
Supplementary Information

A. Task descriptions and fMRI parameters

A.1 Geometric shapes (GS) study

The GS study (Mack et al., 2013) presented sixteen objects in total, which
varied on four different binary features: (color: red or green, shape: circle or
triangle, size: large or small, and position: right or left). Participants in this
study were trained to do a categorization task. They were first trained on
five objects of one category and four of the other (nine objects total during
training) with twenty repetitions of each object. During the anatomical scan,
participants saw four more repetitions of the training items as a refresher.
Then during the functional scanning phase, participants were asked to cate-
gorize the nine familiar objects they saw during the training phase and seven
novel objects they had not seen before. Each trial during the functional scan-
ning phase lasted 10 seconds; 3.5 seconds where one of the sixteen objects
(nine training stimuli and seven novel transfer stimuli) was presented after
which a fixation cross was presented for 6.5 seconds. No feedback was pro-
vided during this phase. Each stimulus was presented three times within a
run across six runs resulting in each stimulus being presented a total of eigh-
teen times during the functional scanning phase except for one participant
who only participated in five runs of the scanning phase.

Whole-brain imaging data were acquired on a 3.0T GE Sigma MRI system
(GE Medical Systems). Structural images were acquired using a T2-weighted
flow-compensated spin-echo pulse sequence (TR=3s; TE=68ms, 256x256 ma-
trix, 1x1mm in-plane resolution) with thirty-three 3-mm thick oblique axial
slices (0.6mm gap), approximately 20 off the AC-PC line. Functional images
were acquired with an echo planar imaging sequence using the same slice
prescription as the structural images (TR=2s, TE=30.5ms, flip angle=73,
64x64 matrix, 3.75x3.75 in-plane resolution, bottom-up interleaved acqui-
sition, 0.6mm gap). An additional high-resolution T1-weighted 3D SPGR
structural volume (256x256x172 matrix, 1x1x1.3mm voxels) was acquired
for registration and cortex parcellation.
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A.2 Natural images (NI) study

The NI study (Bracci and de Beeck, 2016) presented fifty-four objects in
total, which varied in two ways. The 54 stimulus items were conceived to ei-
ther be organized by category (6 categories: minerals, animals, fruits/vegetables,
music, sports, or tools) or by their silhouette (9 silhouettes) which cut or-
thogonally across the category distinction. Participants in this study were
asked to perform a 1-back real-world size judgment task (i.e., to respond
according to whether the object on the previous trial was larger or smaller
than the current image on screen). Participants were scanned on two sep-
arate sessions (different days). Each session consisted of eight functional
scanning runs resulting in sixteen runs total except for one participant for
which four of the runs of the first session were lost due to scanning issues.
Each one of the fifty-four objects were presented twice within each run in a
randomized sequence. This resulted in each object being presented a total
of thirty-two times (or twenty-four times for the participant that only had
twelve runs). On each trial, each object was presented for 1.5 seconds after
which a fixation cross was presented for 1.5 seconds. Each run started with
a fixation cross for fourteen seconds and ended with a fixation cross for four-
teen seconds. Thirty-six fixation trials lasting three seconds each were also
randomly presented within each run.

Data collection was performed on a 3T Philips scanner with a 32-channel
coil at the Department of Radiology of the University Hospitals Leuven.
MRI volumes were collected using echo planar (EPI) T2*-weighted scans.
Acquisition parameters were as follows: repetition time (TR) of 2 s, echo time
(TE) of 30 ms, flip angle (FA) of 90, field of view (FoV) of 216 mm, and matrix
size of 72x72. Each volume comprised 37 axial slices (covering the whole
brain) with 3 mm thickness and no gap. The T1-weighted anatomical images
were acquired with an MP-RAGE sequence, with 1x1x1 mm resolution.

