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Supplementary text 

 

General description of FluoSim 

 

Programing details 

The FluoSim source code was written with the C++ programming language using the ISO/IEC 

14882:2011 standard (C++11 standard). The FluoSim program and its related libraries were 

compiled with the 32bit MinGW compiler (MinGW 4.8 32bit) and can be executed on 32-bit 

and 64-bit Windows operating systems. The FluoSim project has been developed using the 

Integrated Development Environment QtCreator 3.0.1. 

 

Libraries 

The C++ standard library was used extensively to write the FluoSim source code. The Qt library 

(Qt 5.2.1) has been used to implement the Graphical User Interface. To allow live rendering 

of the simulations, FluoSim benefits from hardware acceleration through the OpenGL library 

(OpenGL 3.2). OpenGL extensions have been loaded with the glew library. Vectors and 

matrices manipulations utilized in FluoSim calculations are implemented in the glm library. 

The lmfit library which contains functions to perform non-linear fitting has been used during 

MSD fitting. Qt, OpenGL, glew and glm libraries are dynamically linked to FluoSim while the 

lmfit library has been directly integrated in the source code. The program is provided as an 

executable file within a folder containing the necessary .dll files to operate properly (see the 

user manual for a description of how to run the program). 

 

Code availability 

The software FluoSim (v1.0) is released under a GNU GPL v3 license as supplementary 

material accompanying this manuscript, and as an archive that can be downloaded at 

https://www.iins.u-bordeaux.fr/SOFTWARE. The FluoSim (v1.0) release and its source code 

are available at https://github.com/mlagardere/FluoSim under the same license. 

 

General algorithm 

Our computational approach is based on previously reported frameworks to describe AMPA 

receptor trafficking at synapses 1 and actin retrograde flow in growth cones 2. However, 

whereas in previous programs the simulations were run one by one, and later visualized using 

a commercial image analysis software (Metamorph, Molecular Devices), FluoSim is a stand-

alone program that allows the fast calculation of thousands of single molecule positions and 

intensities in parallel, thereby compatible with live image rendering. A further important 

improvement over previous approaches is that the working space is now determined from an 

imported microscopy image with potentially complex shapes. The cell outline is imported as 

a region file previously made in Metamorph or Image J, or directly drawn on the screen using 

a toolbox. This internal space is randomly populated by a given number of molecules (1-

https://en.wikipedia.org/wiki/C%2B%2B#Standardization
https://en.wikipedia.org/wiki/C%2B%2B#Standardization
https://www.iins.u-bordeaux.fr/SOFTWARE
https://github.com/mlagardere/FluoSim
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150,000), GFP-Nrx1β in our case. Those molecules are kept within the cell boundaries by 

rebound conditions. An individual molecule is characterized by its 2D coordinates x and y over 

time t, and its intensity. The total duration of the simulations (typically 5 s - 10 min) is set 

according to the experiment to model. The time step of the simulations ∆t is varied between 

1-100 ms, corresponding to typical detector frame rates in FCS and SPT experiments, 

respectively. The initial position of a freely diffusing molecule is defined by x(0) = x0 and y(0) 

= y0, taken as random numbers to fall within the cell boundaries. The diffusion coefficient 

outside the contact area (Dout) is chosen around 0.3 µm²/s, based on SPT data, while the 

contact area can be characterized by a lower diffusion coefficient (Din in the range of 0.1-0.3 

µm²/s), owing to molecular crowding and steric hindrance. An additional coefficient called 

crossing probability (Pcrossing between 0 and 1) describes the potentially limited penetrability 

of molecules into the contact. A small fraction of immobile Nrx1β molecules was observed 

(~5% with D < 10-3 µm²/s), which might be due to non-specific adhesion or endocytosis3, and 

introduced in the program at random positions with zero diffusion coefficient. In the contact 

area, surface-diffusing Nrx1β and Nlg1 molecules are allowed to bind reversibly, with first 

order binding and unbinding rates kon and koff, respectively (both in s-1). The koff value was 

taken from surface plasmon resonance data obtained on purified extracellular domains of 

Nrx1β and Nlg1 4 (0.015 s-1), while kon was inferred from previous experiments of Nrx1β-

coated Quantum dots interacting with neurons expressing Nlg1 5 (0.15 s-1). Bound complexes 

were allowed to diffuse at a lower diffusion coefficient Dtrap = 0.04 µm²/s, reflecting their slow 

movement within the cell-cell contact. The number of Nlg1-mCherry binding sites is assumed 

to be in excess (consistently with high expression levels in COS-7 cells), such that the binding 

rate kon is maintained constant throughout the simulations, i.e. it does not depend on the 

number of Nrx1β-Nlg1 complexes formed over time. We further consider a uniform (i.e. not 

discrete) distribution of binding sites in the trapping area, also consistent with a high density 

of Nlg1 molecules. 

