
1

Multimedia Appendix 1

Federated queries of clinical data repositories: balancing accuracy
and privacy

Yun William Yu, PhD
Computer and Mathematical Sciences
University of Toronto at Scarborough
Toronto, ON M5S 1J7
ywyu@math.toronto.edu

Griffin M Weber, MD, PhD
Department of Biomedical Informatics
Harvard Medical School
Boston, MA 02115
weber@hms.harvard.edu

2

Table of Contents
1) Secure multi-party computation (MPC) algorithm details 3
2) Generating patient IDs for hash functions 6
3) Secure methods that are not scalable to large networks 7
4) Privacy risk score (m-anonymity) 9
5) Simulating a federated hospital network 10

3

Secure multi‐party computation (MPC) algorithm details

Below are implementation details of our Count+MPC and HLL+MPC algorithms.

Count+MPC

This protocol is based on the ElGamal cryptosystem [ElGamal 1985] using a distributed
private key to ensure that no one party can decrypt intermediate data, secure in the
Honest But Curious even if all hospitals but one and the hub are compromised. We take
advantage of the multiplicatively homomorphic property of ElGamal encryption, which
means that given an encryption function ܧ and decryption function ܦ ,ܦ൫ܧሺܾܽሻ൯ ൌ ܾܽ. It
is secure in the semi-honest framework assuming the difficult of the discrete logarithm
problem. The algorithm has three parts (key generation, encryption, and decryption),
which requires two rounds of communication between the hospitals and the hub.

Key generation.
We use a fixed 1024-bit prime and appropriate generator ݃ as the basis of all our
cryptographic keys (see Supplementary Information: ElGamal constants). All arithmetic
will be performed in that prime field defined by (i.e. will be performed modulus).
Given and ݃, a private/public keypair consists of a random number ݔ ∈ ሾ2, െ 1ሿ as the
private key, and ݕ ൌ ݃௫. We wish to ensure that no one party ever has access to ݔ, so
we use a distributed key generation protocol. Each hospital ݅ generates a random ݔ and
produces the corresponding ݕ ൌ ݃௫, which it sends to the central hub. The hub then
computes ݕ ൌ ݕ . Note thatݕ∏ ൌ ∏݃௫ ൌ ݃∑௫, so ݕ is the public key corresponding to
the private key ݔ ൌ The hub .ݔ , but no hospital actually knows the summed valueݔ∑
returns the public key ݕ to each hospital.

Encryption.
The standard ElGamal encryption function ܧሺ݉ሻ ൌ ሺ݃௭,݉ݕ௭ሻ, where ݖ in a random
integer in the field. Note that ElGamal has the nice property that the same plaintext
message will be encrypted to a many possible encrypted ciphertexts because of ݖ. This
is essential to defeating dictionary attacks on the ciphertext. As a technical note, in order
to have provable security, the message ݉ must be a quadratic residue of the field, which
we will ensure the in the protocol described.
Decryption. The standard ElGamal decryption function ܦ൫ሺܿଵ, ܿଶሻ൯ ൌ ሺܿଵ

௫ሻିଶ ⋅ ܿଶ. Note
that we can do a distributed decryption for a ciphertext by sending each hospital ܿଵ, and
asking the hospitals to return ܿଵ

௫, which when multiplied together give ܿଵ
௫.

Round 1: encryption and summation.
Each hospital runs the query locally, producing a count ܽ, and then sends the value
 ሺ4ሻ back to the hub (we use 4 because it is a quadratic residue). The hub computesܧ
ሺ4ሻܧ∑ ൌ .൫4∑൯ܧ

Round 2: decryption.
The encrypted sum is decrypted using the distributed decryption protocol described
above, giving 4∑. Of course, performing discrete logarithms is hard (or else ElGamal
encryption would not be secure), but we can precompute a discrete log table for powers

4

of 4 relatively easily. Using that lookup table, the hub produces ∑ܽ as the final response
for the query.