A.3 fMRI preprocessing

The original raw (NIfTI formatted) files from both studies were prepro-
cessed and analyzed using FSL 4.1 (Jenkinson et al., 2012). Functional im-
ages were realigned to the first volume in the time series to correct for motion,
co-registered to the T2-weighted structural volume, high-pass filtered (128s),
and detrended to remove linear trends within each run. All analyses were
performed in the native space of each participant.
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A.4 Trial-by-trial estimates

For both studies, after preprocessing the fMRI data with FSL, the method
suggested by Mumford et al. (2012) known as LS-S (least squares separate)
beta estimation was used to get a coefficient estimate for each individual pre-
sentation of each object. This method consists of calculating a general linear
model for each object presentation with only two regressors; one regressor
representing the effect of interest (the object presentation in question) and
another regressor representing all other object presentations within the re-
spective run. This procedure was done for each run separately to preserve
as much statistical independence as possible between runs. Such a step is
necessary for doing the multivoxel pattern analysis. After successfully esti-
mating the object presentation coefficients within each run, these were then
concatenated into a single 4D NIfTI formatted file. Furthermore, all runs
were subsequently aligned to the last run within each study (e.g. the sixth
run in the GS study or the sixteenth run in the NI study). The runs were
then concatenated into a single 4D NIfTI formatted file for each participant
within each study.

B. Regions of interest from the Harvard-Oxford atlas

B.1 Initial region of interest (ROI) selection

The Harvard-Oxford cortical and subcortical structural atlases provided
with FSL (Jenkinson et al., 2012) were used to parcellate the different anatom-
ical regions for each participant. A total of 110 regions of interest were used
as masks that would be used in the multivoxel pattern analyses. The goal
was to evaluate classifier accuracy across the whole brain (except for areas
like cerebral white matter or the lateral ventricles). More areas could have
been excluded based on a priori hypotheses of where similarity signals would
arise. However, including areas where no signal was expected served as an
informal control for the method and still retained the possibility that simi-
larity signals could have been found in otherwise unexpected brain regions.
The masks were transformed from MNI space to each participants native
space. This masking by anatomical region can be considered the first part
of a feature selection procedure. Feature selection was also done within each
region of interest for each participant (see Materials and Methods). All re-
gions from the Harvard-Oxford atlas were included in the analyses except for
cerebral white matter, the lateral ventricles, left and right cerebral cortex,
and the brain stem. This results in 48 cortical regions and 7 subcortical
regions; doubling for lateralization results in the 110 regions of interest.
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B.2 Cortical regions of interest

Frontal Pole, Insular Cortex, Superior Frontal Gyrus, Middle Frontal
Gyrus, Inferior Frontal Gyrus (pars triangularis), Inferior Frontal Gyrus (pars
opercularis), Precentral Gyrus, Temporal Pole, Superior Temporal Gyrus
(anterior division), Superior Temporal Gyrus (posterior division), Middle
Temporal Gyrus (anterior division), Middle Temporal Gyrus (posterior di-
vision), Middle Temporal Gyrus (temporooccipital part), Inferior Tempo-
ral Gyrus (anterior division), Inferior Temporal Gyrus (posterior division),
Inferior Temporal Gyrus (temporooccipital part), Postcentral Gyrus, Supe-
rior Parietal Lobule, Supramarginal Gyrus (anterior division), Supramarginal
Gyrus (posterior division), Angular Gyrus, Lateral Occipital Cortex (supe-
rior division), Lateral Occipital Cortex (inferior division), Intracalcarine Cor-
tex, Frontal Medial Cortex, Juxtapositional Lobule Cortex (formerly Supple-
mentary Motor Cortex), Subcallosal Cortex, Paracingulate Gyrus, Cingulate
Gyrus (anterior division), Cingulate Gyrus (posterior division), Precuneous
Cortex, Cuneal Cortex, Frontal Orbital Cortex, Parahippocampal Gyrus (an-
terior division), Parahippocampal Gyrus (posterior division), Lingual Gyrus,
Temporal Fusiform Cortex (anterior division), Temporal Fusiform Cortex
(posterior division), Temporal Occipital Fusiform Cortex, Occipital Fusiform
Gyrus, Frontal Operculum Cortex, Central Opercular Cortex, Parietal Oper-
culum Cortex, Planum Polare, Heschl’s Gyrus (includes H1 and H2), Planum
Temporale, Supracalcarine Cortex, & Occipital Pole.

B.3 Subcortical regions of interest

Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, &
Accumbens.