 

Calculation of positions 

At each time step, the (x,y) coordinates of each molecule are incremented by the distances 

(Δx, Δy), which depend on whether the molecule is outside or inside the contact area, or in 

an adhesive complex. If the molecule is outside the contact area, it follows a random walk 

with diffusion coefficient Dout. The positions x(t) and y(t) are then incremented at each time 

step by nx(2D∆t)1/2 and ny(2D∆t)1/2, respectively, where nx and ny are random numbers 

generated from a normal distribution with 0 mean and variance unity, to account for the 

stochastic nature of diffusion. This ensures that the mean square displacement stays 

proportional to time, i.e. <x2 + y2> = 4Doutt. If the adhesion molecule reaches a contact area, 

it is set to diffuse with a lower diffusion coefficient Din, with increments nx(2Din∆t)1/2 and 

ny(2Din∆t)1/2. Whenever the molecule resides in the contact area, it is allowed to bind to its 

counter-receptor only if the probability of coupling in this time interval, Pcoupl = kon∆t, is 

greater than a random number N between 0 and 1 generated from a uniform distribution. If 

this is not the case, the molecule continues to diffuse until both conditions are met, i.e. the 



4 
 

molecule remains in the contact area and the probability of binding is greater than the 

random number N, chosen different at each time increment. Upon binding, the adhesive 

complex is set to diffuse with a slow diffusion coefficient Dtrap, thus the positions x(t) and y(t) 

are incremented by nx(2Dtrap∆t)1/2 and ny(2Dtrap∆t)1/2, respectively. The complex stays bound 

until the probability for dissociation Pdetach = koff∆t, exceeds another random number N’. It 

then binds again or escapes into the contact or outside space. Starting with random positions, 

it can take a relatively long time before molecules reach a steady-state distribution. Yet, it is 

necessary that the molecular system is at steady-state before recording a given simulation. 

To accelerate this process, an option is proposed in FluoSim to theoretically estimate the 

steady-state, by placing more molecules in the membrane compartments, considering both 

slower diffusion and adhesion. The molecular enrichment was then given by the formula 

(Pcrossing Dout /Din) (1+kon/koff). Using those dynamic coefficients, we chose the value of Pcrossing 

for each type of simulation (0.25-0.7), to match the experimental enrichment of GFP-Nrx1β 

in the cell contact normalized to outside areas. 

 

Molecule size, intensity, and photophysics 

In addition to its position, each molecule is defined by its size and fluorescence intensity over 

time. Single molecules are represented either by a discrete point of intensity 1, or by a 

Gaussian intensity profile with a peak value directly coded on a 16-bit grey scale (0-65535 

levels), or expressed in photons/sec associated with a conversion rate, or gain, which gives 

the number of grey levels read on the virtual camera chip per incoming photon. The Gaussian 

representation comprises an adjustable width σ in the order of λ/(2 x N.A.), where λ is the 

emission wavelength of the fluorophore, and N.A. is the numerical aperture of the objective 

(1.49 in our set-up). The corresponding FWHM is then equal to 2σ √(2.ln2)6. In our 

experiments, we used EGFP-Nrx1β: σGFP = 510/(2 x 1.49) =  171 nm, and FWHMGFP = 470 nm, 

and Atto647N-conjugated Nanobody: σAtto647N = 670/(2 x 1.49) =  225 nm and FWHMAtto647N = 

529 nm. 

Transitions between ON/OFF intensity values are set by two photo-physical parameters: the 

switch-on rate (kon
Fluo) and the switch-off rate (koff

Fluo). These rates are in units of sec-1 and 

represent the probabilities per unit of time that a molecule will switch from a state where it 

emits fluorescence, to a state where it does not emit fluorescence, and vice versa. The rates 

are specific for each fluorophore (GFP, PAGFP, mCherry, mEos2, Atto dyes) and strongly 

depend on the laser powers used to image them. By playing on these two rates, many types 

of experiments can be mimicked. For example, to model a PALM or STORM experiment, one 

sets a low switch-on rate to induce sparse stochastic emission and a high switch-off rate to 

