
GigaScience

GigaSOM.jl: High-performance clustering and visualization of huge cytometry datasets
--Manuscript Draft--

Manuscript Number: GIGA-D-20-00228R2

Full Title: GigaSOM.jl: High-performance clustering and visualization of huge cytometry datasets

Article Type: Technical Note

Funding Information: Ministerstvo Školství, Mládeže a
Tělovýchovy
(LM2018131)

Dr Jiří Vondrášek

Fonds National de la Recherche
Luxembourg (LU)
(2015/11228353)

Not applicable

Fonds National de la Recherche
Luxembourg
(PRIDE/11012546/NEXTIMMUNE)

Not applicable

Abstract: Background

The amount of data generated in large clinical and phenotyping studies that use single-
cell cytometry is constantly growing. Recent technological advances allow to easily
generate data with hundreds of millions of single-cell data points with more than 40
parameters, originating from thousands of individual samples. The analysis of that
amount of high-dimensional data becomes demanding in both hardware and software
of high-performance computational resources. Current software tools often do not
scale to the datasets of such size; users are thus forced to downsample the data to
bearable sizes, in turn losing accuracy and ability to detect many underlying complex
phenomena.
Results

We present GigaSOM.jl, a fast and scalable implementation of clustering and
dimensionality-reduction for flow and mass cytometry data. The implementation of
GigaSOM.jl in the high-level and high-performance programming language Julia
makes it accessible to the scientific community, and allows for efficient handling and
processing of datasets with billions of data points using distributed computing
infrastructures. We describe the design of GigaSOM.jl, measure its performance and
horizontal scaling capability, and showcase the functionality on a large dataset from a
recent study.
Conclusions

GigaSOM.jl facilitates utilization of the commonly available high-performance
computing resources to process the largest available datasets within minutes, while
producing results of the same quality as the current state-of-art software.
Measurements indicate that the performance scales to much larger datasets. The
example use on the data from an massive mouse phenotyping effort confirms the
applicability of GigaSOM.jl to huge-scale studies.

Corresponding Author: Miroslav Kratochvíl
Institute of Organic Chemistry and Biochemistry
Praha 6, CZECH REPUBLIC

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Institute of Organic Chemistry and Biochemistry

Corresponding Author's Secondary
Institution:

First Author: Miroslav Kratochvíl

First Author Secondary Information:

Order of Authors: Miroslav Kratochvíl

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Oliver Hunewald

Laurent Heirendt

Vasco Verissimo

Jiří Vondrášek

Venkata P Satagopam

Reinhard Schneider

Christophe Trefois

Markus Ollert

Order of Authors Secondary Information:

Response to Reviewers: In this revision, we respond mainly to the specific requirements raised by the assigned
handling editor.

The revision adds RRIDs of the referenced software tools (added where available),
author ORCIDs, and the added link to GigaDB data in the backmatter. Together with
the RRID of R language, we also added the citation to the language description, for
completeness.

The manuscript is otherwise without any significant changes.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

GigaScience, 2020, 1–8
doi: xx.xxxx/xxxx
Manuscript in Preparation
Technical Note

TE CHN I C A L NOTE

GigaSOM.jl: High-performance clustering and
visualization of huge cytometry datasets
Miroslav Kratochvíl1,2,*,†, Oliver Hunewald3,*,†, Laurent Heirendt4, Vasco
Verissimo4, Jiří Vondrášek1, Venkata P. Satagopam4,5, Reinhard
Schneider4,5, Christophe Trefois4,5 and Markus Ollert3,6
1Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic and 2Department of Software
Engineering, Faculty of Mathematics and Physics, Charles university, Prague, Czech Republic and
3Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg and
4Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Belvaux,
Luxembourg and 5ELIXIR Luxembourg, University of Luxembourg, Campus Belval, Belvaux, Luxembourg and
6Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, Odense University
Hospital, University of Southern Denmark, Odense, Denmark
*miroslav.kratochvil@uochb.cas.cz, oliver.hunewald@lih.lu, o�ce phone: +352 26970-829
†Contributed equally.
ORCIDs: Miroslav Kratochvíl[0000-0001-7356-4075]; Oliver Hunewald[0000-0001-5402-5084]; Laurent Heirendt[0000-0003-1861-0037]; Vasco
Verissimo[0000-0003-3884-9125]; Jiří Vondrášek[000-0002-6066-973X]; Venkata P Satagopam[0000-0002-6532-5880]; Reinhard
Schneider[0000-0002-8278-1618]; Christophe Trefois[0000-0002-8991-6810]; Markus Ollert[0000-0002-8055-0103]

Abstract
Background The amount of data generated in large clinical and phenotyping studies that use single-cell cytometry is
constantly growing. Recent technological advances allow to easily generate data with hundreds of millions of single-cell
data points with more than 40 parameters, originating from thousands of individual samples. The analysis of that amount
of high-dimensional data becomes demanding in both hardware and software of high-performance computational
resources. Current software tools often do not scale to the datasets of such size; users are thus forced to downsample the
data to bearable sizes, in turn losing accuracy and ability to detect many underlying complex phenomena.
Results We present GigaSOM.jl, a fast and scalable implementation of clustering and dimensionality-reduction for �ow
and mass cytometry data. The implementation of GigaSOM.jl in the high-level and high-performance programming
language Julia makes it accessible to the scienti�c community, and allows for e�cient handling and processing of datasets
with billions of data points using distributed computing infrastructures. We describe the design of GigaSOM.jl, measure its
performance and horizontal scaling capability, and showcase the functionality on a large dataset from a recent study.
Conclusions GigaSOM.jl facilitates utilization of the commonly available high-performance computing resources to process
the largest available datasets within minutes, while producing results of the same quality as the current state-of-art
software. Measurements indicate that the performance scales to much larger datasets. The example use on the data from
an massive mouse phenotyping e�ort con�rms the applicability of GigaSOM.jl to huge-scale studies.
Key words: high-performance computing, single-cell cytometry, self-organizing maps, clustering, dimensionality reduc-
tion, Julia

Compiled on: October 15, 2020.
Draft manuscript prepared by the author.