B.4 Secondary ROI selection

The 110 ROIs were rank ordered by mean classifier accuracy (mean across
participants) within each study. Subsequently, the union of the top ten ROIs
was selected for the neural similarity analysis. This procedure was done to
ensure that the ROIs used to evaluate the similarity measures was based on
brain areas with adequate signal-to-noise ratio. The 12 ROIs as reported in
the Results were left and right intracalcarine cortex (CALC), left and right
lateral occipital cortex (LO) inferior and superior divisions, left and right
lingual gyrus (LING), left and right occipital fusiform gyrus (OF), and left
and right occipital pole (OP).
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C. Classifier selection

The best performing classifier was chosen out of three candidates; Gaus-
sian näıve Bayes (GNB), k -nearest neighbor (KNN), and linear support vec-
tor machine (SVM). These classifiers were chosen because they are commonly
used in data analysis, both inside and outside the field of neuroimaging, and
they compute classification in very distinct ways (see Pereira et al., 2009).

The linear SVM classifier was the clear winner across both studies, thus
was chosen as our gold standard approximation to the brain’s similarity mea-
sure. The performance of the linear SVM classifier compared to the other
two classifiers is shown in Table C1.

GS Study NI study
mean s.d. mean s.d.

Linear SVM 20.49% 12.64% 23.51% 5.50%
GNB 15.00% 8.79% 10.24% 2.84%
KNN 14.51% 8.50% 8.49% 3.09%
Random classification 6.25% 1.85%

t p t p

Linear SVM vs. GNB 5.22 < 0.001 14.33 < 0.001
Linear SVM vs. KNN 4.59 < 0.001 17.80 < 0.001
degrees of freedom 19 13

Table C1. Linear SVM is best-performing classifier in both studies. Top panel shows mean
accuracy and standard deviations (s.d.) (across participants) for each classifier. Bottom
panel shows t-tests comparing the best-performing classifier (linear SVM) to the other two
classifiers.

In addition to comparing the performance of the classifiers judged by
their performance accuracy, the confusion matrices between classifiers - from
the same analysis - were also compared. Although the classifiers are quite
distinct algorithmically speaking, extreme differences between their confu-
sion matrices would be unlikely. Indeed it was the case that the average
correlations (averaged across subjects) were all significantly above zero for
both studies. In the GS study, linear SVM correlated highest with GNB (m
= 0.47, s.d. = 0.172, t(19) = 12.01, p < 0.001), second highest with KNN
(m = 0.37, s.d. = 0.197, t(19) = 8.21, p < 0.001), and GNB correlated
with KNN in third place (m = 0.32, s.d. = 0.195, t(19) = 7.06, p < 0.001).
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In the NI study, linear SVM correlated highest with GNB (m = 0.35, s.d.
= 0.072, t(13) = 17.55, p < 0.001), second highest with KNN (m = 0.29,
s.d. = 0.080, t(13) = 13.06, p < 0.001), and GNB correlated with KNN in
third place (m = 0.22, s.d. = 0.091, t(13) = 8.94, p < 0.001). These results
provide supplementary support for choosing linear SVM as the brain’s gold
standard for these two datasets given that it’s confusion matrix correlates
highest with the confusion matrices of the other two classifiers.

Thus, the linear SVM classifier was optimized for each of the initial 110
ROIs. The ROIs were rank-ordered in terms of accuracy in each study and the
union of the top 10 ROIs across both studies was: left and right intracalcarine
cortex (CALC), left and right lateral occipital cortex (LO) inferior division,
left and right lateral occipital cortex (LO) superior division, left and right
lingual gyrus (LING), left and right occipital fusiform gyrus (OF), and left
and right occipital pole (OP). This resulted in a secondary ROI selection of
12 ROIs with best (linear SVM) classifier accuracy.

Classifications were performed pairwise for this analysis and thus random
classification was expected at 50% for both studies (see Materials and Meth-
ods). The mean accuracy for the linear SVM classifier in the 12 regions of
interest was 59.47% (s.d. = 7.97%) in the GS study and 78.43% (s.d. =
7.41%) in the NI study. The best-performing classifier (linear SVM) was
performing above 50% chance level in both studies; t(19) = 5.18, p < 0.001,
in the GS study and t(13) = 13.84, p < 0.001, in the NI study (degrees of
freedom are based on number of participants for each study). This provides
reassurance that the ROIs that were selected indeed have information regard-
ing stimuli presentation. Classification accuracy for the NI study was higher
than in the GS study t(32) = 6.82, p < 0.001, showing a potential difference
in data quality due to the higher number of observations per stimuli in the
NI study (see Materials and Methods).

