
1 
 

Multimedia Appendix 1 
 

Federated queries of clinical data repositories: balancing accuracy 
and privacy 
 
Yun William Yu, PhD 
Computer and Mathematical Sciences 
University of Toronto at Scarborough 
Toronto, ON M5S 1J7 
ywyu@math.toronto.edu  
 
Griffin M Weber, MD, PhD 
Department of Biomedical Informatics 
Harvard Medical School 
Boston, MA 02115 
weber@hms.harvard.edu 
 
  



2 
 

Table of Contents 
1) Secure multi-party computation (MPC) algorithm details  3 
2) Generating patient IDs for hash functions  6 
3) Secure methods that are not scalable to large networks  7 
4) Privacy risk score (m-anonymity)  9 
5) Simulating a federated hospital network  10 
 
  



3 
 

 

Secure multi‐party computation (MPC) algorithm details 
 
Below are implementation details of our Count+MPC and HLL+MPC algorithms. 
 

Count+MPC 
 
This protocol is based on the ElGamal cryptosystem [ElGamal 1985] using a distributed 
private key to ensure that no one party can decrypt intermediate data, secure in the 
Honest But Curious even if all hospitals but one and the hub are compromised. We take 
advantage of the multiplicatively homomorphic property of ElGamal encryption, which 
means that given an encryption function ܧ and decryption function ܦ ,ܦ൫ܧሺܾܽሻ൯ ൌ ܾܽ. It 
is secure in the semi-honest framework assuming the difficult of the discrete logarithm 
problem. The algorithm has three parts (key generation, encryption, and decryption), 
which requires two rounds of communication between the hospitals and the hub. 

Key generation. 
We use a fixed 1024-bit prime  and appropriate generator ݃ as the basis of all our 
cryptographic keys (see Supplementary Information: ElGamal constants). All arithmetic 
will be performed in that prime field defined by  (i.e. will be performed modulus ). 
Given  and ݃, a private/public keypair consists of a random number ݔ ∈ ሾ2,  െ 1ሿ as the 
private key, and ݕ ൌ ݃௫. We wish to ensure that no one party ever has access to ݔ, so 
we use a distributed key generation protocol. Each hospital ݅ generates a random ݔ and 
produces the corresponding ݕ ൌ ݃௫, which it sends to the central hub. The hub then 
computes ݕ ൌ ݕ . Note thatݕ∏ ൌ ∏݃௫ ൌ ݃∑௫, so ݕ is the public key corresponding to 
the private key ݔ ൌ  The hub .ݔ , but no hospital actually knows the summed valueݔ∑
returns the public key ݕ to each hospital. 

Encryption. 
The standard ElGamal encryption function ܧሺ݉ሻ ൌ ሺ݃௭,݉ݕ௭ሻ, where ݖ in a random 
integer in the field. Note that ElGamal has the nice property that the same plaintext 
message will be encrypted to a many possible encrypted ciphertexts because of ݖ. This 
is essential to defeating dictionary attacks on the ciphertext. As a technical note, in order 
to have provable security, the message ݉ must be a quadratic residue of the field, which 
we will ensure the in the protocol described. 
Decryption. The standard ElGamal decryption function ܦ൫ሺܿଵ, ܿଶሻ൯ ൌ ሺܿଵ

௫ሻିଶ ⋅ ܿଶ. Note 
that we can do a distributed decryption for a ciphertext by sending each hospital ܿଵ, and 
asking the hospitals to return ܿଵ

௫, which when multiplied together give ܿଵ
௫. 

Round 1: encryption and summation. 
Each hospital runs the query locally, producing a count ܽ, and then sends the value 
 ሺ4ሻ back to the hub (we use 4 because it is a quadratic residue). The hub computesܧ
ሺ4ሻܧ∑ ൌ  .൫4∑൯ܧ

Round 2: decryption. 
The encrypted sum is decrypted using the distributed decryption protocol described 
above, giving 4∑. Of course, performing discrete logarithms is hard (or else ElGamal 
encryption would not be secure), but we can precompute a discrete log table for powers 
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of 4 relatively easily. Using that lookup table, the hub produces ∑ܽ as the final response 
for the query.  
 