1

LaTeX - Main Document (TeX file) Click here to access/download;LaTeX - Main Document (TeX
file);main.tex

https://www.editorialmanager.com/giga/download.aspx?id=105490&guid=44a0ebb5-e8b7-49dd-9b70-def4a5bd9b0c&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=105490&guid=44a0ebb5-e8b7-49dd-9b70-def4a5bd9b0c&scheme=1

2 | GigaScience, 2020, Vol. 00, No. 0

Key Points

• GigaSOM.jl improves the applicability of FlowSOM-style single-cell cytometry data analysis by increasing the acceptable
dataset size to billions of single cells.

• Signi�cant speedup over current methods is achieved by distributed processing and utilization of e�cient algorithms.
• GigaSOM.jl package includes support for fast visualization of multidimensional data.

Background

Advances in single-cell technologies, such as Mass Cytometry
(CyTOF), Single-Cell RNA Sequencing (scRNA) and Spectral
Flow Cytometry [1, 2, 3], provide deep and comprehensive in-
sights into the complex mechanism of cellular systems, such
as immune cells in blood, tumor cells and their microenviron-
ments, and various microbiomes, including the single-celled
marine life ecosystems. Mass cytometry and spectral cyto-
metry have enabled staining of the cells with more than 40
di�erent markers to discover cellular di�erences under multi-
ple conditions. The samples collected in recent studies often
contain millions of measured cells (events), resulting in large
and high-dimensional datasets. Traditional analysis methods,
based on manual observation and selection of the clusters in
2D scatter-plots, is becoming increasingly di�cult to apply on
data of such complexity: For high-dimensional data, this pro-
cedure is extremely laborious, and the results often carry re-
searcher or analysis bias [4].
Various dimensionality reduction, clustering, classi�cation

and data mining methods have been employed to aid with
the semi- or fully-automated processing, including the neu-
ral networks [5], various rule-based and tree-based classi-
�ers in combination with clustering and visualization [6, 7], or
locality-sensitive and density-based statistical approaches [8].
However, computational performance of the algorithms, neces-
sary for scaling to larger datasets, is often neglected, and the
available analysis software often relies on various simpli�ca-
tions (such as downsampling, which impairs the quality and
precision of the result) required to process large datasets in
reasonable time, without disproportionate hardware require-
ments.
To improve the performance, van Gassen et al. [9] intro-

duced FlowSOM clustering, based on an algorithm that com-
bines the Self-Organizing-Maps (SOMs) by Kohonen [10] and
metaclustering [11], which allows e�cient and accurate clus-
tering of millions of cells [12]. FlowSOM is currently available
as an R package that became an essential part of many work-
�ows, analysis pipelines and software suites, including FlowJo
and Cytobank® [13]. Despite of the advance, the amount of
data generated in large research-oriented and clinical studies
frequently grows to hundreds of millions of cells, processing
of which requires not only the e�ciency of the algorithm, but
also a practical scalable implementation.
Here, we present GigaSOM.jl, an implementation of the

SOM-based clustering and dimensionality-reduction function-
ality using the Julia programming language [14]. Compared to
FlowSOM, GigaSOM.jl provides twomajor improvements: First,
it utilizes the computational and memory resources e�ciently,
enabling it to process datasets of size larger than 108 cells on
commonly available hardware. Second, the implementation
provides horizontal scaling support, and can thus utilize large
high-performance computing clusters (HPC) to gain improve-
ments in speed and tangible dataset size, allowing to process
datasets with more than 1010 cells in the distributed environ-
ment. Additionally, the implementation in Julia is su�ciently
high-level for allowing easy extensibility and cooperation with

other tools in Julia ecosystem. Several technical limitations
imposed by the R-wrapped implementation in the C program-
ming language of FlowSOM are also overcome.

Methods

The Kohonen Self-Organizing-Map (SOM) algorithm [10] is a
kind of simpli�ed neural network with a single layer equipped
with a topology. The task of the SOM training is to assign val-
ues to the neurons so that the training dataset is covered by
neighborhoods of the neurons, and, at the same time, that the
topology of the neurons is preserved in the trained network. A
2-dimensional grid is one of the most commonly used topolo-
gies, because it simpli�es interpretation of the results as neu-
ron values positioned in the 2-dimensional space, and related
visualization purposes (e.g. EmbedSOM [15]). At the same time,
the trained network can serve as a simple clustering of the in-
put dataset, classifying each data point to its nearest neuron.

Batch SOM training

The original SOM training algorithm was introduced by Koho-
nen [16]. The map is organized as a collection of randomly
initialized vectors (called codebook, with weights W(1)). The
training proceeds in iterations (indexed by time t), where in
each iteration a randomly selected data point in the dataset is
used to produce an updated codebook as

Wi(t + 1) = Wi(t) + α(t)h(t)� (x –Wi(t)),
where α is the learning rate parameter, i is the neuron near-
est to the randomly selected data point x, and h is the vector of
topological distances of the codebook vectors to the best match-
ing unit. The learning has been shown to converge after a pre-
dictable number of iterations if α and neighborhood size in h
and topological neighborhood size are gradually lowered [10].
A more scalable variant of the algorithm can be obtained by

running the single updates in batches where the values of x are
taken from the whole dataset at once; which can be expressed
in matrix form

W(t + 1) = Ĥ(t) · N (X,W(t)) · X,
where N (X,W(t)) is a binary matrix that contains 1 at position
i, j if and only if Wi(t) is the closest codebook vector to Xj, and
Ĥ(t) is a distance matrix of the codebook in 2D map topology
with rows scaled to sum 1. Notably, the algorithm converges in
the same cases as the online version [17], and may be viewed as
a generalized version of k-means clustering, which is obtained
by setting H(t) = I.
Implementations of the batch training may employ several

assumptions that are not available with the online training:
• computation of N can employ a pre-built spatial indexing
structure on W(t), which is constant for the whole batch,