HLL+MPC

Like Count + MPC, this method is based off of the ElGamal homomorphic cryptosystem,
and we use the same primitives as in that method (with the same security guarantees).
We additionally take inspiration from a previous paper applying MPC to a Flajolet-Martin
style approximate counter [Dong 2017]. The key setup and exchange are identical to
Count + MPC, as well as the encryption and decryption routines, so we only describe the
following rounds:

Round 1: encryption and merging.
Each hospital begins by generating an HLL sketch of the query. We then unroll each
bucket ܤ ൌ 1’s and 32ݒ of the sketch into a binary string of length 32 withݒ െ . 0’sݒ
i.e. if ݒ ൌ 10, the binary string would be “11111111110000000000000000000000”.
However, ElGamal homomorphic encryption is only secure when using non-zero
quadratic residues of the prime field. So we turn that string into a vector, replacing 1’s
with 4’s and 0’s with 1’s, resulting in a vector of length 32, [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1,
…, 1]. The hospital then encrypts each of these unrolled bucket vectors into
ሾܧሺ4ሻ, … , ,ሺ4ሻܧ ,ሺ1ሻܧ ሺ1ሻሿ, and send them to the hub. Note that we rely the fact thatܧ…
ElGamal encryption is probabilistic, so each of the 4’s encrypts to a different ciphertext,
and so do each of the 1’s. Thus, the encrypted vector does not reveal any information
about the underlying binary bitstring.

The hub receives the encrypted HLL sketches from each hospital, and then takes the
product across hospitals of each position in the unrolled bucket vectors, giving a product
vector ൣ∏ݔଵ,, … ଵ,ݔ∏ ,ଷଶ,൧. Because ElGamal is multiplicatively homomorphicݔ∏, ൌ ሺ1ሻܧ
if and only if all ݔ, ൌ ሺ1ሻ. Were we to decrypt this vector, it would reveal the maximumܧ
bucket value for this bucket, because the vector would be equal to 1 at all indices above
that value. However, this leaks information because the other indices would have some
value 4௬, where ݕ is the number of times a hospital had a value of at least that index.

To resolve this information leakage, we use a private equality test [Jakobsson 2000].

Given two ciphertexts ሺܿଵ, ܿଶሻ and ሺܿଵ
ᇱ , ܿଶ

ᇱ ሻ, ܶ ൌ ൬ቀభ
ᇲ

భ
ቁ
௭
, ቀ
మ
ᇲ

మ
ቁ
௭
൰ ൌ ቀ൫ܿଵ

ᇱ ⋅ ܿଵ
ିଶ൯

௭
, ൫ܿଶ

ᇱ ⋅ ܿଶ
ିଶ൯

௭
ቁ,

where ݖ is a random integer, is a private equality test. More precisely, ܦሺܶሻ ൌ 1 if and
only if ܦ൫ሺܿଵ, ܿଶሻ൯ ൌ ൫ሺܿଵܦ

ᇱ , ܿଶ
ᇱ ሻ൯. More importantly, ܦሺܶሻ is a random integer (different

from ݖ) if the two ciphertexts were not equal in the plaintext space. The hub thus does a
private equality test of all the combined encrypted bucket values, testing if they are equal
to 1, and masking the result if they are not equal to 1. Those new masked vectors do not
leak any information, revealing only the maximum value of the bucket across hospitals.

Round 2: decryption.
We now run the distributed decryption protocol on each of those masked vector
elements. Because each element is independent, they can be decrypted in parallel in
only one round of communication. For each bucket, the hub then looks at the maximum
index that is not equal to 1, which corresponds to the maximum bucket value across

5

hospitals; this procedure allows the hub to reconstruct the merged HLL sketch. Once
given a merged HLL sketch, the hub can then follow the rest of the standard procedure
for the HyperLogLog method.

ElGamal constants

The 1024-bit prime we used is:

98028036272659031371560742242955169861910550634811171303401
35837881613263699211563067494399482922321878349811148138305
12407606566691503608138648619957629317511318723406340506422
74733438822049237741423531698542796484148312185879186781490
73177122917827276005528162469876508421706801816828847677451
7939074390767

The generator we used is:

24206408586964102421812765517240973131319511671044202856202
99207560389848480888222967643025968854352482849672494049846
57383450832959107783541977139869194907266271150046901293736
76590479696817812956963632330252490994726984437037113519675
88716731171586392332234128119275518025105893810397380986013
7264177781321

Note that while we have attempted to choose appropriate constants, we are not
cryptographers. As with any secure system, we recommend that any real-world
implementation be audited by a security professional. To wit, a real‐world deployment would
probably implement ElGamal over Curve25519 using the standard generators, and be implemented
using a hardened crypto library like LibSodium. However, that is beyond the scope of this work.