 

HLL+MPC 
 
Like Count + MPC, this method is based off of the ElGamal homomorphic cryptosystem, 
and we use the same primitives as in that method (with the same security guarantees). 
We additionally take inspiration from a previous paper applying MPC to a Flajolet-Martin 
style approximate counter [Dong 2017]. The key setup and exchange are identical to 
Count + MPC, as well as the encryption and decryption routines, so we only describe the 
following rounds: 

Round 1: encryption and merging. 
Each hospital begins by generating an HLL sketch of the query. We then unroll each 
bucket ܤ ൌ  1’s and 32ݒ  of the sketch into a binary string of length 32 withݒ െ  . 0’sݒ
i.e. if ݒ ൌ 10, the binary string would be “11111111110000000000000000000000”. 
However, ElGamal homomorphic encryption is only secure when using non-zero 
quadratic residues of the prime field. So we turn that string into a vector, replacing 1’s 
with 4’s and 0’s with 1’s, resulting in a vector of length 32, [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 
…, 1]. The hospital then encrypts each of these unrolled bucket vectors into 
ሾܧሺ4ሻ, … , ,ሺ4ሻܧ ,ሺ1ሻܧ  ሺ1ሻሿ, and send them to the hub. Note that we rely the fact thatܧ…
ElGamal encryption is probabilistic, so each of the 4’s encrypts to a different ciphertext, 
and so do each of the 1’s. Thus, the encrypted vector does not reveal any information 
about the underlying binary bitstring. 
 
The hub receives the encrypted HLL sketches from each hospital, and then takes the 
product across hospitals of each position in the unrolled bucket vectors, giving a product 
vector ൣ∏ݔଵ,, … ଵ,ݔ∏ ,ଷଶ,൧. Because ElGamal is multiplicatively homomorphicݔ∏, ൌ  ሺ1ሻܧ
if and only if all ݔ, ൌ  ሺ1ሻ. Were we to decrypt this vector, it would reveal the maximumܧ
bucket value for this bucket, because the vector would be equal to 1 at all indices above 
that value. However, this leaks information because the other indices would have some 
value 4௬, where ݕ is the number of times a hospital had a value of at least that index. 
 
To resolve this information leakage, we use a private equality test [Jakobsson 2000]. 

Given two ciphertexts ሺܿଵ, ܿଶሻ and ሺܿଵ
ᇱ , ܿଶ

ᇱ ሻ, ܶ ൌ ൬ቀభ
ᇲ

భ
ቁ
௭
, ቀ
మ
ᇲ

మ
ቁ
௭
൰ ൌ ቀ൫ܿଵ

ᇱ ⋅ ܿଵ
ିଶ൯

௭
, ൫ܿଶ

ᇱ ⋅ ܿଶ
ିଶ൯

௭
ቁ, 

where ݖ is a random integer, is a private equality test. More precisely, ܦሺܶሻ ൌ 1 if and 
only if ܦ൫ሺܿଵ, ܿଶሻ൯ ൌ ൫ሺܿଵܦ

ᇱ , ܿଶ
ᇱ ሻ൯. More importantly, ܦሺܶሻ is a random integer (different 

from ݖ) if the two ciphertexts were not equal in the plaintext space. The hub thus does a 
private equality test of all the combined encrypted bucket values, testing if they are equal 
to 1, and masking the result if they are not equal to 1. Those new masked vectors do not 
leak any information, revealing only the maximum value of the bucket across hospitals. 

Round 2: decryption. 
We now run the distributed decryption protocol on each of those masked vector 
elements. Because each element is independent, they can be decrypted in parallel in 
only one round of communication. For each bucket, the hub then looks at the maximum 
index that is not equal to 1, which corresponds to the maximum bucket value across 
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hospitals; this procedure allows the hub to reconstruct the merged HLL sketch. Once 
given a merged HLL sketch, the hub can then follow the rest of the standard procedure 
for the HyperLogLog method. 
 
 

ElGamal constants 
 
The 1024-bit prime we used is: 

98028036272659031371560742242955169861910550634811171303401
35837881613263699211563067494399482922321878349811148138305
12407606566691503608138648619957629317511318723406340506422
74733438822049237741423531698542796484148312185879186781490
73177122917827276005528162469876508421706801816828847677451
7939074390767 

 
The generator we used is: 

24206408586964102421812765517240973131319511671044202856202
99207560389848480888222967643025968854352482849672494049846
57383450832959107783541977139869194907266271150046901293736
76590479696817812956963632330252490994726984437037113519675
88716731171586392332234128119275518025105893810397380986013
7264177781321 

 
Note that while we have attempted to choose appropriate constants, we are not 
cryptographers. As with any secure system, we recommend that any real-world 
implementation be audited by a security professional. To wit, a real‐world deployment would 
probably implement ElGamal over Curve25519 using the standard generators, and be implemented 
using a hardened crypto library like LibSodium. However, that is beyond the scope of this work.
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Generating patient IDs for hash functions 
 
For both the HyperLogLog and HashedIDs methods, a unique identifier (ID) is needed 
for each patient. Each hospital needs to use the same ID for the same patient. Because 
there is no universal patient identifier (UPI), the ID should be based on information likely 
to be unique to the patient and available at all hospitals, such as the concatenation of 
the patient’s first name, last name, and date of birth. However, there are limitations to 
this because of missing data, data errors (e.g., a misspelled name), and data that 
change over time (e.g., a person changes his or her name).  
 