induce rapid extinction of fluorescence. In a PAINT experiment, kon
Fluo represents instead the 

rate of binding of fluorescent ligands in solution to receptors on the cell surface, which 

spontaneously appear in the oblique illumination plane, whereas koff
Fluo combines 

fluorophore photo-bleaching and probe detachment from the cell surface. To mimic a FRAP 

experiment, koff
Fluo is set to a high level in a given ROI to quickly and irreversibly photo-bleach 
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fluorophores, then monitor recovery. Conversely, in a Photo-Activation of Fluorescence (PAF) 

experiment, kon
Fluo is set to a high value in the ROI to be activated, and the fluorescence 

redistribution is followed. In FCS experiments, a low value of koff
Fluo can be introduced to 

reproduce observational photo-bleaching. 

 

Running simulations and data export 

Once realistic parameters have been tested in live mode, simulations can be generated, and 

results are exported in various forms. For SPT simulations, .trc files containing the spatial 

positions and intensity of each molecule over time are saved, and can be loaded later for 

offline visualization and analysis (menu SPT Analysis). For FRAP and PAF simulations, average 

intensities over time in defined ROIs are saved as txt files. For FCS simulations, both intensity 

fluctuations and autocorrelation values over time are exported as .txt files. For SRI 

simulations, a single super-resolved image integrating all single molecule localizations is 

exported as a TIFF file. An option is also given to export simulated data as multi-TIFF image 

stacks. In this mode, single molecule intensity values can be super-imposed to various sources 

of noise, including a Poisson shot noise applied to the signal and background to mimic the 

stochastic photon emission of the fluorophores, as well as a Gaussian readout noise applied 

to a camera offset. By adjusting those various parameters, one can generate images with 

realistic signal-to-noise rendering. 

 

List of simulations performed 

 

SPT simulations 

To mimic the sparse density of GFP-Nrx1β bound to Nanobody-Atto647N as used in uPAINT 

experiments, a low number of molecules were introduced in the model cell (250 molecules 

corresponding to a surface density of 0.43 mol/µm²). The length of the simulated trajectories 

was adjusted to the experimental one by choosing koff
Fluo = 3 s-1 corresponding to a mean 

trajectory duration of 340 ms (i.e. 17 frames of 20 ms each). The parameter kon
Fluo which 

determines the number of fluorescent molecules was set to 1 s-1, so as to yield approximately 

the same density of visible molecules per surface area as in the experiments (0.1 mol/µm²). 

Sequences of 4,000 frames were generated as in the experiments, and only trajectories longer 

than 20 frames were selected (total 2244 trajectories). The diffusion coefficient, D, was 

calculated for each trajectory, from linear fits of the first 4 points of the MSD function versus 

time. Five independent simulations were run for each set of parameters, allowing the 

construction of histograms of diffusion coefficients directly comparable to SPT experiments. 

 

FRAP simulations 

To match the very dense distribution of GFP-Nrx1β molecules that characterize FRAP 

experiments, a large number of molecules was introduced in the virtual cell (150’000 
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molecules corresponding to a surface density of ~200 mol/µm²). Simulations of 1,000 frames, 

including a baseline of 100 frames, were generated with a time step of 100 ms (total duration 

100 s). Two areas were recorded, one within the adhesive contact, the other outside 

(bleached diameter = 2.8 µm). The photo-activation rate was set to a maximal value (kon
Fluo = 

5 s-1), i.e. all molecules are initially fluorescent, while the photo-bleaching rate is set to zero 

during baseline and recovery acquisition (i.e. observational photo-bleaching is neglected 

here). During the short photo-bleaching period (400 ms), the photo-bleaching rate is set to 

koff
Bleach = 4.25 s-1 for 4 frames, to precisely match the initial drop of fluorescence observed 

experimentally (~75%). The number of molecules in the photo-bleached areas was computed 

over time, and normalized between 1 (baseline number of fluorescent molecules before 

photo-bleaching) and zero (number of fluorescent molecules right after photo-bleaching). 

FRAP simulations were repeated 30 times, and the corresponding curves were averaged. 

