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Abstract: Background

The amount of data generated in large clinical and phenotyping studies that use single-
cell cytometry is constantly growing. Recent technological advances allow to easily
generate data with hundreds of millions of single-cell data points with more than 40
parameters, originating from thousands of individual samples. The analysis of that
amount of high-dimensional data becomes demanding in both hardware and software
of high-performance computational resources. Current software tools often do not
scale to the datasets of such size; users are thus forced to downsample the data to
bearable sizes, in turn losing accuracy and ability to detect many underlying complex
phenomena.
Results

We present GigaSOM.jl, a fast and scalable implementation of clustering and
dimensionality-reduction for flow and mass cytometry data. The implementation of
GigaSOM.jl in the high-level and high-performance programming language Julia
makes it accessible to the scientific community, and allows for efficient handling and
processing of datasets with billions of data points using distributed computing
infrastructures. We describe the design of GigaSOM.jl, measure its performance and
horizontal scaling capability, and showcase the functionality on a large dataset from a
recent study.
Conclusions

GigaSOM.jl facilitates utilization of the commonly available high-performance
computing resources to process the largest available datasets within minutes, while
producing results of the same quality as the current state-of-art software.
Measurements indicate that the performance scales to much larger datasets. The
example use on the data from an massive mouse phenotyping effort confirms the
applicability of GigaSOM.jl to huge-scale studies.
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Abstract
Background The amount of data generated in large clinical and phenotyping studies that use single-cell cytometry is
constantly growing. Recent technological advances allow to easily generate data with hundreds of millions of single-cell
data points with more than 40 parameters, originating from thousands of individual samples. The analysis of that amount
of high-dimensional data becomes demanding in both hardware and software of high-performance computational
resources. Current software tools often do not scale to the datasets of such size; users are thus forced to downsample the
data to bearable sizes, in turn losing accuracy and ability to detect many underlying complex phenomena.
Results We present GigaSOM.jl, a fast and scalable implementation of clustering and dimensionality-reduction for �ow
and mass cytometry data. The implementation of GigaSOM.jl in the high-level and high-performance programming
language Julia makes it accessible to the scienti�c community, and allows for e�cient handling and processing of datasets
with billions of data points using distributed computing infrastructures. We describe the design of GigaSOM.jl, measure its
performance and horizontal scaling capability, and showcase the functionality on a large dataset from a recent study.
Conclusions GigaSOM.jl facilitates utilization of the commonly available high-performance computing resources to process
the largest available datasets within minutes, while producing results of the same quality as the current state-of-art
software. Measurements indicate that the performance scales to much larger datasets. The example use on the data from
an massive mouse phenotyping e�ort con�rms the applicability of GigaSOM.jl to huge-scale studies.
Key words: high-performance computing, single-cell cytometry, self-organizing maps, clustering, dimensionality reduc-
tion, Julia

Background

Advances in single-cell technologies, such as Mass Cytometry
(CyTOF), Single-Cell RNA Sequencing (scRNA) and Spectral
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Key Points

• GigaSOM.jl improves the applicability of FlowSOM-style single-cell cytometry data analysis by increasing the acceptable
dataset size to billions of single cells.

• Signi�cant speedup over current methods is achieved by distributed processing and utilization of e�cient algorithms.
• GigaSOM.jl package includes support for fast visualization of multidimensional data.

Flow Cytometry [1, 2, 3], provide deep and comprehensive in-
sights into the complex mechanism of cellular systems, such
as immune cells in blood, tumor cells and their microenviron-
ments, and various microbiomes, including the single-celled
marine life ecosystems. Mass cytometry and spectral cyto-
metry have enabled staining of the cells with more than 40
di�erent markers to discover cellular di�erences under multi-
ple conditions. The samples collected in recent studies often
contain millions of measured cells (events), resulting in large
and high-dimensional datasets. Traditional analysis methods,
based on manual observation and selection of the clusters in
2D scatter-plots, is becoming increasingly di�cult to apply on
data of such complexity: For high-dimensional data, this pro-
cedure is extremely laborious, and the results often carry re-
searcher or analysis bias [4].
Various dimensionality reduction, clustering, classi�cation

and data mining methods have been employed to aid with
the semi- or fully-automated processing, including the neu-
ral networks [5], various rule-based and tree-based classi-
�ers in combination with clustering and visualization [6, 7], or
locality-sensitive and density-based statistical approaches [8].
However, computational performance of the algorithms, nec-
essary for scaling to larger datasets, is often neglected, and
the available analysis software often relies on various simpli-
�cations (such as downscaling, which impairs the quality and
precision of the result) required to process large datasets in
reasonable time, without disproportionate hardware require-
ments.
To improve the performance, the underlying algorithm of