The best combination of demographic variables depends on whether it is preferable for 
queries to over- or under-count the number of matching patients [Grannis SJ 2002]. For 
example, using just first initial plus last name will cause many people to have the same 
ID; while, combining first and last name, date of birth, social security number, and zip 
code increases the chance that the same person has different IDs at different hospitals. 
 
Although it would increase query time and privacy risk, a hospital network can generate 
multiple IDs for each patient, using different combinations of variables. The same query 
can be run once for each ID, producing a range of results. The researcher can use this 
to gauge what the true number of matching patients might be. 
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Secure methods that are not scalable to large networks 
 
We quantitatively benchmarked two secure MPC protocols. Count+MPC is just a 
straight-forward implementation of secure MPC summation, but HLL+MPC is a protocol 
we developed ourselves, inspired by Dong, et al [Dong 2017]. The reason we developed 
that protocol instead of using existing protocols from the cryptographic literature is that 
most such methods are impractically slow, due to bad scaling of communication and 
computation requirements. Here, we describe a few secure MPC protocols that provide 
privacy guarantees without the need for a trusted 3rd party. However, because secure 
MPC and homomorphic encryption are computationally complex, they could take on the 
order of days to weeks for a single query in a large network. This makes them 
impractical except for very small networks. As a result, we do not include them in our 
benchmarking simulations. 
 
One MPC approach is to use a pairwise private intersection protocol [Kolesnikov 2017, 
de Christofaro 2012], which securely determines the number of shared patients between 
two sites. Subtracting this from the sum of the counts from each site gives the total 
number of distinct patients. However, the number of required pairwise and multi-way 
comparisons grows exponentially with the number of sites, making this impractical for 
large networks. Patient partitioning [Weber 2013] and cryptosets [Swamidass 2015] are 
related non-MPC methods that have similar scalability problems due to the number of 
patient slices. A recent approach using counting Bloom filters is able to solve the 
deduplication problem without pairwise comparisons, but due to the nature of Bloom 
filters scales linearly in the number of patients and requires at least two trusted data 
custodians even in a semi-honest framework [Yigzaw 2017]. 
 
Other work in the MPC literature has produced algorithms for directly computing unions 
and deduplications of sets without the problem of exponential comparisons. 
Unfortunately, this comes at the cost of either significantly more computation time and 
communication bandwidth requirements, which can be on the order of gigabytes of 
shared data for a single query, with linear communication complexity and super-linear 
time-complexity in the number of patients [Fenske 2017]. A more recent approach 
combines a Flajolet-Martin style estimator with a secure MPC protocol [Dong 2017]. The 
algorithm has logarithmic space complexity, in that the number of bits needed scales 
logarithmically with respect to the number of patients who match the query. However, 
the trade-off is that it requires numerous back-and-forth communication---on the order of 
logܰ rounds, where ܰ is the total patient population---between all the hospitals in the 
network to execute the protocol. As mentioned above though, our HLL + MPC protocol is 
heavily based off of Dong, et al. 
 
The root of the issue is that in the context of a federated network of hospitals, if each 
hospital acts as a computing party for an MPC protocol, then each hospital can 
guarantee to itself that at least it itself is not malicious. This feature is desirable for 
hospitals, because it means they do not have to trust anyone but themselves. However, 
most MPC methods scale badly in the number of computing parties; using semi-trusted 
dedicated compute parties can help, but that still requires trusting those compute parties 
to not collude. In recent years, more scalable secure MPC protocols have been 
introduced to solving distributed genome-wide association studies [Cho 2018] and 
pharmacological collaborations [Hie 2018], but these protocols are not practical for the 
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near-real-time results that clinical researchers expect (indeed, in that context, it is 
considered fast to get results in weeks). For this reason, we only compared against the 
two MPC protocols we ourselves implemented, which are designed to be scalable at the 
level we need for clinical queries. 
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Privacy risk score (k‐anonymity) 
 
We define a piece of aggregate information, or statistic, as less than ݇-anonymous if it 
includes at least 1 individual and could have been generated by fewer than ݇ individuals 
in some background population. As long as patients have 2-anonymity, they have not 
been fully revealed. However, in practice, hospitals are usually more conservative. One 
study recommended 5-anonymity for hospitals [Emam 2008], but the national PCORNet 
and ACT networks go even higher, requiring 10-anonymity. For purposes of this paper, 
we will use 10-anonymity throughout our analysis to be consistent with these existing 
networks. We will define the privacy risk for a release of data as the number of statistics 
revealed to the adversary that are not 10-anonymous. 
 