D. Triplet analysis

The original NI study predefined 9 shape groupings and 6 nominal cat-
egories (fruits/veg, animals, minerals, music, sports, and tools). Shape and
nominal category were orthogonal to each other. For each shape grouping,
there were 30 pairs where one stimulus was a standard and another serving
the role of a correct probe. Thus, there were 135 pairs of stimuli (across
the 9 shape groupings) that matched on shape but doubled to 270 pairs to
account for the role of standard or correct probe that each stimuli could take,
respectively. For each possible pairing of standard and correct probe, there
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were 32 possible incorrect probes; after accounting for the constraint that
the incorrect probe not match in shape or nominal category to either the
standard or the correct probe. This means the number of possible triplets
was 8640 (i.e., 270 valid pairs times 32 possible incorrect probes).

E. Similarity measures

The following similarity measures were evaluated: dot product, cosine dis-
tance, city-block (Manhattan), Euclidean, three variants of Minkowski (with
norms 5, 10 and 50), Chebyshev, Spearman correlation, Pearson correlation,
three variants of Mahalanobis, three variants of Bhattacharyya, variation
of information, and distance correlation. City-block, Euclidean, Minkowski,
Chebyshev, Mahalanobis, Bhattacharyya and variation of information are
proper distance metrics; to convert them to similarity measures they were
multiplied by minus one. Other linking functions between similarities and
distances are possible, as in a negative exponential (Shepard, 1987), but not
relevant here since our optimization criterion was Spearman correlation. The
three variants of Mahalanobis and Bhattacharyya were due to the way the
sample covariance matrix was regularized; either no regularization, Ledoit-
Wolf shrinkage (implemented through Scikit-Learn, Ledoit and Wolf, 2004;
Pedregosa et al., 2011) or diagonal regularization. Diagonal regularization
was defined as the sample covariance matrix with all the off-diagonal ele-
ments set to zero (see below); such as measure is also known as the normed
Euclidean distance. Note that city-block, Euclidean, and Chebyshev are also
special cases of the Minkowski measure where the norms are set to one, two
and infinity, respectively. To keep calculations consistent across all similarity
measures, vector representations for each stimulus were defined as the mean
vectors across trial presentations for that stimulus. Below are the equations
for each similarity measure and the covariance matrix regularization proce-
dures.

In constructing the similarity profiles, we only used similarity measures
that presented a mean Spearman correlation within three median absolute
deviations away from the group average (group refers to measures here). Mea-
sures that did not meet these criteria were considered outliers (these measures
were close to zero mean Spearman correlation). The median Spearman cor-
relation across the 18 similarity measures evaluated was 0.203 for the GS
study 0.125 and for the NI study and their median absolute deviation was
0.0482 for the GS study and 0.0234 for the NI study. The mean Spearman
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correlations (across participants) and the standard deviations for the mea-
sures that were more than three median absolute deviations away from the
group average were: Bhattacharya without covariance matrix regularization
(mean = 0.001 and s.d. = 0.004 for the GS study, mean = 0.0002 and s.d.
= 0.0006 for the NI study), Bhattacharya (d) (with diagonal regularization)
(mean = -0.0005 and s.d. = 0.003 for the GS study, mean = -0.0001 and s.d.
= 0.0007 for the NI study), variance of information (mean = -0.04 and s.d.
= 0.037 for the GS study, mean = -0.012 and s.d. = 0.004 for the NI study),
and distance correlation (mean = -0.037 and s.d. = 0.026 for the GS study,
mean = -0.0009 and s.d. = 0.0038 for the NI study). These statistics were
computed across the 110 original ROIs.

Below is a list of the equations for each measure considered.
For two classes represented as vectors

X = (x1, x2, ..., xn) ∈ Rn

and

Y = (y1, y2, ..., yn) ∈ Rn

where each component is computed as the arithmetic mean across m
observations (trial-by-trial β coefficients) per class, per run, and n is the
number of voxels. This notation is valid except for where these vectors show
subscripts denoting individual observations as opposed to mean vectors (this
is only the case when discussing distance correlation).

Dot product

XY T

Cosine distance

The (negative) cosine distance is:

−(1− XY T

‖X‖2‖Y ‖2
)

where ‖ · ‖2 denotes the L2 (Euclidean) norm.
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Minkowski distance

The (negative) Minkowski distance is:

−

(
n∑

i=1

|xi − yi|p
)1/p

For the city-block distance p = 1, for the Euclidean distance p = 2, and
for the Chebyshev distance p =∞.