 

PAF simulations 

Although initially non-fluorescent, PAGFP-Nrx1β molecules are likely expressed at the same 

levels as GFP-Nrx1β (since the two constructs bear the same promoter), thus a large number 

of molecules was also introduced in the virtual cell (respectively 150’000 or 72’000 molecules 

for contact and no contact experiments, both corresponding to a surface density of ~40 

mol/µm²). Simulations of 1,200 frames, including a baseline of 25 frames, were generated 

with a time step of 100 ms (total duration 120 s). Two areas were recorded, one within the 

adhesive contact, the other outside (photo-activated diameter = 2.8 µm). Under the LIVE 

menu, the photo-activation rate kon
Fluo is set to zero while the photo-bleaching rate koff

Fluo is 

tuned to its maximal value (10 s-1), until all molecules are non-fluorescent. Then koff
Fluo is set 

back to 0 during baseline and recovery acquisition (i.e. observational photo-bleaching is 

neglected). An offset of 500 grey levels with a Gaussian noise of 10 grey levels was chosen to 

match the cell autofluorescence level before photo-activation. During the short photo-

activation period (300 ms), the photo-activation rate is set to kon
Fluo = 1 s-1 for 3 frames, so as 

to match the initial increase of fluorescence observed experimentally (x 3 for no-contact areas 

and or x 10 for contact regions). The results of the simulations were exported as multi-TIFF 

image stacks, that were subsequently opened and analyzed in Metamorph. The average 

intensity in the photo-activated areas was computed over time, and normalized between 0 

(background before photo-activation) and 1 (number of fluorescent molecules right after 

photo-activation). PAF simulations were repeated 20 times, and the corresponding curves 

were averaged. 

 

FCS simulations 

To mimic the intermediate densities of GFP-Nrx1β bound to Nanobody-Atto647N used in FCS 

experiments, 200 or 2500 molecules (corresponding to 0.27 and 2.8 mol/µm²) were entered 

in the program, to simulate cells forming or not forming adhesive contacts, respectively. 

These values roughly correspond to the experimental labeling densities, and ensure large 

enough fluctuations to calculate a reliable autocorrelation function. Simulations of 500,000 
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or 1,000,000 frames with time steps of 5 ms were generated for the two conditions, 

respectively. The diffraction-limited laser spot is defined by a normalized Gaussian intensity 

profile with a full width at half maximum (FWHM) of 0.6 µm, and maximal value of 1. A 

molecule which reaches the ROI containing the virtual laser spot, is counted with an intensity 

equal to the value of this Gaussian function, at the location r from the center of the laser spot. 

The resulting intensity fluctuations over time were analyzed by computing the 

autocorrelation function. To mimic the impact of photo-bleaching in the probing area, we 

introduced in the simulations a small photo-bleaching rate, proportional to the local laser 

intensity. Hence, the photo-bleaching rate also follows a Gaussian distribution with a maximal 

rate koff
Bleach at the beam center (koff

Bleach = 0.4 s-1, 10 times less than for FRAP). Photo-

bleaching had more impact on the autocorrelation function when calculated for the slower 

molecules in the adhesive contact. FCS simulations were repeated 10 times, and the 

corresponding autocorrelation functions normalized to their initial value, were averaged. 

 

SRI simulations 

To mimic STORM experiments that rely on the dense labeling of GFP-Nrx1β bound to 

Nanobody-Alexa647, a large number of molecules were introduced in the virtual cell (70,000 

corresponding to 125 mol/µm²). After the diffusion/trapping steady-state has been reached 

or imposed, the simulation is paused and all diffusion coefficients are set to zero to mimic cell 

fixation. This procedure accelerates the calculator which does not have to compute new 

positions at each time frame and just updates fluorescence states. Alternatively, to take into 

account the fact that a fraction of transmembrane molecules may still be mobile even after 

fixation with aldehydes7, one can impose slow diffusion coefficients. The switch-on rate kon
Fluo 

at which fluorescent dyes spontaneously emit light was determined by measuring the 

fluorescence intensity collected from single Alexa647-conjugated GFP Nanobody molecules 

bound to the glass coverslip during a STORM sequence, and counting the number of peaks 

(mean ± sem = 2.5 ± 0.3 peaks over a time period of 420 sec, n = 20 molecules analyzed, giving 

kon
Fluo = 0.006 s-1). The switch-off rate koff

Fluo was determined by taking the inverse of the 

number of time frames during which single Alexa647-conjugated GFP Nanobodies emitted 

light before entering again the non-emitting state (5.4 ± 0.5 frames of 20 ms, 87 events 

analyzed), giving a value of koff
Fluo = 9.3 s-1. The on-off duty cycle δ = kon

Fluo/(kon
Fluo + koff

Fluo) is 

the fraction of time that fluorophores spend in the light-emitting state, and equals here 

