Supplementary Information

The impact of nitrogen oxides on electrochemical carbon dioxide reduction

Byung Hee Ko,¹ Bjorn Hasa,¹ Haeun Shin,¹ Emily Jeng,¹ Sean Overa,¹ Wilson Chen,¹ and Feng $Jiao^{1*}$

[1] Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716 (USA)

*Corresponding author: jiao@udel.edu

Supplementary Table 1. Standard potentials for CO₂RR, HER, NO₂RR, NORR, and N₂ORR.¹⁻³

Supplementary Figure 1. SEM images of (a) Cu, (b) Ag, and (c) Sn electrodes before electrolysis. Metal particles are deposited uniformly on GDL.

Supplementary Figure 2. Schematic of the three-compartment flow-cell. CO₂ gas is fed to the electrode-electrolyte interface without mass transport limitation, enabling CO₂RR at high current densities.

Supplementary Table 2. CO₂ electroreduction performance with the introduction of 0.83% NO impurity at 0.5 h for 0.5 h on Cu catalyst at a constant current density of 100 mA cm⁻² in 1M KHCO3 for 3 h. <3% FE of formate was detected from the anolyte side.

Supplementary Table 3. CO₂ electroreduction performance with the introduction of 0.83% NO impurity at 0.5 h for 0.5 h on Ag catalyst at a constant current density of 100 mA cm⁻² in 1M KHCO3 for 3 h. <2% FE of formate was detected from the anolyte side.

Supplementary Table 4. CO₂ electroreduction performance with the introduction of 0.83% NO impurity at 0.5 h for 0.5 h on Sn catalyst at a constant current density of 100 mA cm⁻² in 1M KHCO₃ for 3 h. 5-10% FE of formate was detected from the anolyte side and is included in the formate FE.

Supplementary Table 5. Conversion of NO during CO₂RR with the introduction of 0.83% NO, assuming NO is fully converted to NH₃. Conversion $(\%) =$
current loss due to NO \angle 100 Full conversion of NO to NU requires 57.4 mA Current loss due to NO $\frac{647}{64}$ current required to fully convert NO to NH₃ \times 100. Full conversion of NO to NH₃ requires 57.4 mA.

Supplementary Figure 3. Cyclic voltammograms on (a) Cu, (b) Ag, and (c) Sn catalysts in 1M KHCO₃ under 83.3% CO₂ and 16.7% Ar, and 83.3% CO₂, 15.87% Ar, and 0.83% NO. Scan rate: 50 $mV s⁻¹$. Onset potentials and cathodic currents shifted to more positive potentials when 0.83% NO was introduced, suggesting that NORR is more favorable than CO₂RR on all three catalysts.

Supplementary Figure 4. Cyclic voltammograms on (a) Cu, (b) Ag, and (c) Sn catalysts in 1M KHCO₃ under different concentrations of NO in Ar. Scan rate: 50 mV s⁻¹. Onset potentials of NORR are more positive than CO₂RR, and shifts in CV measurements suggest that NORR is mass transport limited.

Supplementary Figure 5. Faradaic efficiency and applied potential vs. time with 83.3% CO₂ and 16.7% Ar on (a) Cu, (b) Ag, and (c) Sn catalysts at a constant current density of 100 mA cm⁻² in 1 M KHCO₃ for 3 h. H₂ Faradaic efficiency increases over time due to slow flooding of the electrode, suggesting that NO_x is not responsible for the $H₂$ FE increase.

Supplementary Table 6. Loss in Faradaic efficiency during CO₂ electroreduction with the introduction of different concentrations of NO on Cu, Ag, and Sn catalysts.

Supplementary Figure 6. Faradaic efficiency and applied potential vs. time on (a) Cu, (b) Ag, and (c) Sn catalysts at a constant current density of 100 mA cm⁻² in 1 M KHCO₃ for 3 h. Gas feeds were 83.3% CO₂ and 16.7% Ar, and 83.3% CO₂, 15.87% Ar, and 0.83% NO₂ (yellow). 0.83% NO₂ was introduced at 0.5 h for 0.5 h. Corresponding Faradaic efficiencies are provided in Tables S7-9. Error bars represent the standard deviation of three independent measurements. Faradaic efficiency decreases with the introduction of $NO₂$ on all three catalysts.