FlowSOM [9] introduced a combination of the Self-Organizing-
Maps (SOMs) by Kohonen [10] and metaclustering, which al-
lowed e�cient and accurate clustering of millions of cells [11].
FlowSOM is currently available as an R package that became an
essential part of many work�ows, analysis pipelines and soft-
ware suites, including FlowJo and Cytobank® [12]. Despite of
the advance, the amount of data generated in large research-
oriented and clinical studies frequently grows to hundreds of
millions of cells, processing of which requires not only the e�-
ciency of the algorithm, but also a practical scalable implemen-
tation.
Here, we present GigaSOM.jl, an implementation of the

SOM-based clustering and dimensionality-reduction function-
ality using the Julia programming language [13]. Compared to
FlowSOM, GigaSOM.jl provides twomajor improvements: First,
it utilizes the computational and memory resources e�ciently,
enabling it to process datasets of size larger than 108 cells on
commonly available hardware. Second, the implementation
provides horizontal scaling support, and can thus utilize large
high-performance computing clusters (HPC) to gain improve-
ments in speed and tangible dataset size, allowing to process
datasets with more than 1010 cells in the distributed environ-
ment. Additionally, the implementation in Julia is su�ciently
high-level for allowing easy extensibility and cooperation with
other tools in Julia ecosystem. Several technical limitations
imposed by the R-wrapped implementation in the C program-
ming language of FlowSOM are also overcome.

Methods

The Kohonen Self-Organizing-Map (SOM) algorithm [10] is a
kind of simpli�ed neural network with a single layer equipped
with a topology. The task of the SOM training is to assign val-
ues to the neurons so that the training dataset is covered by
neighborhoods of the neurons, and, at the same time, that the
topology of the neurons is preserved in the trained network. A
2-dimensional grid is one of the most commonly used topolo-
gies, because it simpli�es interpretation of the results as neu-
ron values positioned in the 2-dimensional space, and related
visualization purposes (e.g. EmbedSOM [14]). At the same time,
the trained network can serve as a simple clustering of the in-
put dataset, classifying each data point to its nearest neuron.

Batch SOM training

The original SOM training algorithm was introduced by Koho-
nen [15]. The map is organized as a collection of randomly
initialized vectors (called codebook, with weights W(1)). The
training proceeds in iterations (indexed by time t), where in
each iteration a randomly selected data point in the dataset is
used to produce an updated codebook as

Wi(t + 1) = Wi(t) + α(t)h(t)� (x –Wi(t)),
where α is the learning rate parameter, i is the neuron near-
est to the randomly selected data point x, and h is the vector of
topological distances of the codebook vectors to the best match-
ing unit. The learning has been shown to converge after a pre-
dictable number of iterations if α and neighborhood size in h
and topological neighborhood size are gradually lowered [10].
A more scalable variant of the algorithm can be obtained by

running the single updates in batches where the values of x are
taken from the whole dataset at once; which can be expressed
in matrix form

W(t + 1) = Ĥ(t) · N (X,W(t)) · X,
where N (X,W(t)) is a binary matrix that contains 1 at position
i, j if and only if Wi(t) is the closest codebook vector to Xj, and
Ĥ(t) is a distance matrix of the codebook in 2D map topology
with rows scaled to sum 1. Notably, the algorithm converges in
the same cases as the online version [16], and may be viewed as
a generalized version of k-means clustering, which is obtained
by setting H(t) = I.)
Implementations of the batch training may employ several

assumptions that are not available with the online training:
• computation of N can employ a pre-built spatial indexing
structure on W(t), which is constant for the whole batch,

• all computations involving X can be sliced and parallelized
(moreover, because the accesses to X are not randomized,
the implementation is more cache-e�cient and more suit-
able for SIMD- and GPU-based acceleration)

• multiplication by Ĥ(t) can be associatively postponed to
work only with the small codebook matrix, saving more
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Figure 1. Architecture of GigaSOM.jl. Top: Data distribution process divides
the available FCS �les into balanced slices, individual workers retrieve their
respective slice data using a shared storage. Below: The SOM learning and
visualization processes require only a minimal amount of data transferred be-
tween themaster and worker nodes; consisting of the relatively small codebook
in case of SOM learning (blue arrows) and pre-rasterized graphics in case of
visualization (green arrows).

than 50% required computation volume when compared to
online training with large neighborhoods.