• all computations involving X can be sliced and parallelized

Kratochvíl, Hunewald, et al. | 3

Data distribution

FCS

FCS

FCS

FCS
In
pu
td
at
as
et

slice

slice

slice

slice

slice

Slice
descriptions

slice worker

slice worker

slice worker

slice worker

slice worker

Master node

Shared �lesystem (scratch space)

Computation

codebook

∑
Ĥ(t)

visualization

worker

worker

worker

worker

worker

Master node

Figure 1. Architecture of GigaSOM.jl. Top: Data distribution process divides
the available FCS �les into balanced slices, individual workers retrieve their
respective slice data using a shared storage. Below: The SOM learning and
visualization processes require only a minimal amount of data transferred be-
tween themaster and worker nodes; consisting of the relatively small codebook
in case of SOM learning (blue arrows) and pre-rasterized graphics in case of
visualization (green arrows).

(moreover, because the accesses to X are not randomized,
the implementation is more cache-e�cient and more suit-
able for SIMD- and GPU-based acceleration)

• multiplication by Ĥ(t) can be associatively postponed to
work only with the small codebook matrix, saving more
than 50% required computation volume when compared to
online training with large neighborhoods.

Distributed implementation of GigaSOM.jl

The GigaSOM.jl package is a �exible, horizontally scalable,
HPC-aware version of the batch SOM training written in the
Julia programming language. The language choice has allowed
a reasonably high-level description of the problem suitable for
easy customization, while still supporting the e�cient low-
level operations necessary for fast data processing. GigaSOM.jl
contains a library of functions for loading the data from Flow
Cytometry Standard (FCS) �les, distributing the data across a
network to remote computation nodes present in the cluster,
running the parallelized computation, and to exporting and vi-
sualizing the results. The overall design of the main imple-
mented operations is outlined in Figure 1. Example Julia code
that executes the distributed operations is provided in Supple-
mentary Listing S1.
Data distribution procedure
Distributed computation process in GigaSOM is structured such
as each computation node (‘worker’) keeps its own, persis-
tent slice of the whole dataset, and the partial results from
the nodes are aggregated by the master node. To establish this
structure, GigaSOM implements a separate procedure that ag-

gregates the input FCS �les and creates a balanced set of slices
equally distributed among the workers.
The distribution procedure is implemented as illustrated

in Figure 1 (top): First, the master node reads the headers and
sizes of individual FCS �les, verifying their structure and deter-
mining the total number of stored data points. This is used to
create minimal descriptions of dataset slices of equal size (each
description consists only of 4 numbers of the �rst and last �le
and the �rst and last data point index), which are transferred
to individual workers. Each worker interprets its assigned slice
description, and extracts the part of the data from the relevant
FCS �les saved on a shared storage. The resulting slices may
be easily exported to the storage and quickly imported again
by individual workers, thus saving time if multiple analyses
run on the same data (e.g., in case of several clustering and
embedding runs with di�erent parameters).
Importantly, a shared �lesystem is usually one of the most

e�cient ways to perform data transfers in HPC environments,
which makes the dataset loading process relatively fast. If
a shared �lesystem is not available, GigaSOM.jl also includes
optional support for direct data distribution using the Dis-
tributed.jl package.
Batch SOM implementation
After the nodes are equipped with the data slices, the batch
SOM training proceeds as illustrated in Figure 1 (bottom):
1. The master node initializes the SOM codebook (usually by
random sampling from available data).
2. The codebook is broadcast to all worker nodes. As the size
of the usual codebook is at most several tens of kilobytes, data
transfer speed does not represent a performance bottleneck in
this case.
3. The workers calculate a partial codebook update on their
data and send the results back to the master node.
4. Finally, the master node gathers the individual updates,
multiplies the collected result by Ĥ(t), and continues with an-
other iteration from step 2, if necessary.
The time required to perform one iteration of the SOM train-

ing is mainly derived from the speed of the codebook transfer
between nodes, and the amount of computation done by in-
dividual nodes. The current GigaSOM.jl implementation trans-
fers all codebook versions directly between themaster node and
the workers, giving time complexityO(b)+O(nc) for b computa-tion nodes equipped with c CPUs, working on a dataset of size n.
This complexity can be improved to O(log2 b) + O(nc) by usinge�cient algorithms for parallel data broadcast and reduction,
but we have not found a realistic dataset of size su�cient to
gain any bene�t from such optimization.
Implementation methodology
The GigaSOM.jl implementation of the batch SOM algorithm
follows a similar structure as reported by other authors [18, 19,
20]. All distributed computations are expressed as a series of
MapReduce-style operations [21], which are implemented as
high-order functions. This has allowed us to clearly separate
the low-level code required to support the parallel processing
from the actual implementation of algorithms, and thus im-
prove the code maintainability, and vastly simplify further cus-
tom, user-speci�able data manipulation in the distributed en-
vironment. This abstraction additionally enables future transi-
tion to more complex data handling routines or di�erent par-
allelization systems. GigaSOM.jl can be transparently modi-
�ed to support distributed parallel broadcast and reduction that
might be required for handling huge SOMs on very large num-
ber of workers (Collange et al. [22] provide a comprehensive

