplots of Wilcoxon rank sum test statistic quantifying correlated taxon identification for
different methods (x-axis) and templates (top panels) on data generated with SimSeq (strategy 2).

35



5.3 Sample clustering
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Figure S38: Boxplots of pseudo-F statistic (y-axis) quantifying sample separation for different methods
(x-axis) and templates (top panels) under simulation with SimSeq (strategy 2).
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6 Software

The version of R programming language and packages is shown below:

## R version 3.6.3 (2020-02-29)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] RColorBrewer_1.1-2 mixOmics_6.10.9 lattice_0.20-41
## [4] MASS_7.3-51.6 PMA_1.2.1 MOFA_1.2.0
## [7] RCM_1.5.3 combi_0.99.15 Matrix_1.2-18
## [10] r.jive_2.1 numDeriv_2016.8-1.1 reshape2_1.4.4
## [13] ggplot2_3.3.0 phyloseq_1.30.0
##
## loaded via a namespace (and not attached):
## [1] ggbeeswarm_0.6.0 VGAM_1.1-3
## [3] colorspace_1.4-1 ellipsis_0.3.0
## [5] corpcor_1.6.9 XVector_0.26.0
## [7] GenomicRanges_1.38.0 rstudioapi_0.11
## [9] farver_2.0.3 MatrixModels_0.4-1
## [11] SpatioTemporal_1.1.9.1 MultiAssayExperiment_1.12.6
## [13] ggrepel_0.8.2 RSpectra_0.16-0
## [15] codetools_0.2-16 splines_3.6.3
## [17] doParallel_1.0.15 knitr_1.28
## [19] ade4_1.7-15 jsonlite_1.6.1
## [21] cobs_1.3-4 cluster_2.1.0
## [23] pheatmap_1.0.12 compiler_3.6.3
## [25] assertthat_0.2.1 limma_3.42.2
## [27] htmltools_0.4.0 quantreg_5.55
## [29] tools_3.6.3 igraph_1.2.5
## [31] gtable_0.3.0 glue_1.4.1
## [33] GenomeInfoDbData_1.2.2 dplyr_0.8.5
## [35] Rcpp_1.0.4.6 Biobase_2.46.0
## [37] vctrs_0.3.0 Biostrings_2.54.0
## [39] multtest_2.42.0 gdata_2.18.0
## [41] ape_5.3 nlme_3.1-147
## [43] iterators_1.0.12 xfun_0.13
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## [45] stringr_1.4.0 lifecycle_0.2.0
## [47] gtools_3.8.2 nleqslv_3.3.2
## [49] zlibbioc_1.32.0 zoo_1.8-8
## [51] scales_1.1.1 SummarizedExperiment_1.16.1
## [53] biomformat_1.14.0 rhdf5_2.30.1
## [55] SparseM_1.78 yaml_2.2.1
## [57] quantmod_0.4.17 curl_4.3
## [59] gridExtra_2.3 reticulate_1.15
## [61] stringi_1.4.6 highr_0.8
## [63] S4Vectors_0.24.4 tseries_0.10-47
## [65] corrplot_0.84 foreach_1.5.0
## [67] permute_0.9-5 BB_2019.10-1
## [69] TTR_0.23-6 caTools_1.18.0
## [71] BiocGenerics_0.32.0 BiocParallel_1.20.1
## [73] GenomeInfoDb_1.22.1 rlang_0.4.6
## [75] pkgconfig_2.0.3 matrixStats_0.56.0
## [77] bitops_1.0-6 evaluate_0.14
## [79] purrr_0.3.4 tensor_1.5
## [81] Rhdf5lib_1.8.0 labeling_0.3
## [83] cowplot_1.0.0 tidyselect_1.1.0
## [85] plyr_1.8.6 magrittr_1.5
## [87] R6_2.4.1 IRanges_2.20.2
## [89] gplots_3.0.3 DelayedArray_0.12.3
## [91] pillar_1.4.4 withr_2.2.0
## [93] mgcv_1.8-31 xts_0.12-0
## [95] survival_3.1-12 abind_1.4-5
## [97] RCurl_1.98-1.2 tibble_3.0.1
## [99] crayon_1.3.4 rARPACK_0.11-0
## [101] KernSmooth_2.23-17 ellipse_0.4.1
## [103] alabama_2015.3-1 rmarkdown_2.1
## [105] grid_3.6.3 data.table_1.12.8
## [107] vegan_2.5-6 digest_0.6.25
## [109] tidyr_1.0.3 stats4_3.6.3
## [111] munsell_0.5.0 beeswarm_0.2.3
## [113] vipor_0.4.5 quadprog_1.5-8
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