6

Generating patient IDs for hash functions

For both the HyperLogLog and HashedIDs methods, a unique identifier (ID) is needed
for each patient. Each hospital needs to use the same ID for the same patient. Because
there is no universal patient identifier (UPI), the ID should be based on information likely
to be unique to the patient and available at all hospitals, such as the concatenation of
the patient’s first name, last name, and date of birth. However, there are limitations to
this because of missing data, data errors (e.g., a misspelled name), and data that
change over time (e.g., a person changes his or her name).

The best combination of demographic variables depends on whether it is preferable for
queries to over- or under-count the number of matching patients [Grannis SJ 2002]. For
example, using just first initial plus last name will cause many people to have the same
ID; while, combining first and last name, date of birth, social security number, and zip
code increases the chance that the same person has different IDs at different hospitals.

Although it would increase query time and privacy risk, a hospital network can generate
multiple IDs for each patient, using different combinations of variables. The same query
can be run once for each ID, producing a range of results. The researcher can use this
to gauge what the true number of matching patients might be.

7

Secure methods that are not scalable to large networks

We quantitatively benchmarked two secure MPC protocols. Count+MPC is just a
straight-forward implementation of secure MPC summation, but HLL+MPC is a protocol
we developed ourselves, inspired by Dong, et al [Dong 2017]. The reason we developed
that protocol instead of using existing protocols from the cryptographic literature is that
most such methods are impractically slow, due to bad scaling of communication and
computation requirements. Here, we describe a few secure MPC protocols that provide
privacy guarantees without the need for a trusted 3rd party. However, because secure
MPC and homomorphic encryption are computationally complex, they could take on the
order of days to weeks for a single query in a large network. This makes them
impractical except for very small networks. As a result, we do not include them in our
benchmarking simulations.

One MPC approach is to use a pairwise private intersection protocol [Kolesnikov 2017,
de Christofaro 2012], which securely determines the number of shared patients between
two sites. Subtracting this from the sum of the counts from each site gives the total
number of distinct patients. However, the number of required pairwise and multi-way
comparisons grows exponentially with the number of sites, making this impractical for
large networks. Patient partitioning [Weber 2013] and cryptosets [Swamidass 2015] are
related non-MPC methods that have similar scalability problems due to the number of
patient slices. A recent approach using counting Bloom filters is able to solve the
deduplication problem without pairwise comparisons, but due to the nature of Bloom
filters scales linearly in the number of patients and requires at least two trusted data
custodians even in a semi-honest framework [Yigzaw 2017].

Other work in the MPC literature has produced algorithms for directly computing unions
and deduplications of sets without the problem of exponential comparisons.
Unfortunately, this comes at the cost of either significantly more computation time and
communication bandwidth requirements, which can be on the order of gigabytes of
shared data for a single query, with linear communication complexity and super-linear
time-complexity in the number of patients [Fenske 2017]. A more recent approach
combines a Flajolet-Martin style estimator with a secure MPC protocol [Dong 2017]. The
algorithm has logarithmic space complexity, in that the number of bits needed scales
logarithmically with respect to the number of patients who match the query. However,
the trade-off is that it requires numerous back-and-forth communication---on the order of
logܰ rounds, where ܰ is the total patient population---between all the hospitals in the
network to execute the protocol. As mentioned above though, our HLL + MPC protocol is
heavily based off of Dong, et al.

The root of the issue is that in the context of a federated network of hospitals, if each
hospital acts as a computing party for an MPC protocol, then each hospital can
guarantee to itself that at least it itself is not malicious. This feature is desirable for
hospitals, because it means they do not have to trust anyone but themselves. However,
most MPC methods scale badly in the number of computing parties; using semi-trusted
dedicated compute parties can help, but that still requires trusting those compute parties
to not collude. In recent years, more scalable secure MPC protocols have been
introduced to solving distributed genome-wide association studies [Cho 2018] and
pharmacological collaborations [Hie 2018], but these protocols are not practical for the

8

near-real-time results that clinical researchers expect (indeed, in that context, it is
considered fast to get results in weeks). For this reason, we only compared against the
two MPC protocols we ourselves implemented, which are designed to be scalable at the
level we need for clinical queries.

9

Privacy risk score (k‐anonymity)

We define a piece of aggregate information, or statistic, as less than ݇-anonymous if it
includes at least 1 individual and could have been generated by fewer than ݇ individuals
in some background population. As long as patients have 2-anonymity, they have not
been fully revealed. However, in practice, hospitals are usually more conservative. One
study recommended 5-anonymity for hospitals [Emam 2008], but the national PCORNet
and ACT networks go even higher, requiring 10-anonymity. For purposes of this paper,
we will use 10-anonymity throughout our analysis to be consistent with these existing
networks. We will define the privacy risk for a release of data as the number of statistics
revealed to the adversary that are not 10-anonymous.