4 | GigaScience, 2020, Vol. 00, No. 0

discussion on that topic), or even run on a di�erent distributed
framework, such as the industry-standard MPI [23].
Our choice of the Julia programming environment was

mainly motivated by making this abstraction as e�cient as
possible — the relatively high-level Julia code is compiled
into e�cient low-level bytecode, which enables high algo-
rithm execution performance without modifying the code to
work with any specialized performance-supporting primitives.
This bene�t is rarely available in popular high-level program-
ming environments: For example, many approaches for dis-
tributed computation exist in R (RRID: SCR_001905) [24], such
as GridR [25], DistributedR, ddR, and sparklyr (for Apache
Spark (RRID: SCR_016557) [26]), but most of the projects un-
fortunately did not reach a general adoption or are abandoned.
Python libraries provide good support for optimized execution
of specialized operations; parallel and distributed computing is
supported e.g. by Dask project [27], with similar mode of use
as the distributed processing tools in Julia. Despite of that, pro-
ducing e�cient Python code requires careful consideration and
utilization of the low-level array processing primitives (such as
NumPy (RRID: SRC_008633) [28]), often by representing the al-
gorithms using only the available optimized matrix operations
that are elusive for non-mathematicians.
Spatial indexing
Since the most computationally expensive step of the SOM
training is the search for nearest codebook vectors for each
dataset item (i.e., construction of the matrix N), we have
evaluated the use of spatial indexing structures for acceler-
ating this operation. GigaSOM.jl implementation can em-
ploy the structures available in package NearestNeighbors.jl,
which include kd-trees and ball trees (also called vantage-
point trees). [29, 30]
Although the e�ciency of spatial indexing is vastly reduced

with increasing dataset dimensionality, the measurements in
section Results show that it can provide signi�cant speedup
with very large SOMs, even on data with more than 20 dimen-
sions.
Visualization support
To simplify visualization of the results, GigaSOM.jl includes a
parallel reimplementation of the EmbedSOM algorithm in Ju-
lia [15], which quickly provides interpretable visualizations of
the cell distribution within the datasets. EmbedSOM computes
an embedding of the cells to 2-dimensional space, similarly
as the popular t-SNE or UMAP algorithms [31, 32]. Unlike
the usual dimensionality reduction algorithms, it uses the con-
structed SOM as a guiding manifold for positioning the individ-
ual points into the low-dimensional space, and achieves linear
time complexity in the size of dataset. The parallel implemen-
tation of EmbedSOM is built upon the same distributed data
framework as the batch SOMs — since EmbedSOM is designed
to be trivially parallelizable, it can be run directly on the in-
dividual data slices, and gain the same speedup from parallel
processing.
In order to aid the plotting of the EmbedSOM output, we

have additionally implemented a custom scatterplot rasterizer
in package GigaScatter.jl, which includes functions for quick
plotting of large amounts of low-alpha points. To enable plot-
ting of exceedingly large datasets, the rasterization can be ex-
ecuted in a distributed manner within the MapReduce frame-
work, as shown in Supplementary Listing S1.

Results

The main result achieved by GigaSOM is the ability to quickly
cluster and visualize datasets of previously unreachable size. In

particular, we show that construction of a SOM from 109 cells
with 40 parameters can be performed in minutes, even on rel-
atively small compute clusters with less than hundreds of CPU
cores. The self-organizing map can be used to quickly dissect
and analyze the samples, as with FlowSOM [9]. This perfor-
mance achievement vastly simpli�es the interactive work with
large datasets, as the scientists can, for instance, try more com-
binations of hyperparameters and quickly get the feedback to
improve the analysis and clustering of the data.
In this section, we �rst compare the output of GigaSOM.jl

to that of FlowSOM, showing that the change in the SOM train-
ing algorithm has minimal impact on the quality of results.
Further, we provide benchmark results that con�rm that Giga-
SOM.jl scales horizontally, and details of the speedup achiev-
able by employing spatial indexing data structures for accelera-
tion of the nearest-neighbor queries. Finally, we demonstrate
the achievable results by processing a gigascale dataset from a
recent study by the International Mouse Phenotyping Consor-
tium (IMPC) [33].
The presented performance benchmarks were executed on

a Slurm-managed HPC cluster equipped with Intel®Xeon®E5-
2650 CPUs; each node with 2 physical CPUs (total 24 cores) and
128GB of RAM. All benchmarks were executed several times,
the times were measured as ‘real’ (wall-clock) time using the
standard Julia timer facility. Measurements of the �rst runs
were discarded to prevent the in�uence of caching and Julia
just-in-time compilation; remaining results were reduced to
medians.

Validation of clustering quality

To compare the GigaSOM.jl output with the one from Flow-
SOM (RRID: SCR_016899) [9], we used a methodology similar
to the one used by Weber and Robinson [12]. The datasets were
�rst processed by the clustering algorithms to generate clus-
ters, which were then assigned to ground truth populations so
that the coverage of individual populations by clusters was rea-
sonably high. The mean F1 score was then computed between
the aggregated clusters and ground truth. Unlike Weber and
Robinson [12], who use a complex method of cluster assign-
ment optimization to �nd the assignment that produces the
best possible mean F1 score, we employed a simpler (and ar-
guably more realistic) greedy algorithm that assigns each gen-
erated cluster to a population with the greatest part covered by
that cluster.
The benchmark did not consider FlowSOM metacluster-

ing [9], since the comparison primarily aimed to detect the
di�erences caused by the modi�cations in SOM training.
For the comparison, we reused the datasets Levine_13dim

and Levine32_32dim from the clustering benchmark [12]. In
a typical outcome, most populations were matched by Giga-
SOM.jl just as well as by FlowSOM, as displayed in Figure 2
(detailed view is available in supplementary �gure S1). Both
methods consistently achieved mean F1 scores in the range
of 0.65–0.7 on the Levine_13dim dataset and 0.81–0.84 on the
Levine_32dim dataset for a wide range of reasonable parameter
settings. In the tests, neither algorithm showed a signi�cantly
better resulting mean F1 score.