Supplementary Table 7. CO₂ electroreduction performance with the introduction of 0.83% NO₂ impurity at 0.5 h for 0.5 h on Cu catalyst at a constant current density of 100 mA cm⁻² in 1M KHCO3 for 3 h. <3% FE of formate was detected from the anolyte side.

Supplementary Table 8. CO₂ electroreduction performance with the introduction of 0.83% NO₂ impurity at 0.5 h for 0.5 h on Ag catalyst at a constant current density of 100 mA $cm⁻²$ in 1M KHCO3 for 3 h. <2% FE of formate was detected from the anolyte side.

Supplementary Table 9. CO₂ electroreduction performance with the introduction of 0.83% NO₂ impurity at 0.5 h for 0.5 h on Sn catalyst at a constant current density of 100 mA cm⁻² in 1M KHCO₃ for 3 h. 5-10% FE of formate was detected from the anolyte side and is included in the formate FE.

Supplementary Figure 7. Faradaic efficiency and applied potential vs. time on (a) Cu, (b) Ag, and (c) Sn catalysts at a constant current density of 100 mA cm⁻² in 1 M KHCO₃ for 3 h. Gas feeds were 83.3% CO₂ and 16.7% Ar, and 83.3% CO₂, 15.87% Ar, and 0.83% N₂O (blue). 0.83% N₂O was introduced at 0.5 h for 0.5 h. Corresponding Faradaic efficiencies are provided in Tables S10-12. Error bars represent the standard deviation of three independent measurements. Faradaic efficiency decreases with the introduction of N_2O on Cu and Ag catalysts, while N_2O has negligible effect on Sn catalyst.

Supplementary Table 10. CO₂ electroreduction performance with the introduction of 0.83% N₂O impurity at 0.5 h for 0.5 h on Cu catalyst at a constant current density of 100 mA cm⁻² in 1M KHCO3 for 3 h. <3% FE of formate was detected from the anolyte side.

Supplementary Table 11. CO₂ electroreduction performance with the introduction of 0.83% N₂O impurity at 0.5 h for 0.5 h on Ag catalyst at a constant current density of 100 mA $cm⁻²$ in 1M KHCO3 for 3 h. <2% FE of formate was detected from the anolyte side.

Supplementary Table 12. CO₂ electroreduction performance with the introduction of 0.83% N₂O impurity at 0.5 h for 0.5 h on Sn catalyst at a constant current density of 100 mA cm⁻² in 1M KHCO₃ for 3 h. 5-10% FE of formate was detected from the anolyte side and is included in the formate FE.

Supplementary Figure 8. Cyclic voltammograms on (a) Cu, (b) Ag, and (c) Sn catalysts in 1M KHCO₃ under 83.3% CO₂ and 16.7% Ar, and 83.3% CO₂, 15.87% Ar, and 0.83% NO₂. Scan rate: 50 mV s⁻¹. Onset potentials and cathodic currents shift to more positive potentials when 0.83% NO₂ is introduced, suggesting that $NO₂RR$ is more favorable than $CO₂RR$ on all three catalysts.

Supplementary Figure 9. Cyclic voltammograms on (a) Cu, (b) Ag, and (c) Sn catalysts in 1M KHCO₃ under different concentrations of $NO₂$ in Ar. Scan rate: 50 mV s⁻¹. Onset potentials of NO₂RR are more positive than CO₂RR, and shifts in CV measurements suggest that NO₂RR is mass transport limited.

Supplementary Figure 10. Cyclic voltammograms on (a) Cu, (b) Ag, and (c) Sn catalysts in 1M KHCO₃ under 83.3% CO₂ and 16.7% Ar, and 83.3% CO₂, 15.87% Ar, and 0.83% N₂O. Scan rate: 50 mV s⁻¹. Onset potentials and cathodic currents shift to more positive potentials when N₂O is introduced on Cu and Ag catalysts, suggesting that N_2 ORR is more favorable than CO₂RR on Cu and Ag catalysts. N₂O has negligible effect on Sn catalyst.