Distributed implementation of GigaSOM.jl

The o�cially registered GigaSOM.jl package is a �exible, hor-
izontally scalable, HPC-aware version of the batch SOM train-
ing written in the Julia programming language. The language
choice has allowed a reasonably high-level description of the
problem suitable for easy customization, while still supporting
the e�cient low-level operations necessary for fast data pro-
cessing. GigaSOM.jl contains a library of functions for loading
the data from Flow Cytometry Standard (FCS) �les, distributing
the data across a network to remote computation nodes present
in the cluster, running the parallelized computation, and to ex-
porting and visualizing the results. The overall design of the
main implemented operations is outlined in Figure 1. Example
Julia code that executes the distributed operations is provided
in Supplementary Listing S1.
Data distribution procedure
Distributed computation process in GigaSOM is structured such
as each computation node (‘worker’) keeps its own, persis-
tent slice of the whole dataset, and the partial results from
the nodes are aggregated by the master node. To establish this
structure, GigaSOM implements a separate procedure that ag-
gregates the input FCS �les and creates a balanced set of slices
equally distributed among the workers.
The distribution procedure is implemented as illustrated

in Figure 1 (top): First, the master node reads the headers and
sizes of individual FCS �les, verifying their structure and deter-

mining the total number of stored data points. This is used to
create minimal descriptions of dataset slices of equal size (each
description consists only of 4 numbers of the �rst and last �le
and the �rst and last data point index), which are transferred
to individual workers. Each worker interprets its assigned slice
description, and extracts the part of the data from the relevant
FCS �les saved on a shared storage. The resulting slices may
be easily exported to the storage and quickly imported again
by individual workers, thus saving time if multiple analyses
run on the same data (e.g., in case of several clustering and
embedding runs with di�erent parameters).
Importantly, a shared �lesystem is usually one of the

most e�cient ways to perform data transfers in HPC envi-
ronments, which makes the dataset loading process relatively
fast. If a shared �lesystem is not available, GigaSOM.jl also
includes optional support for direct data distribution using the
Distributed.jl package.
Batch SOM implementation
After the nodes are equipped with the data slices, the batch
SOM training proceeds as illustrated in Figure 1 (bottom):
1. The master node initializes the SOM codebook (usually by
random sampling from available data).
2. The codebook is broadcast to all worker nodes. As the size
of the usual codebook is at most several tens of kilobytes, data
transfer speed does not represent a performance bottleneck in
this case.
3. The workers calculate a partial codebook update on their
data and send the results back to the master node.
4. Finally, the master node gathers the individual updates,
multiplies the collected result by Ĥ(t), and continues with an-
other iteration from step 2, if necessary.
Technically, the GigaSOM.jl implementation of steps 2–4

follows the structure of MapReduce data processing frame-
work [17], which has allowed us to clearly separate the paral-
lel processing implementation from actual computation primi-
tives, and thus to improve the code maintainability. Apart from
simplifying the implementation of various algorithmmodi�ca-
tions, the MapReduce abstractions enable future transition to
more complex data handling routines, such as the support for
distributed parallel broadcast and reduction that is required for
handling huge SOMs on very large number of workers (Collange
et al. [18] provide a comprehensive discussion on that topic).
The time required to perform one iteration of the SOM train-

ing is mainly derived from the speed of the codebook transfer
between nodes, and the amount of computation done by indi-
vidual nodes. The current GigaSOM.jl implementation trans-
fers all codebooks directly between the master node and the
workers, giving time complexity O(b) + O( nc ) for b computa-tion nodes equipped with c CPUs, working on a dataset of size
n. This complexity can be improved to O(log2 b) +O( nc ) by us-ing the aforementioned algorithms for parallel data broadcast
and reduction, but we have not found a realistic dataset of size
su�cient to gain any bene�t from such optimization.
Spatial indexing
Since the most computationally expensive step of the SOM
training is the search for nearest codebook vectors for each
dataset item (i.e., construction of the matrix N ), we have
evaluated the use of spatial indexing structures for acceler-
ating this operation. GigaSOM.jl implementation can em-
ploy the structures available in the NearestNeighbors package,
which include kd-trees and ball trees (also called vantage-
point trees). [19, 20]
Although the e�ciency of spatial indexing is vastly reduced