For the background population we use the patient population at a hospital, because the
hub generally knows when a piece of information comes from a particular hospital. In the
case where we use MPC to merge data across the network, however, the background
population can be taken to be the patient population across the entire network, as no
one party sees the information from a single hospital.

In the case of a single count from a hospital, whether or not that count is 10-anonymous
is easy to determine: if the count is between 1 and 9 inclusive, then it is not 10-
anonymous; else, it is. Note that this is not a perfect proxy, because while a single count
may be 10-anonymous, multiple counts from the same hospital might not be. For
example, if the count of male patients is 10 and the count of male + female patients is
11, then two counts, while individually 10-anonymous, can together be combined to
reveal that there is only 1 female patient. Although here we analyze only the privacy risk
from revealing a single count from a hospital, so we do not worry about that, it is still
worth remembering that even aggregate counts >10 are not perfect 10-anonymity.

For a hashed value generated from a patient ID, we consider it 10-anonymous if the
adversary cannot reverse the hash function to figure out the original patient ID to within
10 patients. Luckily, cryptographic hash functions are one-way, meaning that the
function cannot be directly reversed. Unfortunately, since the space of patient IDs (e.g.
social security numbers) is constrained, an adversary can simply create a rainbow table
of the hashed values of every possible patient ID, and then simply do a lookup. Thus, a
hashed value is only 10-anonymous if at least 10 patients in the background population
hash to that particular value. Unfortunately, for hashed IDs that are sufficiently large to
do deduplication of patients (e.g. 32- or 64-bits), the very property that allows
deduplication also ensures that close to none of the hashed IDs are 10-anonymous.

HyperLogLog buckets can be thought of as a much shorter hashed ID. Whereas we
might use a 64-bit hash when using Hashed IDs, the HyperLogLog bucket stores only
the position of the first 1 bit in that 64-bit hash. This increases the number of collisions
considerably. An HLL bucket with value ݔ is 10-anonymous if at least 10 patients in the
background population have hashes where the leading 1-indicator indicator is in position
 which happens much more often. Additionally, there are generally many fewer HLL ,ݔ
buckets than patient IDs, so fewer potentially risky statistics are revealed to begin with.

10

Simulating a federated hospital network

Because of patient privacy, we cannot test the algorithms using actual hospital data. We
therefore built a simulation of a set of hospitals spread geographically with highly varying
sizes and overlap.

First we model geographic spread by placing 100 cities uniformly randomly in a 2D unit
square. City sizes are often modeled to have lognormal distributions [Berry 1961], with
probability density function

ሻݔሺ ൌ
1

ߨ2√ݔߪ
exp ቆെ

ሺln ݔ െ ሻଶߤ

ଶߪ2
ቇ,

where ߤ and ߪ are respectively the mean and standard deviation of the underlying
normal distribution.

Each of the 100 hospitals in our network is assumed to draw primarily from one of those
cities. We randomly sample 100 numbers from a lognormal distribution with ߤ ൌ 0 and
ߪ ൌ 1.2, and then scale up all the numbers such that the sum is 100 million total unique
patients. Each patient is assigned a number between 1 and 100 million, and is then
placed in one of the 100 hospitals as their home hospital, according to the scaled up
lognormal size distribution computed earlier.

For each patient, we draw a random integer from a binomial distribution ܤ ቀ9,
ଵ

ଽ
ቁ, which

will denote the number of additional hospitals patients are assigned to. Here the intuition
is that most patients are only at a single hospital, but some patients are admitted to
many hospitals. However, by choosing those parameters of the binomial distribution, we
ensure that on average, patients are admitted to 2 hospitals (their home hospital, and
one additional one as the mean of the binomial distribution is 1).

Then we assume that patients who are admitted to multiple hospitals are more likely to
go to nearby ones, according to the hospital locations in the unit square we assigned
earlier. We assume that the probability that a patient chooses a particular additional
hospital is inversely proportional to the square of the distance between the new hospital
and the patient’s home hospital. Using this probability distribution, we assign each
patient to their additional hospitals.

By using this procedure, we generate hospitals that start with lognormal sizes, following
city size distributions, but with some smoothing of the sizes because some patients will
go to multiple hospitals.