Supplementary Figure 11. Cyclic voltammograms on (a) Cu, (b) Ag, and (c) Sn catalysts in 1M KHCO₃ under different concentrations of N₂O in Ar. Scan rate: 50 mV s⁻¹. Onset potentials of N_2 ORR are more positive than CO₂RR and shifts in CV measurements suggest that N₂ORR is mass transport limited on Cu and Ag catalysts. N2O has negligible effect on Sn catalyst.

Supplementary Table 13. Loss in Faradaic efficiency during CO₂ electroreduction with the introduction of 0.83% NO, 0.83% NO₂, and 0.83% N₂O on Cu, Ag, and Sn catalysts.

Supplementary Figure 12. pH measured at the outlet of the electrolyzer from a constant current 100-mA cm⁻² CO₂RR experiment with the introduction of various NO_x. pH of 1M KHCO₃ before entering the electrolyzer was 7.8 \pm 0.1. Error bars represent the standard deviation of independent measurements from Cu, Ag, and Sn catalysts. The presence of NO and N_2O has negligible effect in pH, while the presence of NO₂ slightly decreases the pH by 0.03.

Supplementary Figure 13. Ammonia quantification using indophenol blue method. (a) Absorbance vs. time of 27.1 mg L⁻¹ NH₄OH. Reaction is complete after 10 minutes. (b) Photograph of 6.8, 13.6, and 27.1 mg L⁻¹ NH₄OH (from left to right) at 20 minutes. (c) Absorption spectra for different concentrations of NH₄OH measured at 20 minutes. (d) Calibration curve for NH₄OH. Absorbance was measured at 20 minutes. NH2OH has negligible interference. All solutions were prepared in 0.25M KHCO₃ to match the condition of the liquid products in the electrolyte.

Supplementary Figure 14. Hydroxylamine quantification. (a) Absorbance vs. time of 25 mg L-1 NH₂OH. Reaction is complete after 10 minutes. (b) Photograph of 0, 10, and 25 mg L⁻¹ NH₂OH (from left to right) at 20 minutes. (c) Absorption spectra for different concentrations of NH2OH measured at 20 minutes. (d) Calibration curve for NH2OH. Absorbance was measured at 20 minutes. Absorbance was subtracted from that of 0 mg L^{-1} NH₂OH. NH₄OH has negligible interference. All solutions were prepared in $0.25M$ KHCO₃ to match the condition of the liquid products in the electrolyte.

Supplementary Figure 15. Chromatogram of gas products from electrolysis in 83.3% CO₂, 15.87% Ar, and 0.83% NO on (a) Cu, (b) Ag, and (c) Sn catalysts at 100 mA cm⁻². TCD and Molecular sieve 5 A (MS) column are used, and 0 to 2.1 min is shown.

Supplementary Table 14. Faradaic efficiency of NO electroreduction products produced during electrolysis with 83.3% CO₂, 15.87% Ar, and 0.83% NO on Cu, Ag, and Sn catalysts at a constant current density of 100 mA cm⁻² in 1 M KHCO₃ for 3 h. Concentration of N₂O in the gas product stream was below the detection limit of GC, suggesting that N_2O FE is below 2% on all three catalysts.

Supplementary Figure 16. Photograph of the FEMS setup.

Supplementary Note: Design of FEMS measurement

To differentiate N₂ (m/z=28, 14) from N₂O (m/z=44, 30, 28, 14), the signals associated with N₂O need to be determined from $m/z=44$ or 30 signals. However, when the gas feed is 83.3% CO₂+0.83% NO in Ar, $m/z=44$ and 30 signals are dominated by $CO₂$ and NO, respectively, making the determination of the relatively small N_2O signals unreliable. In addition, CO_2 reduction products such as CO, methane, ethylene, and ethanol complicate the analysis of NORR products. As an alternative, FEMS experiment was conducted using 0.83% NO in Ar in the absence of $CO₂$ to gain insight on the NORR products.

Supplementary Figure 17. Mass spectra of (a) NH₄OH, (b) NO, (c) N₂O, (d) N₂, (e) H₂O, and (f) CO₂. MS signals were deconvoluted using the following mass spectra.