0.00064, very close to reported values for single Alexa647 dyes in MEA-based STORM buffer 
8. The number of detected molecules per plane in the field of view was around N = 45, 

corresponding to a total number N/δ = 70,300 actual molecules in the cell geometry that was 

imaged. Then, simulations were run for 80,000 frames of 20 ms each (total time of 1,600 sec), 

and a single 16-bit image was generated which contained the integration of all molecule 

localizations throughout time. To generate a higher number of detected molecules for CNN 

applications, the parameter kon
Fluo was multiplied by a factor of 5 (to 0.03 s-1) to mimic the 

increase in fluorescence emission induced by the 405 nm laser. Three parameters are used to 

render the super resolution image: the intensity associated with a single detection; the zoom 
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factor which is the ratio between the pixel sizes of the super-resolved image and the low 

resolution reference picture (a 5-fold zoom corresponds to a pixel size of 32 nm in the high 

resolution image); and the localization precision, which corresponds to the standard deviation 

of the Gaussian distribution used to spread detections around the theoretical position of the 

molecule (σ = 25 nm, FWHM = 58 nm). The SRI still image is saved as a TIFF file. 

 

Use of FluoSim to train deep CNNs for fluorescence image reconstruction 

Deep-STORM training procedure 

To assess the ability of FluoSim to train deep learning algorithms, we used Deep-STORM 9, a 

Convolutional Neural Network (CNN) designed to localize the positions of fluorescence 

emitters from dense labeling microscopy images to produce super-resolved images. Deep-

STORM is trained with several thousand image pairs: a low resolution fluorescence picture 

and its associated super-resolved image. The ImageJ plugin ThunderSTORM 10 was previously 

used to generate hundreds of simulated images (of size 64 x 64 pixels) containing randomly 

positioned emitters, together with a text file containing their positions 9. These simulated 

images depend on several parameters such as camera specifications, point spread function 

(PSF) of a single emitter, signal-to-noise ratio, and density of emitters. The images and the 

localization files together with a scaling factor were processed in the MATLAB® (MathWorks) 

script provided by the authors (GenerateTrainingExamples.m) to format and expand the 

training set, resulting in several thousand pairs of low- and high-resolution images. Each pair 

contains a randomly selected cropped image of 26x26 pixels and its high resolution 

counterpart scaled by a zoom factor (typically 4 or 8). These pairs, exported in a single file, 

are given to the Python script (Training.py) to train the network, which provides as output 

two files containing the network weights and the mean and standard deviation of each image 

of the training data set, respectively. The weights can ultimately be provided to the testing 

Python script (Testing.py) to create the Deep-STORM network used to reconstruct super-

resolution images. Both Python and MATLAB scripts are freely accessible from the Deep-

STORM project web page: https://github.com/EliasNehme/Deep-STORM. Deep-STORM and 

its dependencies were installed on a 64 bits Ubuntu (18.04.2 LTS) workstation, equipped with 

an Intel Xeon CPU (E5-1607 @ 3.00 GHz x4) together with 40 GB RAM and a 24 GB memory 

Nvidia P6000 graphics card. 

 

Reconstruction of simulated microtubules 

To validate the procedure, we first trained a Deep-STORM network using ThunderSTORM, 

with simulated microtubule datasets that were generated for a contest to evaluate software 

packages for single molecule localization microscopy 11, and are available on the EPFL website: 

http://bigwww.epfl.ch/smlm/challenge2013/index.html. We generated with ThunderSTORM 

200 images of 64 x 64 pixels containing randomly positioned emitters (density = 0.5 µm-2). 

Each emitter was set to produce a Gaussian diffraction spot in the simulated images, with a 

https://github.com/EliasNehme/Deep-STORM
http://bigwww.epfl.ch/smlm/challenge2013/index.html
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standard deviation ranging between 115 nm and 180 nm and a peak intensity ranging from 

110 to 440 grey levels. No intensity offset was added but a Poisson noise was applied to each 

pixel. A zoom factor of 8 was set in the MALTAB script to expand the training dataset 

producing the pairs of low/high-resolution images used to train the Deep-STORM network. 

This network was able to reconstruct a high resolution image of the simulated microtubules, 

as described 9. 