Scalable performance on large computer clusters

The benchmark of implementation scalability was performed
as follows: A randomly generated dataset was distributed
among the available computation nodes (workers) so that all
CPUs are assigned an equal amount of data. For the bench-
mark, node counts as powers of two up to 256 have been cho-
sen while the numbers of dataset parameters were chosen from

Kratochvíl, Hunewald, et al. | 5

GigaSOM mean(F1)=0.8347

Basophils
CD16− NK
CD16+ NK

CD34+CD38+CD123− HSPCs
CD34+CD38+CD123+ HSPCs

CD34+CD38lo HSCs
CD4 T
CD8 T

Mature B
Monocytes

pDCs
Plasma B

Pre B
Pro B

Assigned clusters

Clustering comparison

Figure 2. Comparison of GigaSOM.jl results with manual gating of the Levine32
dataset. The confusion matrix is normalized in rows, showing the ratio of cells
in each aggregate of GigaSOM-originating clusters that matches the cell types
from manual analysis. Darker color represents better match. The mean F1
score is comparable to FlowSOM. A more comprehensive comparison is avail-
able in Supplementary Figure S1.

multiples of 10 up to 50. The size of the dataset slice for a sin-
gle node varied between 100, 200 and 300 thousand cells to
verify the impact of data density in cluster. The dataset was
then processed by the SOM training algorithm for SOM sizes
10×10, 20×20 and 40×40. The resulting SOMs were used for
classifying the dataset into clusters (each input data point was
assigned to a cluster de�ned by the nearest neighbor). An em-
bedded view of the data was produced with the Julia imple-
mentation of EmbedSOM. All algorithms were also tested in
variants where the naive search for nearest neighbors (or k-
neighborhoods in case of EmbedSOM) was replaced by utiliza-
tion of a spatial-indexing data structure, in particular by the
kd-trees and ball-trees.
The scalability results are summarized in Figure 3: All three

implemented algorithms scale almost linearly with the dataset
size, the size of the SOM, and the dimension of the dataset.
They reach an almost linear speedup with added compute ca-
pacity. In the case of SOM training, the required communica-
tion among the nodes caused only a negligible overhead; the
majority of the computation pauses was caused by the random
variance in execution time of computation steps on the nodes.
The parallelized classi�cation and embedding algorithms did
not su�er from any communication overhead. Detailed bench-
mark results that show precise energy requirements of the
training per processed data point, useful for deployment in
large environments, are available in supplementary �gure S2.
In�uence of the spatial indexing on the speed of various

operations was collected as relative speedups (or slowdowns)
when compared to a naive search. The results are displayed
in Figure 4. We have observed that both kd-trees and ball-
trees were able to accelerate some operations by a factor above
2×, but the use of spatial indexing su�ered from many trade-
o�s that often caused performance decrease.
Most importantly, the cost of building the index has often

surpassed the total cost of neighborhood lookups by the naive
method, which is most easily observable on the measurements
of ball-tree performance with smaller SOM sizes. Both trees
have struggled to provide su�cient speedup in presence of
higher dimensionality overhead (over 30), and had only negli-
gible impact on the execution time of EmbedSOM computation,
which was dominated by other operations.
On the other hand, it was easily possible to gain speedups

around 1.5×for SOM training in most tests with lower dimen-
sion and large SOM, reaching 2.7×for a 20-dimensional dataset
(typical for current �ow cytometry) processed with large 40×40

SOM. From the results, it seems appropriate to employ the spa-
tial indexing when the cost of other operations outweighs the
cost of building the index, and the dimensionality overhead
does not impede the e�ciency of indexed lookup; in particular
when training large SOMs of dimensionality less than around
30, and when data occupancy per node is su�ciently high. De-
tailed measurements for all SOM sizes and dataset dimensions
are available in Supplementary Figure S3.

HPC analysis of previously unreachable dataset sizes

To showcase the GigaSOM.jl functionality on a realistic dataset,
we have used a large dataset from the IMPC phenotyping ef-
fort [33] that contains measurements of mouse spleens by a
standardized T-cell targeting panel. with individual cohorts
containing genetically modi�ed animals (typically a single-
gene knockouts) and controls; total 2905 samples contain
1,167,129,317 individual cells. (The dataset is available from
FlowRepository under the accession ID FR-FCM-ZYX9.)
The dataset was intentionally prepared by a very simple pro-

cess— cell expressions were compensated, �uorescent marker
expressions were transformed by the common asinh transfor-
mation with co-factor 500, and all dataset columns were scaled
to µ = 0 and σ = 1. The resulting data were used to train a 32×32
SOM, which was in turn used to produce the embedding of the
dataset (with EmbedSOM parameter k = 16), which was raster-
ized. The �nal result can be observed in Figure 5. The detailed
work�ow is shown in Supplementary Listing S1.
Notably, on a relatively small 256-core computer cluster

(total 11 server nodes within a larger clustermanaged by Slurm),
the whole operation, consisting of Julia initialization, data load-
ing (82.6GB of FCS �les), SOM training for 30 epochs, embed-
ding and export of embedded data (17.4GB) took slightly less
than 25 minutes, and consumed at most 3GB of RAM per core.
From that, each epoch of the parallelized SOM training took
around 25 seconds, and the computation of EmbedSOM visual-
ization took 3 minutes. Distributed plotting of the result was
done using the GigaScatter.jl package; the parallel rasterization
and combination of partial rasters took slightly over 4 minutes.

Conclusions

In this paper, we presented the functionality of GigaSOM.jl, a
new, highly scalable toolkit for analyzing cytometry data with
algorithms derived from self-organizing maps. The results
conclusively show that GigaSOM.jl will support the growing de-
mand for processing of huge datasets, and bolster the utiliza-
tion of the HPC hardware resources that are becoming widely
available for labs and universities.
The ability to process a gigascale dataset to a comprehen-

sible embedding and precise, easily scrutinizable statistics in
mere minutes may play a crucial role in both design and analy-
sis methods of future cytometry experiments. We believe that
the accessible and �exible nature of the GigaSOM.jl implemen-
tation in Julia programming language will also drive a trans-
formation of other tools in the ecosystem towards the support
of big data processing paradigms.
The resulting software is publicly available as a Julia pack-

age. The interoperability with the Julia ecosystem allows Gi-
gaSOM.jl to bene�t from many other available scienti�c com-
puting packages, which simpli�es its deployment not only in
cytometry, but also in other areas of research that employ self-
organizing maps to extract information from large datasets.