with increasing dataset dimensionality, the measurements in
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section Results show that it can provide signi�cant speedup
with very large SOMs, even on data with more than 20 dimen-
sions.
Visualization support
To simplify visualization of the results, GigaSOM.jl includes a
parallel reimplementation of the EmbedSOM algorithm in Ju-
lia [14], which quickly provides interpretable visualizations of
the cell distribution within the datasets. EmbedSOM computes
an embedding of the cells to 2-dimensional space, similarly
as the popular t-SNE or UMAP algorithms [21, 22]. Unlike
the usual dimensionality reduction algorithms, it uses the con-
structed SOM as a guiding manifold for positioning the individ-
ual points into the low-dimensional space, and achieves linear
time complexity in the size of dataset. The parallel implemen-
tation of EmbedSOM is built upon the same distributed data
framework as the batch SOMs — since EmbedSOM is designed
to be trivially parallelizable, it can be run directly on the in-
dividual data slices, and gain the same speedup from parallel
processing.
In order to aid the plotting of the EmbedSOM output, we

have additionally implemented a custom scatterplot rasterizer
in package GigaScatter.jl, which includes functions for quick
plotting of large amounts of low-alpha points. To enable plot-
ting of exceedingly large datasets, the rasterization can be ex-
ecuted in a distributed manner within the MapReduce frame-
work, as shown in Supplementary Listing S1.

Results

The main result achieved by GigaSOM is the ability to quickly
cluster and visualize datasets of previously unreachable size. In
particular, we show that construction of a SOM from 109 cells
with 40 parameters can be performed in minutes, even on rel-
atively small compute clusters with less than hundreds of CPU
cores. The self-organizing map can be used to quickly dissect
and analyze the samples, as with FlowSOM [? ]. This perfor-
mance achievement vastly simpli�es the interactive work with
large datasets, as the scientists can, for instance, try more com-
binations of hyperparameters and quickly get the feedback to
improve the analysis and clustering of the data.
In this section, we �rst compare the output of GigaSOM.jl

to that of FlowSOM, showing that the change in the SOM train-
ing algorithm has minimal impact on the quality of results.
Further, we provide benchmark results that con�rm that Giga-
SOM.jl scales horizontally, and details of the speedup achiev-
able by employing spatial indexing data structures for accelera-
tion of the nearest-neighbor queries. Finally, we demonstrate
the achievable results by processing a gigascale dataset from a
recent study by the International Mouse Phenotyping Consor-
tium (IMPC) [23].
The presented performance benchmarks were executed on

a Slurm-managed HPC cluster equipped with Intel®Xeon®E5-
2650 CPUs; each node with 2 physical CPUs (total 24 cores) and
128GB of RAM. All benchmarks were executed several times,
the times were measured as ‘real’ (wall-clock) time using the
standard Julia timer facility. Measurements of the �rst runs
were discarded to prevent the in�uence of caching and Julia
just-in-time compilation; remaining results were reduced to
medians.

Validation of clustering quality

To compare the GigaSOM.jl output with the one from FlowSOM,
we used a methodology similar to the one used by Weber and
Robinson [11]. The datasets were �rst processed by the cluster-

GigaSOM  mean(F1)=0.8347

Basophils
CD16− NK
CD16+ NK

CD34+CD38+CD123− HSPCs
CD34+CD38+CD123+ HSPCs

CD34+CD38lo HSCs
CD4 T
CD8 T

Mature B
Monocytes

pDCs
Plasma B

Pre B
Pro B

Assigned clusters

Clustering comparison

Figure 2. Comparison of GigaSOM.jl results with manual gating of the Levine32
dataset. The confusion matrix is normalized in rows, showing the ratio of cells
in each aggregate of GigaSOM-originating clusters that matches the cell types
from manual analysis. Darker color represents better match. The mean F1
score is comparable to FlowSOM. A more comprehensive comparison is avail-
able in Supplementary Figure S1.