Another Deep-STORM network was then trained with simulated data generated by 

FluoSim. A square region of 64 x 64 pixels with a 100 nm pixel size was defined, and populated 

with 20 emitters to reach an emitter density of ~0.5 µm-2. To randomize the positions of the 

emitters between consecutive frames, the diffusion coefficient of the emitters (D = 2 µm²/s) 

and the simulation time step (δt = 1 s) were chosen so that the displacements were of the 

same magnitude as the region length, i.e. √4𝐷𝛿𝑡 ≈ 6.4 µm. Each emitter was set to produce 

a Gaussian PSF of 120 nm standard deviation and of peak intensity equal to 110 grey levels in 

the recorded frames. Here, no intensity offset was added and no Poisson noise was applied 

to the simulated images. An SPT simulation of 200 steps was performed with the Stack Export 

option enabled. The resulting image stack and localization file were then processed by the 

MATLAB script to produce 5,000 pairs of low/high resolution images (Zoom Factor = 8), which 

were used to train the Deep-STORM network. The resulting network was tested on the 

simulated microtubules and compared to the ground truth and the image reconstructed with 

the ThunderSTORM-based network. 

 

Reconstruction of real microtubules and Nrx1β-Nlg1 cell-cell contact 

To reconstruct our own STORM experiments using Deep-STORM networks, we had to 

generate specific training sets which reproduce our experimental conditions. Two networks 

were educated, one trained with ThunderSTORM and one with FluoSim. In both cases 200 

square images of 64x64 pixels at pixel size = 160 nm were produced. Each frame contained 

20 emitters resulting in an emitter density of 0.5 µm-2; for the FluoSim simulation, we 

followed the same procedure to randomize the positions as for the simulated microtubules. 

Each emitter was set to produce a Gaussian PSF with standard deviation ranging from 170 nm 

to 212 nm in the ThunderSTORM simulation, and with a standard deviation equal to 192 nm 

in FluoSim. In both situations, the PSF maximum was set to 110 grey levels, an intensity offset 

equal to 30 was added to the images, and a Poisson noise was applied so that each resulting 

pixel value was randomly taken in a Poisson probability distribution of mean (and hence 

variance) equal to the sum of the raw pixel intensity value and the intensity offset. The 

generated low resolution image stacks and localization files were processed by the MATLAB 

script to produce 5000 pairs of low/high resolution images (Zoom Factor = 4). The Zoom 

Factor was set to 4 to limit the amount of GPU memory needed to reconstruct the large 

STORM experiment images (118 x 284 pixels for the Real MT and 168x288 pixels for the Cell 

Cell contact). Two Deep-STORM networks were finally trained using the data originating from 

both ThunderSTORM and FluoSim simulations, and were used to reconstruct real 

microtubules and the Nrx1β-Nlg1 cell-cell contact from STORM experiments in both low and 
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high emitters density situations. STORM experiments in the low density regime resulted in a 

large amount of images (~50,000) which could not be processed directly with the provided 

Python script, because of saturation in computer memory. To overcome this problem, the 

STORM images were reconstructed by batches of 200 images, each batch giving a single 

super-resolved image. Once reconstructed, the single super-resolved images were summed 

up to produce the final STORM image. 

 

Supplementary references 

 
1. Czöndör, K. et al. Unified quantitative model of AMPA receptor trafficking at synapses. Proc. 

Natl. Acad. Sci. U. S. A. 109, 3522–7 (2012). 

2. Garcia, M. et al. Two-tiered coupling between flowing actin and immobilized N -
cadherin/catenin complexes in neuronal growth cones. Proc. Natl. Acad. Sci. 112, 6997–7002 
(2015). 

3. Savas, J. N. et al. The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA 
Receptors. Neuron 87, 764–780 (2015). 

4. Comoletti, D. et al. Characterization of the Interaction of a Recombinant Soluble Neuroligin-1 
with Neurexin-1β. J. Biol. Chem. 278, 50497–50505 (2003). 

5. Saint-Michel, E., Giannone, G., Choquet, D. & Thoumine, O. Neurexin/neuroligin interaction 
kinetics characterized by counting single cell-surface attached quantum dots. Biophys. J. 97, 
480–9 (2009). 

6. Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence 
microscopy. Nat. Methods 11, 253–266 (2014). 

7. Tanaka, K. A. K. et al. Membrane molecules mobile even after chemical fixation. Nat. 
Methods 7, 865–866 (2010). 

8. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores 
for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 
1027–1040 (2011). 

9. Nehme, E., Weiss, L., Michaeli, T. & Shechtman, Y. Deep-STORM: super-resolution single-
molecule microscopy by deep learning. Optica 18, 2334–2536 (2018). 

10. Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: A 
comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution 
imaging. Bioinformatics 30, 2389–2390 (2014). 