http://flowrepository.org/id/FR-FCM-ZYX9

6 | GigaScience, 2020, Vol. 00, No. 0

●●●

● ●●

●●●

●● ●

●●●

●● ●

●● ●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
● ●●

●● ●

● ●●

●●●

●●●

●●●

●●●

●●●

●●●

●
●

●

●●●

●● ●

●
●

●

●●●

●●●

●
●
●

●●●

●●●

●
●

●

●●●

●● ●

●
●

●

●● ●

●
●●

●
●

●

●
●●

● ●●
●
●

●

●●●

●●●

●
●

●

● ●●

●
●●

●
●

●

● ●●

● ●●

●
● ●

●
●●

●●●

●●●

●●●

●● ●

●● ●

●●●

●●●

●●●

●●●

●●●

●●
●

●
●
●

●●
●

● ●●

●●●

●●●

●●●

● ●●

●●●

●● ●

●
● ●

●● ●

●●●

●●●

●●●

SOM training SOM classification EmbedSOM

1 10 100 1 10 100 1 10 100

10 kc/s

100 kc/s

1 Mc/s

10 Mc/s

100 Mc/s

allocated CPUs

D
at

a
pr

oc
es

si
ng

 s
pe

ed
SOM size ● ● ●10x10 SOM 20x20 SOM 40x40 SOM

Distributed processing speed by SOM size (30 dimensions)

●● ●

●●●

●●●

● ●●
● ●●

●●●●● ●

●●●

●●●
●● ●

●● ●

●●●
●● ●

●
●
●●● ●

●●●

●●●
●●●

●●●
●●●

●●●

●●●
●● ●

● ●●●●●

●●●

● ●●●●●
●● ●

●●●

●●●

●●●
●●●●●●
●● ●

●●●

●
●
●● ●●●●●●●●

●●●

●●●●●●●●●

●●●

●
●

●

●●●

●
●

●

●●●

● ●●
●

●

●
●●●

● ●●

●●●

●● ●

●●
●

●
●

●

● ●●

●●●
●●●

●
●●

●
●●

●●●

●●●
●

●●

●
●

●
●●●

●● ●

●●●

●
●●

●
●

●

●●
●

●
●●
●●●

●
●

●
●

●●

●
●
●

●●●
●●●

●
●●

●

●

●

●
●
●

●●● ●●
●

●

●
●

●
● ●

●
●●

●●●●
●●

●● ●

●●●

●●●

●
●●

●
●
●
●
●●

● ●●
●●●

●●●

●●●
●●●

●●●

● ●●
●●●

●
●
●
●●●

●●●

●●●
● ●●
●●●

●●●

●●●
●

●●●
●

●
● ●●

●●●

●●●

●●●

●●●

● ●●
●●●

●●●

●●●
●● ●
●●●
●●●

●● ●

●

●●

●
●●
●
●● ●●

●

●●●

●● ●

●●●

●●● ●●●

SOM training SOM classification EmbedSOM

1 10 100 1 10 100 1 10 100

10 kc/s

100 kc/s

1 Mc/s

10 Mc/s

allocated CPUs

D
at

a
pr

oc
es

si
ng

 s
pe

ed

● ● ● ● ●10 dimensions 20 dimensions 30 dimensions 40 dimensions 50 dimensions

Distributed processing speed by data dimension (20x20 SOM)

Figure 3. Performance dependency of distributed algorithms in GigaSOM on data dimensionality, SOM size and number of available workers. Data processing
performance is displayed as normalized to median speed in cells per second (c/s).

20 dimensions 40 dimensions

10×
10 S

O
M

40×
40 S

O
M

0.7× 1× 2× 0.5× 0.7× 1×

0.5×

0.7×

1×

0.5×

1×

3×

Speedup with kd−trees

S
pe

ed
up

 w
ith

 b
al

l−
tr

ee
s

● ● ●SOM training SOM classification EmbedSOM

Speedups from spatial indexing structures

Figure 4. E�ect of data indexing structures on GigaSOM performance. The
plotted points show relative speedup of the algorithms utilizing kd-tress (hor-
izontal axis) and ball-trees (vertical axis) compared to the brute-force neigh-
bor search. Baseline (1× speedup) is highlighted by thick grid lines — a point
plotted in the upper right quadrant represents a benchmark measurement that
showed speedup for both kd-trees and ball-trees, upper left quadrant contains
benchmark results where ball-trees provided speedup and kd-trees slowed the
computation down, etc.

Figure 5. Raw IMPC Spleen T-cell dataset, processed by GigaSOM.jl and em-
bedded by the Julia implementation of EmbedSOM. The �gure shows an ag-
gregate of 1,167,129,317 individual cells. Expression of three main markers is
displayed in combination as mixed colors; CD8 in red, CD4 in green, and CD161
in blue. A more detailed, annotated version of the visualization is available in
Supplementary Figure S4.

Kratochvíl, Hunewald, et al. | 7

Data and software availability

All software is available under https://doi.org/10.17881/lcsb.
z5vy-fa75. All supporting data and materials are available in
the GigaScience GigaDB database under http://doi.org/10.5524/
100810 [34].
• Package name: GigaSOM.jl
• Package home page: https://git.io/GigaSOM.jl
• Operating system(s): Portable to all Julia-supported plat-
forms

• Programming language: Julia
• License: Apache License v2.0
• Julia package registry name: GigaSOM
• bio.tools ID: biotools:GigaSOM.jl
• RRID: SCR_019020

Declarations

Competing Interests

The authors declare that they have no competing interests.