Supplementary Figure 18. MS signal vs. time obtained from FEMS on Cu in 1M KHCO₃ with 0.83% NO in Ar before deconvolution for (a) m/z=2, (b) m/z=12, (c) m/z=17, (d) m/z=18, (e) m/z=28, (f) m/z=30, and (g) m/z=44. -0.90 V vs. RHE was applied for approximately 2 minutes starting at t=1.5 min.

Supplementary Figure 19. MS signal vs. time obtained from FEMS on Cu in 1M KHCO₃ with 0.83% NO in Ar for (a) m/z=17 with contribution from water obtained from m/z=18, (b) m/z=28 with contribution from CO_2 in electrolyte obtained from $m/z=12$, and (c) $m/z=44$ with contribution from CO₂ in electrolyte obtained from $m/z=12$. $m/z=12$ has been smoothed. -0.90 V vs. RHE was applied for approximately 2 minutes starting at t=1.5 min. The differences are attributed to NORR products.

Supplementary Figure 20. MS signal vs. time obtained from FEMS on Ag in 1M KHCO₃ with 0.83% NO in Ar before deconvolution for (a) m/z=2, (b) m/z=12, (c) m/z=17, (d) m/z=18, (e) m/z=28, (f) m/z=30, and (g) m/z=44. -1.00 V vs. RHE was applied for approximately 2 minutes starting at t=1.5 min.

Supplementary Figure 21. MS signal vs. time obtained from FEMS on Ag in 1M KHCO₃ with 0.83% NO in Ar for (a) m/z=17 with contribution from water obtained from m/z=18, (b) m/z=28 with contribution from CO_2 in electrolyte obtained from $m/z=12$, and (c) $m/z=44$ with contribution from CO₂ in electrolyte obtained from $m/z=12$. $m/z=12$ has been smoothed. -1.00 V vs. RHE was applied for approximately 2 minutes starting at t=1.5 min. The differences are attributed to NORR products.

Supplementary Figure 22. (a) Measured current density vs. time, and deconvoluted MS signal vs. time for m/z=2, m/z=17, (b) m/z=28, m/z=30, and m/z=44 from FEMS on Ag catalyst in 1M KHCO₃ with 0.83% NO in Ar. -1.00 V vs. RHE was applied for approximately 2 minutes starting at t=1.5 min. NORR products have been deconvoluted using the mass spectra of individual products shown in Supplementary Fig. 17. Additional information is provided in the methods section and Supplementary Figs. 20 and 21.

Supplementary Figure 23. MS signal vs. time obtained from FEMS on Sn in 1M KHCO₃ with 0.83% NO in Ar before deconvolution for (a) m/z=2, (b) m/z=12, (c) m/z=17, (d) m/z=18, (e) m/z=28, (f) m/z=30, and (g) m/z=44. -1.05 V vs. RHE was applied for approximately 2 minutes starting at t=1.5 min.

Supplementary Figure 24. MS signal vs. time obtained from FEMS on Sn in 1M KHCO₃ with 0.83% NO in Ar for (a) m/z=17 with contribution from water obtained from m/z=18, (b) m/z=28 with contribution from $CO₂$ in electrolyte obtained from m/z=12, and (c) m/z=44 with contribution from CO₂ in electrolyte obtained from $m/z=12$. $m/z=12$ has been smoothed. -1.05 V vs. RHE was applied for approximately 2 minutes starting at t=1.5 min. The differences are attributed to NORR products.

Supplementary Figure 25. (a) Measured current density vs. time, and deconvoluted MS signal vs. time for m/z=2, m/z=17, (b) m/z=28, m/z=30, and m/z=44 from FEMS on Sn catalyst in 1M KHCO₃ with 0.83% NO in Ar. -1.05 V vs. RHE was applied for approximately 2 minutes starting at t=1.5 min. NORR products have been deconvoluted using the mass spectra of individual products shown in Supplementary Fig. 17. Additional information is provided in the methods section and Supplementary Figs. 23 and 24.

Supplementary Figure 26. Chromatogram of gas products from electrolysis in 83.3% CO₂+0.83% N_2O in Ar on (a) Cu, (b) Ag, and (c) Sn catalysts at 100 mA cm⁻². TCD and Molecular sieve 5 A (MS) column were used, and 0 to 2 min is shown.