For the background population we use the patient population at a hospital, because the 
hub generally knows when a piece of information comes from a particular hospital. In the 
case where we use MPC to merge data across the network, however, the background 
population can be taken to be the patient population across the entire network, as no 
one party sees the information from a single hospital. 
 
In the case of a single count from a hospital, whether or not that count is 10-anonymous 
is easy to determine: if the count is between 1 and 9 inclusive, then it is not 10-
anonymous; else, it is. Note that this is not a perfect proxy, because while a single count 
may be 10-anonymous, multiple counts from the same hospital might not be. For 
example, if the count of male patients is 10 and the count of male + female patients is 
11, then two counts, while individually 10-anonymous, can together be combined to 
reveal that there is only 1 female patient. Although here we analyze only the privacy risk 
from revealing a single count from a hospital, so we do not worry about that, it is still 
worth remembering that even aggregate counts >10 are not perfect 10-anonymity. 
 
For a hashed value generated from a patient ID, we consider it 10-anonymous if the 
adversary cannot reverse the hash function to figure out the original patient ID to within 
10 patients. Luckily, cryptographic hash functions are one-way, meaning that the 
function cannot be directly reversed. Unfortunately, since the space of patient IDs (e.g. 
social security numbers) is constrained, an adversary can simply create a rainbow table 
of the hashed values of every possible patient ID, and then simply do a lookup. Thus, a 
hashed value is only 10-anonymous if at least 10 patients in the background population 
hash to that particular value. Unfortunately, for hashed IDs that are sufficiently large to 
do deduplication of patients (e.g. 32- or 64-bits), the very property that allows 
deduplication also ensures that close to none of the hashed IDs are 10-anonymous. 
 
HyperLogLog buckets can be thought of as a much shorter hashed ID. Whereas we 
might use a 64-bit hash when using Hashed IDs, the HyperLogLog bucket stores only 
the position of the first 1 bit in that 64-bit hash. This increases the number of collisions 
considerably. An HLL bucket with value ݔ is 10-anonymous if at least 10 patients in the 
background population have hashes where the leading 1-indicator indicator is in position 
 which happens much more often. Additionally, there are generally many fewer HLL ,ݔ
buckets than patient IDs, so fewer potentially risky statistics are revealed to begin with. 
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Simulating a federated hospital network 
 
Because of patient privacy, we cannot test the algorithms using actual hospital data. We 
therefore built a simulation of a set of hospitals spread geographically with highly varying 
sizes and overlap. 
 
First we model geographic spread by placing 100 cities uniformly randomly in a 2D unit 
square. City sizes are often modeled to have lognormal distributions [Berry 1961], with 
probability density function 

ሻݔሺ ൌ
1

ߨ2√ݔߪ
exp ቆെ

ሺln ݔ െ ሻଶߤ

ଶߪ2
ቇ, 

where ߤ and ߪ are respectively the mean and standard deviation of the underlying 
normal distribution. 
 
Each of the 100 hospitals in our network is assumed to draw primarily from one of those 
cities. We randomly sample 100 numbers from a lognormal distribution with ߤ ൌ 0 and 
ߪ ൌ 1.2, and then scale up all the numbers such that the sum is 100 million total unique 
patients. Each patient is assigned a number between 1 and 100 million, and is then 
placed in one of the 100 hospitals as their home hospital, according to the scaled up 
lognormal size distribution computed earlier. 
 

For each patient, we draw a random integer from a binomial distribution ܤ ቀ9,
ଵ

ଽ
ቁ, which 

will denote the number of additional hospitals patients are assigned to. Here the intuition 
is that most patients are only at a single hospital, but some patients are admitted to 
many hospitals. However, by choosing those parameters of the binomial distribution, we 
ensure that on average, patients are admitted to 2 hospitals (their home hospital, and 
one additional one as the mean of the binomial distribution is 1). 
 
Then we assume that patients who are admitted to multiple hospitals are more likely to 
go to nearby ones, according to the hospital locations in the unit square we assigned 
earlier. We assume that the probability that a patient chooses a particular additional 
hospital is inversely proportional to the square of the distance between the new hospital 
and the patient’s home hospital. Using this probability distribution, we assign each 
patient to their additional hospitals. 
 
By using this procedure, we generate hospitals that start with lognormal sizes, following 
city size distributions, but with some smoothing of the sizes because some patients will 
go to multiple hospitals. 
 