Funding

MK and JV were supported by ELIXIR CZ LM2018131 (MEYS).
This work was supported by the Luxembourg National Re-

search Fund (FNR) through the FNR AFR-RIKEN bilateral pro-
gram (TregBar 2015/11228353) to MO, and the FNR PRIDE Doc-
toral Training Unit program (PRIDE/11012546/NEXTIMMUNE)
to VV, RS and MO.
The Responsible and Reproducible Research (R3) team of

the Luxembourg Centre for Systems Biomedicine is acknowl-
edged for supporting the project and promoting reproducible
research.
The experiments presented in this paper were carried out

using the HPC facilities of the University of Luxembourg [35]
(see https://hpc.uni.lu).
The project was supported by Sta� Exchange programme of

ELIXIR, the European life-sciences infrastructure.

Author’s Contributions

Conceptualization: OH, LH, CT. Formal analysis, investigation,
methodology: OH, MK, LH. Software: OH, MK, LH, VV. Funding
acquisition, supervision: JV, VPS, RS, CT, MO. Validation: OH,
MK. Visualization: MK. Writing: OH, MK. All authors partici-
pated in reviewing, editing and �nalization of the manuscript.

References

1. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach
R, Lou X, et al. Mass Cytometry: Technique for Real
Time Single Cell Multitarget Immunoassay Based on In-
ductively Coupled Plasma Time-of-Flight Mass Spectrom-
etry. Analytical Chemistry 2009 August;81(16):6813–6822.
https://pubs.acs.org/doi/10.1021/ac901049w.

2. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul
F, Zaretsky I, et al. Massively Parallel Single-Cell RNA-
Seq for Marker-Free Decomposition of Tissues into Cell
Types. Science 2014 February;343(6172):776–779. http:
//www.sciencemag.org/cgi/doi/10.1126/science.1247651.

3. Schmutz S, Valente M, Cumano A, Novault S. Spectral Cyto-
metry Has Unique Properties Allowing Multicolor Analysis
of Cell Suspensions Isolated from Solid Tissues. PLOS ONE

2016 August;11(8):e0159961. https://dx.plos.org/10.1371/
journal.pone.0159961.

4. Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher
B. The end of gating? An introduction to automated analy-
sis of high dimensional cytometry data. European Journal
of Immunology 2016;46(1):34–43. https://onlinelibrary.
wiley.com/doi/abs/10.1002/eji.201545774.

5. Arvaniti E, Claassen M. Sensitive detection of rare disease-
associated cell subsets via representation learning. Nature
Communications 2017 April;8(1):1–10. https://www.nature.
com/articles/ncomms14825/.

6. Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan
GP. Automated identi�cation of stratifying signatures
in cellular subpopulations. Proceedings of the National
Academy of Sciences 2014 July;111(26):E2770–E2777. http:
//www.pnas.org/lookup/doi/10.1073/pnas.1408792111.

7. Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Lin-
derman MD, et al. Extracting a Cellular Hierarchy from
High-dimensional Cytometry Data with SPADE. Nature
biotechnology 2011 October;29(10):886–891. https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC3196363/.

8. Lun ATL, Richard AC, Marioni JC. Testing for di�eren-
tial abundance in mass cytometry data. Nature methods
2017 July;14(7):707–709. https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC6155493/.

9. van Gassen S, Callebaut B, Helden MJV, Lambrecht
BN, Demeester P, Dhaene T, et al. FlowSOM: Using
self-organizing maps for visualization and interpretation
of cytometry data. Cytometry Part A 2015;87(7):636–
645. https://onlinelibrary.wiley.com/doi/abs/10.1002/
cyto.a.22625.

10. Kohonen T. Essentials of the self-organizing map. Neu-
ral Networks 2013 January;37:52–65. https://linkinghub.
elsevier.com/retrieve/pii/S0893608012002596.

11. Caruana R, Elhawary M, Nguyen N, Smith C. Meta Clus-
tering. In: Sixth International Conference on Data Mining
(ICDM’06); 2006. p. 107–118. ISSN: 2374-8486.

12. Weber LM, Robinson MD. Comparison of clustering
methods for high-dimensional single-cell �ow and mass
cytometry data. Cytometry Part A 2016;89(12):1084–
1096. https://onlinelibrary.wiley.com/doi/abs/10.1002/
cyto.a.23030.

13. Chen TJ, Kotecha N. Cytobank: Providing an Analytics
Platform for Community Cytometry Data Analysis and Col-
laboration. In: Fienberg HG, Nolan GP, editors. High-
Dimensional Single Cell Analysis: Mass Cytometry, Multi-
parametric Flow Cytometry and Bioinformatic Techniques
Current Topics in Microbiology and Immunology, Berlin,
Heidelberg: Springer; 2014.p. 127–157. https://doi.org/
10.1007/82_2014_364.

14. Bezanson J, Karpinski S, Shah VB, Edelman A. Ju-
lia: A Fast Dynamic Language for Technical Computing.
arXiv:12095145 [cs] 2012 September;http://arxiv.org/abs/
1209.5145, arXiv: 1209.5145.

15. Kratochvíl M, Koladiya A, Vondrášek J. General-
ized EmbedSOM on quadtree-structured self-organizing
maps. F1000Research 2019 December;8:2120. https://
f1000research.com/articles/8-2120/v1.

16. Kohonen T. Self-organized formation of topologically cor-
rect feature maps. Biological Cybernetics 1982;43(1):59–
69. http://link.springer.com/10.1007/BF00337288.

17. Cheng Y. Convergence and Ordering of Kohonen’s Batch
Map. Neural Computation 1997 November;9(8):1667–
1676. http://www.mitpressjournals.org/doi/10.1162/neco.
1997.9.8.1667.