ing algorithms to generate clusters, which were then assigned
to ground truth populations so that the coverage of individ-
ual populations by clusters was reasonably high. The mean F1
score was then computed between the aggregated clusters and
ground truth. Unlike Weber and Robinson [11], who use a com-
plicated method of cluster assignment optimization to �nd the
assignment that produces the best possible mean F1 score, we
employed a simpler (and arguably more realistic) greedy algo-
rithm that assigns each generated cluster to a population with
the greatest part covered by that cluster.
The benchmark did not consider FlowSOM metacluster-

ing [9], since the comparison mainly aimed to detect the dif-
ferences caused by the modi�cations in SOM training.
For the comparison, we reused the datasets Levine_13dim

and Levine32_32dim from the clustering benchmark [11]. In
a typical outcome, most populations were matched by Giga-
SOM.jl just as well as by FlowSOM, as displayed in Figure 2
(detailed view is available in supplementary �gure S1). Both
methods consistently achieved mean F1 scores in the range
of 0.65–0.7 on the Levine_13dim dataset and 0.81–0.84 on the
Levine_32dim dataset for a wide range of reasonable parameter
settings. In the tests, neither algorithm showed a signi�cantly
better resulting mean F1 score.

Scalable performance on large computer clusters

The benchmark of implementation scalability was performed
as follows: A randomly generated dataset was distributed
among the available computation nodes (workers) so that all
CPUs are assigned an equal amount of data. For the bench-
mark, node counts as powers of two up to 256 have been cho-
sen while the numbers of dataset parameters were chosen from
multiples of 10 up to 50. The size of the dataset slice for a sin-
gle node varied between 100, 200 and 300 thousand cells to
verify the impact of data density in cluster. The dataset was
then processed by the SOM training algorithm for SOM sizes
10×10, 20×20 and 40×40. The resulting SOMs were used for
classifying the dataset into clusters (each input data point was
assigned to a cluster de�ned by the nearest neighbor). An em-
bedded view of the data was produced with the Julia imple-
mentation of EmbedSOM. All algorithms were also tested in
variants where the naive search for nearest neighbors (or k-
neighborhoods in case of EmbedSOM) was replaced by utiliza-
tion of a spatial-indexing data structure, in particular by the
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Figure 3. Performance dependency of distributed algorithms in GigaSOM on data dimensionality, SOM size and number of available workers. Data processing
performance is displayed as normalized to median speed in cells per second (c/s).
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Figure 4. E�ect of data indexing structures on GigaSOM performance. The
plotted points show relative speedup of the algorithms utilizing kd-tress (hor-
izontal axis) and ball-trees (vertical axis) compared to the brute-force neigh-
bor search. Baseline (1× speedup) is highlighted by thick grid lines — a point
plotted in the upper right quadrant represents a benchmark measurement that
showed speedup for both kd-trees and ball-trees, upper left quadrant contains
benchmark results where ball-trees provided speedup and kd-trees slowed the
computation down, etc.

kd-trees and ball-trees.
The scalability results are summarized in Figure 3: All three

implemented algorithms scale almost linearly with the dataset
size, the size of the SOM, and the dimension of the dataset.
They reach an almost linear speedup with added compute ca-
pacity. In the case of SOM training, the required communica-
tion among the nodes caused only a negligible overhead; the
majority of the computation pauses was caused by the random
variance in execution time of computation steps on the nodes.
The parallelized classi�cation and embedding algorithms did
not su�er from any communication overhead. Detailed bench-
mark results that show precise energy requirements of the
training per processed data point, useful for deployment in
large environments, are available in supplementary �gure S2.
In�uence of the spatial indexing on the speed of various

operations was collected as relative speedups (or slowdowns)
when compared to a naive search. The results are displayed
in Figure 4. We have observed that both kd-trees and ball-
trees were able to accelerate some operations by a factor above
2×, but the use of spatial indexing su�ered from many trade-
o�s that often caused performance decrease.
Most importantly, the cost of building the index has often

surpassed the total cost of neighborhood lookups by the naive
method, which is most easily observable on the measurements
of ball-tree performance with smaller SOM sizes. Both trees
have struggled to provide su�cient speedup in presence of
higher dimensionality overhead (over 30), and had only negli-
gible impact on the execution time of EmbedSOM computation,
which was dominated by other operations.
On the other hand, it was easily possible to gain speedups