11. Sage, D. et al. Quantitative evaluation of software packages for single-molecule localization 
microscopy. Nat. Methods 12, 717–24 (2015). 

12. Kerr, R. A. et al. Fast Monte Carlo simulation methods for biological reaction-diffusion 
systems in solution and on surfaces. SIAM J. Sci. Comput. 30, 3126 (2008). 

13. Tapia, J.-J. et al. MCell-R: A Particle-Resolution Network-Free Spatial Modeling Framework. 
Methods Mol. Biol. 1945, 203–229 (2019). 



11 
 

14. Tolle, D. P. & Le Novère, N. Meredys, a multi-compartment reaction-diffusion simulator using 
multistate realistic molecular complexes. BMC Syst. Biol. 4, 24 (2010). 

15. Ibrahim, B. et al. Spatial Rule-Based Modeling: A Method and Its Application to the Human 
Mitotic Kinetochore. Cells 2, 506–544 (2013). 

16. Angiolini, J., Plachta, N., Mocskos, E. & Levi, V. Exploring the Dynamics of Cell Processes 
through Simulations of Fluorescence Microscopy Experiments. Biophys. J. 108, 2613–2618 
(2015). 

17. Bläßle, A. et al. Quantitative diffusion measurements using the open-source software 
PyFRAP. Nat. Commun. 9, 1–14 (2018). 

18. Venkataramani, V., Herrmannsdörfer, F., Heilemann, M. & Kuner, T. SuReSim: Simulating 
localization microscopy experiments from ground truth models. Nat. Methods 13, 319–321 
(2016). 

 

Supplementary Table 1. Comparison of FluoSim with other packages 

Software  2D/3D Modalities Real-time Fluorescence Reference 

FluoSim 2D  SPT, FRAP, PAF, 
FCS, PALM, STORM, 
uPAINT 

Yes Yes This study 

MCell 3D Diffusion, multi-
state reactions 

No No 12,13 

Meredys 3D Diffusion, multi-
state reactions 

No No 14 

SRSim 3D Diffusion, multi-
state reactions 

No No 15 

FERNET 3D FCS No Yes 16 

pyFRAP 3D FRAP No Yes 17 

SuReSim 3D SRI No Yes 18 

 

Table Footnotes 

Only particle-based software including spatial information is cited here. 
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Supplementary Figures 1-5 
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Figure S1. Effect of model parameters on SPT, FRAP and FCS simulations. 

(a) Effect of varying Dout (from 0.001 to 1 µm².s-1) on SPT, FRAP and FCS simulations outside 

the adhesive contact. Note the right shift of the distribution of diffusion coefficients in SPT, 

the increase in fluorescence recovery for FRAP, and the left shift of the autocorrelation 

function in FCS, as Dout increases. (b) Effect of varying Din (from 0.1 to 0.5 µm².s-1) on the SPT, 

FRAP and FCS simulations inside the adhesive contact, the other parameters being held 

constant (Dout = 0.25 µm².s-1, Dtrap = 0.025 µm².s-1, kon = 0.15 s-1, koff = 0.015 s-1). Note the 

modest effect of Din on the FRAP and FCS types of curves, which is due to the fact that only a 

small proportion of molecules diffuse freely at Din within the contact (i.e. most molecules are 

trapped, due to the high ratio kon/koff = 10). In SPT, the small peak of diffusing molecules 

gradually shifts to the left as Din decreases from Dout to Dtrap. (c) Effect of varying Dtrap (from 

0.01 to 0.05 µm².s-1) on SPT, FRAP, and FCS simulations inside the adhesive contact (Dout = Din 

= 0.25 µm².s-1, kon = 0.15 s-1, koff = 0.015 s-1). Note the left shift of the distribution of diffusion 

coefficients in SPT, the decrease in fluorescence recovery for FRAP, and the right shift of the 

autocorrelation function in FCS, as Dtrap decreases. (d) Effect of varying kon on SPT, FRAP, and 

FCS simulations inside the adhesive contact (Dout = Din = 0.25 µm².s-1, Dtrap = 0.025 µm².s-1, koff 

= 0.15 s-1). Note that in SPT the slowly moving population centered at Dtrap increases with kon, 

while the highly mobile population centered at Dout decreases concomitantly. Increasing kon 

also slows down the fluorescence recovery in FRAP, and induces a right shift of the FCS curve. 
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Figure S2. Introduction of noise in images generated by FluoSim and comparison to single 

molecule pull-down data. 