Pearson correlation ∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where x̄ and ȳ are the component-wise arithmetic means of vectors X
and Y , respectively.

Spearman correlation

1− 6
∑n

i=1(rg(xi)− rg(yi))
2

n(n2 − 1)

where rg(xi) and rg(yi) are the ranks of the values xi and yi, respectively.
This formulation assumes distinct integer rankings.

Mahalanobis distance

The (negative) Mahalanobis measure between two random vectors coming
from the same multivariate normal distribution is:

−
√

(X − Y )TΣ−1(X − Y )

where Σ is the n× n covariance matrix between voxels.

Bhattacharyya distance

The (negative) Bhattacharyya measure between two multivariate normal
distributions N (X,ΣX) and N (Y,ΣY ), where each voxel-by-voxel covariance
matrix ΣX and ΣY is estimated separately for each class X and Y , respec-
tively, is:

−
(

1

8
(X − Y )T Σ̄−1(X − Y ) +

1

2
ln

(
detΣ̄√

detΣXdetΣY

))
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where

Σ̄ =
ΣX + ΣY

2

Distance correlation

The distance correlation is equal to 1 when X and Y span the same
linear subspace under some linear transformation and 0 when X and Y are
independent. It is defined as:

dCov(X, Y )√
dV ar(X)dV ar(Y )

where dCov2(X, Y ) is

1

m2

m∑
j=1

m∑
k=1

Aj,kBj,k

and dV ar2(X) is

1

m2

m∑
j=1

m∑
k=1

A2
j,k

where Aj,k is the matrix computed from doubly-centering the matrix aj,k
(subtracting row and column means while adding the grand mean), where

aj,k = ||Xj −Xk||2
Thus, Bj,k is computed from bj,k, where

bj,k = ||Yj − Yk||2
These pairwise distance matrices are computed from distances between

observations.

Variation of information

For two classes X and Y represented as two multivariate Gaussian dis-
tributions, the (negative) Variation of information is

V I(X;Y ) = I(X;Y )−H(X, Y )
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where H(X) is the entropy of X and I(X;Y ) is the mutual information
between X and Y .

For a multivariate Gaussian X, H(X) is:

1

2
ln(det(2πeΣX)) ∗ n

where n is the number of observations. The mutual information between
X and Y is:

1

2
ln(

detΣXdetΣY

detΣ∗ )

where Σ∗

=

[
ΣX ΣXY

ΣY X ΣY

]
and ΣXY is the between-class voxel covariance matrix. ΣY X is the trans-

pose of ΣXY . ΣX and ΣY are the same voxel-by-voxel covariance matrices
used in computing the Bhattacharyya distance.

Covariance matrix regularization

Two types of covariance matrix regularization were used for the Maha-
lanobis distance: diagonal regularization and Ledoit-Wolf regularization.

Diagonal regularization

Diagonal regularization for a covariance matrix Σ was computed as Σ◦ I,
where ◦ is the hadamard product (element-wise multiplication) and I is the
identity matrix.

The distance measure that comes as a result of this type of regularization,
when applied to the covariance matrix of the Mahalanobis distance, is also
known as the normed Euclidean distance.

Ledoit-Wolf regularization

Ledoit-Wolf regularization for a covariance matrix Σ was computed as:

(1− shrinkage)Σ + (shrinkage)(µ)I

where µ = trace(Σ)/n and the optimal shrinkage parameter is a value
between 0 and 1 estimated according to the derivation in (Ledoit and Wolf,
2004).
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Supplementary Figure 1: Voxels where Euclidean & Mahalanobis(r) overlap (outperform-
ing Pearson). Lateral views of the left and right hemispheres for the GS study (top row)
and the NI study (bottom row) displaying t statistics where both the Euclidean mea-
sure (blue) and the Mahalanobis(r) measure (red) outperformed the Pearson correlation
measure. The t statistics were based on a searchlight analysis of Spearman correlations
of each measure with each voxel’s SVM confusion matrix (see Materials and Methods).
Only displaying t statistics where p < 0.001 for paired sample t-tests, TFCE corrected;
computed with FSL’s randomise function with 5000 permutations, using as a mask the 12
ROIs with best accuracy (see Materials and Methods).

E. Post hoc searchlight analysis

Supplementary Figure 1 presents voxels where both the Euclidean mea-
sure and the Mahalanobis(r) measure outperformed Pearson correlation.
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