around 1.5×for SOM training in most tests with lower dimen-
sion and large SOM, reaching 2.7×for a 20-dimensional dataset
(typical for current �ow cytometry) processed with large 40×40
SOM. From the results, it seems appropriate to employ the spa-
tial indexing when the cost of other operations outweighs the
cost of building the index, and the dimensionality overhead
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Figure 5. Raw IMPC Spleen T-cell dataset, processed by GigaSOM.jl and em-
bedded by the Julia implementation of EmbedSOM. The �gure shows an ag-
gregate of 1,167,129,317 individual cells. Expression of three main markers is
displayed in combination as mixed colors; CD8 in red, CD4 in green, and CD161
in blue. A more detailed, annotated version of the visualization is available in
Supplementary Figure S4.

does not impede the e�ciency of indexed lookup; in particular
when training large SOMs of dimensionality less than around
30, and when data occupancy per node is su�ciently high. De-
tailed measurements for all SOM sizes and dataset dimensions
are available in Supplementary Figure S3.

HPC analysis of previously unreachable dataset sizes

To showcase the GigaSOM.jl functionality on a realistic dataset,
we have used a large dataset from the IMPC phenotyping ef-
fort [23] that contains measurements of mouse spleens by a
standardized T-cell targeting panel. with individual cohorts
containing genetically modi�ed animals (typically a single-
gene knockouts) and controls; total 2905 samples contain
1,167,129,317 individual cells. (The dataset is available from
FlowRepository under the accession ID FR-FCM-ZYX9.)
The dataset was intentionally prepared by a very simple pro-

cess— cell expressions were compensated, �uorescent marker
expressions were transformed by the common asinh transfor-
mation with co-factor 500, and all dataset columns were scaled
to µ = 0 and σ = 1. The resulting data were used to train a 32×32
SOM, which was in turn used to produce the embedding of the
dataset (with EmbedSOM parameter k = 16), which was raster-
ized. The �nal result can be observed in Figure 5. The detailed
work�ow is shown in Supplementary Listing S1.
Notably, on a relatively small 256-core computer cluster

(total 11 server nodes within a larger clustermanaged by Slurm),
the whole operation, consisting of Julia initialization, data load-
ing (82.6GB of FCS �les), SOM training for 30 epochs, embed-
ding and export of embedded data (17.4GB) took slightly less
than 25 minutes, and consumed at most 3GB of RAM per core.
From that, each epoch of the parallelized SOM training took
around 25 seconds, and the computation of EmbedSOM visual-
ization took 3 minutes. Distributed plotting of the result was
done using the GigaScatter.jl package; the parallel rasteriza-
tion and combination of partial rasters took slightly over 4min-
utes.

Conclusions

In this paper, we presented the functionality of GigaSOM.jl, a
new, highly scalable toolkit for analyzing cytometry data with
algorithms derived from self-organizing maps. The results
conclusively show that GigaSOM.jl will support the growing de-
mand for processing of huge datasets, and bolster the utiliza-
tion of the HPC hardware resources that are becoming widely
available for labs and universities.
The ability to process a gigascale dataset to a comprehen-

sible embedding and precise, easily scrutinizable statistics in
mere minutes may play a crucial role in both design and analy-
sis methods of future cytometry experiments. We believe that
the accessible and �exible nature of the GigaSOM.jl implemen-
tation in Julia programming language will also drive a trans-
formation of other tools in the ecosystem towards the support
of big data processing paradigms.
The resulting software is publicly available as a Julia pack-

age. The interoperability with the Julia ecosystem allows Gi-
gaSOM.jl to bene�t from many other available scienti�c com-
puting packages, which simpli�es its deployment not only in
cytometry, but also in other areas of research that employ self-
organizing maps to extract information from large datasets.

Data and software availability

All data and software is available under https://doi.org/10.
17881/lcsb.z5vy-fa75.
• Package name: GigaSOM.jl
• Package home page: https://git.io/GigaSOM.jl
• Operating system(s): Portable to all Julia-supported plat-
forms

• Programming language: Julia
• Other requirements: –
• License: Apache License v2.0
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