Supplementary Figure 27. XPS measurements of (a) Cu, (b) Ag, and (c) Sn electrodes before exposure to 0.83% NO (t=0 h), after exposure to 0.83% NO (t=1 h), and after 3 h electrolysis (t=3 h) from a 100 mA cm^{-2} constant current $CO₂RR$ experiment with the introduction of 0.83% NO. Corresponding N 1s XPS measurements of (d) Cu, (e) Ag, and (f) Sn electrodes. Incorporation of N into GDL is observed on Cu and Sn electrodes. In the case of Ag electrode, the investigation of N incorporation is limited due to the presence of PVP surfactant. Corresponding details are provided in Supplementary Table 15.

Supplementary Table 15. XPS N 1s peak positions and surface nitrogen content (wt %) of Cu, Ag, and Sn samples obtained from a 100 mA cm^{-2} constant current $CO₂RR$ experiment with the introduction of 0.83% NO. Sample time refers to the time at which the electrode was taken out of the electrolyzer. N content has been calculated using the following equation: N content (%) =

 ΣN (wt %) $\frac{2N (wt 30)}{2N (wt 30) + metal (wt 30)} \times 100$, where ΣN (wt %) = graphitic N (wt %) + pyrollic N (wt %) + pyridinic N (wt%) or PVP (wt%), and metal = Cu, Ag, or Sn.

Supplementary Figure 28. XPS measurements of (a) Cu, (b) Ag, and (c) Sn electrodes before exposure to 0.83% NO₂ (t=0 h), after exposure to 0.83% NO₂ (t=1 h), and after 3 h electrolysis (t=3 h) from a 100 mA cm^{-2} constant current CO_2 RR experiment with the introduction of 0.83% NO2. Corresponding N 1s XPS measurements of (d) Cu, (e) Ag, and (f) Sn electrodes. Incorporation of N into GDL is observed on Cu and Sn electrodes. In the case of Ag electrode, the investigation of N incorporation is limited due to the presence of PVP surfactant. Corresponding details are provided in Supplementary Table 16.

Supplementary Table 16. XPS N 1s peak positions and surface nitrogen content (wt %) of Cu, Ag, and Sn samples obtained from a 100 mA $cm⁻²$ constant current $CO₂RR$ experiment with the introduction of 0.83% NO₂. Sample time refers to the time at which the electrode was taken out of the electrolyzer. N content has been calculated using the following equation: N content =

 ΣN (wt %) $\frac{2N (wt 30)}{2N (wt 30) + metal (wt 30)} \times 100$, where ΣN (wt %) = graphitic N (wt %) + pyrollic N (wt %) + pyridinic N (wt%) or PVP (wt%), and metal = Cu, Ag, or Sn.

Supplementary Figure 29. XPS measurements of (a) Cu, (b) Ag, and (c) Sn electrodes before exposure to 0.83% N₂O (t=0 h), after exposure to 0.83% N₂O (t=1 h), and after 3 h electrolysis (t=3 h) from a 100 mA cm^{-2} constant current $CO₂RR$ experiment with the introduction of 0.83% N₂O. Corresponding N 1s XPS measurements of (d) Cu, (e) Ag, and (f) Sn electrodes. Incorporation of N into GDL is observed on Cu and Sn electrodes. In the case of Ag electrode, the investigation of N incorporation is limited due to the presence of PVP surfactant. Corresponding details are provided in Supplementary Table 17.

Supplementary Table 17. XPS N 1s peak positions and surface nitrogen content (wt %) of Cu, Ag, and Sn samples obtained from a 100 mA $cm⁻²$ constant current $CO₂RR$ experiment with the introduction of 0.83% N₂O. Sample time refers to the time at which the electrode was taken out of the electrolyzer. N content has been calculated using the following equation: N content =

 ΣN (wt %) $\frac{2N (wt 30)}{2N (wt 30) + metal (wt 30)} \times 100$, where ΣN (wt %) = graphitic N (wt %) + pyrollic N (wt %) + pyridinic N (wt%) or PVP (wt%), and metal = Cu, Ag, or Sn.