(a) Schematic of the single molecule pull-down experiment. Individual GFP-Nrx1β molecules 

expressed in HEK cells are immobilized on glass substrates and imaged by TIRF microscopy. 

(b) Representative time lapse sequences of the experiment, and corresponding simulations. 

The 488-nm laser is turned on at time 0, resulting in progressive photobleaching of the GFP 

molecules within 10 sec. Before the laser is turned on, the only signal comes from the camera 

offset and noise.  (c) Graph showing the fluorescence intensity over time of two 

representative GFP-Nrx1β molecules, which photobleach at different times. Most molecules 

photobleached in one step, consistent with the fact that Nrx1β is a monomer. (d) Graph 

showing the simulated fluorescence signal over time of two virtual GFP molecules, obtained 

with the following parameters: peak signal = 350 photons/s; gain = 20; background = 20 

photons/s; Poisson noise applied to both signal and background; camera offset = 1000 grey 

levels, readout noise = 5 grey levels; and koff
Fluo = 0.30 sec-1. Note the good agreement in signal 

and noise levels between experiments and simulations. (e) Graph showing the distribution of 

the photobleaching times calculated for 131 GFP-Nrx1β molecules, and 106 simulated 

molecules, respectively. The lines are decreasing exponential fits, giving the value of the 

photobleaching rates koff
Fluo = 0.28 sec-1 and 0.35 sec-1 for experiments and simulations, 

respectively. 
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Figure S3. Reconstruction of super-resolved images of simulated microtubules using deep 

CNN trained with FluoSim. 

(a) Maximal intensity projection image of 350 frames of simulated single molecules randomly 

placed at high density along virtual microtubules. (b) Ground truth image of simulated 

microtubules taken from the EPFL website 11. (c) Image reconstructed by the CNN from the 

single molecule microtubule stack, after training with ThunderSTORM. (d) Image 

reconstructed by the CNN from the single molecule microtubule stack, after training with 

FluoSim. Note that the images reconstructed by the CNN are close to the ground truth, using 

either ThunderSTORM or FluoSim training. Insets show zooms on several microtubule ends 

to highlight the reconstruction accuracy. 
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Figure S4. Reconstruction of super-resolved images of real microtubules using deep CNN 

trained with FluoSim. 

(a, b) Single plane images of microtubules in COS-7 cells, labeled with primary α-tubulin 

antibody followed by Alexa647-conjugated secondary antibody, and acquired under STORM 

conditions at low or high density, respectively (obtained for two different values of 405 nm 

laser power). (c, d) Images of microtubules reconstructed using PALM-Tracer from a stack of 

48,000 frames at low molecule density, or a stack of 4,000 frames at high molecule density, 

respectively. Note that the image resolution is degraded at high molecule density because 

single molecules are too close to one another for proper centroid determination. (e, f) Images 

of microtubules reconstructed by the CNN trained with ThunderSTORM, from low and high 

molecule density stacks, respectively. (g, h) Images of microtubules reconstructed by the CNN 

trained with FluoSim, from low and high molecule density stacks, respectively. Note that the 

CNN performs well at both low and high molecule density, thereby offering a significant 

temporal gain in the image acquisition process. 

  



18
 

 
 

Figure S5. Reconstruction of super-resolved images of Nrx1β-Nlg1 cell contacts using deep 

CNN trained with FluoSim. 

(a, b) Single plane images of GFP-Nrx1β in COS-7 cells labeled with Alexa647-conjugated GFP 

nanobody and acquired under STORM conditions, at low or high density, respectively. (c, d) 

Images of Nrx1β-Nlg1 adhesive contacts reconstructed using PALM-Tracer from a stack of 

48,000 frames at low molecular density (~30 molecules per frame in the field of view), or a 

stack of 4,000 frames at high molecular density (~150 molecules per frame in the field of 

view), respectively. (e, f) Images of Nrx1β-Nlg1 contacts reconstructed by the CNN trained 

with FluoSim, from low and high molecule density stacks, respectively. (g, h) SRI images were 

directly generated by FluoSim at low and high molecule density, respectively. 47,000 

molecules were entered in the simulator for a cell surface area of 544 µm², with parameters 

kon = 0.15 s-1, koff = 0.015 s-1, Pcrossing = 0.81, kon
Fluo = 0.006 s-1 (low density) or 0.03 s-1 (high 

density), and koff
Fluo = 9.3 s-1. The total number of detections at low versus high molecular 

density was 1,436,260 vs 462,607 for experiments and 1,434,610 vs 615,262 for simulations. 

 