Supplementary Figure 30. XPS measurements of electrodes with high catalyst loadings of 2.0 mg cm^{-2} Cu, Ag, and Sn, and no catalyst at t=1 h after exposure to (a) 0.83% NO, (b) 0.83% NO₂, and (c) 0.83% N2O for 0.5 h during CO² electrolysis. The results confirm that N is incorporated in GDL rather than metal catalysts.

Supplementary Figure 31. Photograph of electrochemical batch cell for XAS operando experiments.

Supplementary Figure 32. Cu K-edge (a) XANES and (f) EXAFS of Cu catalyst obtained after exposure to 0.23% NO₂ for 0.5 h. 0.23% was used instead of 0.83% due to the availability of the gas at the time of the experiment. Nonetheless, insight on the effect of the introduction of $NO₂$ during CO₂RR on the catalyst oxidation state is still obtained. Cu catalyst is quickly reduced to metallic Cu once current is applied, suggesting that Cu catalyst remains or revert to fully metallic under reaction conditions after $NO₂$ is removed from the $CO₂$ stream

Supplementary Figure 33. Cu K-edge (a) XANES and (f) EXAFS of Cu catalyst obtained after exposure to 0.83% N_2O for 0.5 h. Cu catalyst is quickly reduced to metallic Cu once current is applied, suggesting that Cu catalyst remains or revert to fully metallic under reaction conditions after N_2O is removed from the CO_2 stream

Supplementary Figure 34. SEM images of Cu electrodes obtained at (a) t=1 h and (d) t=3 h after exposure to 0.83% NO, (b) t=1 h and (e) t=3 h after exposure to 0.83% NO₂, and (c) t=1 h and (f) t=3 h after exposure to 0.83% N₂O during $CO₂$ electrolysis. Change in Cu catalyst obtained at t=1 and 3 h compared to that obtained at t=0 h (Supplementary Fig. 1) is negligible.

Supplementary Figure 35. SEM images of Ag electrodes obtained at (a) t=1 h and (d) t=3 h after exposure to 0.83% NO, (b) t=1 h and (e) t=3 h after exposure to 0.83% NO₂, and (c) t=1 h and (f) t=3 h after exposure to 0.83% N₂O during CO₂ electrolysis. Change in Ag catalyst obtained at t=1 and 3 h compared to that obtained at t=0 h (Supplementary Fig. 1) is negligible.

Supplementary Figure 36. SEM images of Sn electrodes obtained at (a) t=1 h and (d) t=3 h after exposure to 0.83% NO, (b) t=1 h and (e) t=3 h after exposure to 0.83% NO₂, and (c) t=1 h and (f) t=3 h after exposure to 0.83% N₂O during CO₂ electrolysis. The particle size for Sn catalyst obtained at t=1 and 3 h increased noticeably compared to that obtained at t=0 h (Supplementary Fig. 1)

Supplementary Figure 37. SEM image of Sn electrode obtained at t=1 h after CO₂RR without NO_x impurity. Because the particle size increased after CO_2RR without NO_x impurity, NO_x impurities are unlikely the cause of the size change.

e

Supplementary Figure 38. Chromatogram of (a) 2% H₂, 1% CO, 1% CH₄, 1% C₂H₄, 0.50% C₂H₆, 0.25% C₃H₆, 0.25% C₃H₈ in Ar, (b) 1% N₂ in Ar, (c) 1% NO in Ar, and (d) 1% N₂O in Ar. Top and bottom are measured by FID and TCD, respectively. (e) Retention time of different components in TCD during GC analysis. Molecular sieve 5 A (MS) and Haysep D (HayD) columns are used for separation of gases.

Supplementary References

- 1. Rosca, V., Duca, M., DeGroot, M. T. & Koper, M. T. M. Nitrogen Cycle Electrocatalysis. *Chem. Rev.* **109**, 2209–2244 (2009).
- 2. Bratsch, S. G. Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K. *J. Phys. Chem. Ref. Data* **18**, 1–21 (1989).
- 3. Jouny, M., Luc, W. & Jiao, F. General Techno-Economic Analysis of CO₂ Electrolysis Systems. *Ind. Eng. Chem. Res.* **57**, 2165–2177 (2018).