18. Sul SJ, Tovchigrechko A. Parallelizing BLAST and SOM
Algorithms with MapReduce-MPI Library. In: 2011 IEEE
International Symposium on Parallel and Distributed Pro-

https://doi.org/10.17881/lcsb.z5vy-fa75
https://doi.org/10.17881/lcsb.z5vy-fa75
http://doi.org/10.5524/100810
http://doi.org/10.5524/100810
https://git.io/GigaSOM.jl
https://hpc.uni.lu
https://pubs.acs.org/doi/10.1021/ac901049w
http://www.sciencemag.org/cgi/doi/10.1126/science.1247651
http://www.sciencemag.org/cgi/doi/10.1126/science.1247651
https://dx.plos.org/10.1371/journal.pone.0159961
https://dx.plos.org/10.1371/journal.pone.0159961
https://onlinelibrary.wiley.com/doi/abs/10.1002/eji.201545774
https://onlinelibrary.wiley.com/doi/abs/10.1002/eji.201545774
https://www.nature.com/articles/ncomms14825/
https://www.nature.com/articles/ncomms14825/
http://www.pnas.org/lookup/doi/10.1073/pnas.1408792111
http://www.pnas.org/lookup/doi/10.1073/pnas.1408792111
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196363/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196363/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155493/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155493/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.22625
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.22625
https://linkinghub.elsevier.com/retrieve/pii/S0893608012002596
https://linkinghub.elsevier.com/retrieve/pii/S0893608012002596
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.23030
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.23030
https://doi.org/10.1007/82_2014_364
https://doi.org/10.1007/82_2014_364
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
https://f1000research.com/articles/8-2120/v1
https://f1000research.com/articles/8-2120/v1
http://link.springer.com/10.1007/BF00337288
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1667
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1667

8 | GigaScience, 2020, Vol. 00, No. 0

cessing Workshops and Phd Forum Anchorage, AK, USA:
IEEE; 2011. p. 481–489. http://ieeexplore.ieee.org/
document/6008868/.

19. Liu Y, Sun J, Yao Q, Wang S, Zheng K, Liu Y. A Scal-
able Heterogeneous Parallel SOM Based on MPI/CUDA. In:
Asian Conference on Machine Learning; 2018. p. 264–279.
http://proceedings.mlr.press/v95/liu18b.html.

20. Sarazin T, Azzag H, Lebbah M. SOM Clustering Us-
ing Spark-MapReduce. In: 2014 IEEE International Par-
allel and Distributed Processing Symposium Workshops
Phoenix, AZ, USA: IEEE; 2014. p. 1727–1734. http://
ieeexplore.ieee.org/document/6969583/.

21. Dean J, Ghemawat S. MapReduce: simpli�ed data process-
ing on large clusters. Communications of the ACM 2008
January;51(1):107–113. https://doi.org/10.1145/1327452.
1327492.

22. Collange S, Defour D, Graillat S, Iakymchuk R. Numer-
ical reproducibility for the parallel reduction on multi-
and many-core architectures. Parallel Computing 2015
November;49:83–97. https://linkinghub.elsevier.com/
retrieve/pii/S0167819115001155.

23. Gropp W, Lusk E, Doss N, Skjellum A. A high-
performance, portable implementation of the MPI mes-
sage passing interface standard. Parallel Computing 1996
September;22(6):789–828. https://linkinghub.elsevier.
com/retrieve/pii/0167819196000245.

24. Ihaka R, Gentleman R. R: A Language for Data Analy-
sis and Graphics. Journal of Computational and Graphical
Statistics 1996 September;5(3):299–314. https://amstat.
tandfonline.com/doi/abs/10.1080/10618600.1996.10474713.

25. Wegener D, Sengstag T, Sfakianakis S, Rüping S, Assi
A. GridR: An R-based tool for scienti�c data analysis in
grid environments. Future Generation Computer Systems
2009 April;25(4):481–488. http://www.sciencedirect.com/
science/article/pii/S0167739X08001374.

26. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A,
et al. Apache Spark: a uni�ed engine for big data process-
ing. Communications of the ACM 2016 October;59(11):56–
65. https://dl.acm.org/doi/10.1145/2934664.

27. Rocklin M. Dask: Parallel Computation with Blocked algo-
rithms and Task Scheduling. Austin, Texas; 2015. p. 126–
132. https://conference.scipy.org/proceedings/scipy2015/
matthew_rocklin.html.

28. Harris CR, Millman KJ, van der Walt SJ, Gommers R,
Virtanen P, Cournapeau D, et al. Array programming
with NumPy. Nature 2020 September;585(7825):357–362.
https://www.nature.com/articles/s41586-020-2649-2.

29. Bentley JL. Multidimensional binary search trees used
for associative searching. Communications of the ACM
1975 September;18(9):509–517. http://portal.acm.org/
citation.cfm?doid=361002.361007.

30. Omohundro SM. Five Balltree Construction Algorithms. In-
ternational Computer Science Institute 1989;p. 22.

31. Maaten Lvd, Hinton G. Visualizing Data using t-SNE.
Journal of Machine Learning Research 2008;9(Nov):2579–
2605. http://www.jmlr.org/papers/v9/vandermaaten08a.
html.

32. McInnes L, Healy J, Melville J. UMAP: Uniform Mani-
fold Approximation and Projection for Dimension Reduc-
tion. arXiv:180203426 [cs, stat] 2018 December;http://
arxiv.org/abs/1802.03426, arXiv: 1802.03426.

33. Brown SDM, Moore MW. The International Mouse
Phenotyping Consortium: past and future perspectives
on mouse phenotyping. Mammalian Genome 2012
October;23(9-10):632–640. http://link.springer.com/10.
1007/s00335-012-9427-x.

34. Kratochvíl M, Hunewald O, Heirendt L, Verissimo V, Von-
drášek J, Satagopam VP, et al., Supporting data for ”Gi-

gaSOM.jl: High-performance clustering and visualization
of huge cytometry datasets”. GigaScience Database; 2020.
http://gigadb.org/dataset/100810.

35. Varrette S, Bouvry P, Cartiaux H, Georgatos F. Management
of an academic HPC cluster: The UL experience. In: 2014
International Conference on High Performance Computing
and Simulation (HPCS) Bologna, Italy: IEEE; 2014. p. 959–
967. http://ieeexplore.ieee.org/document/6903792/.

http://ieeexplore.ieee.org/document/6008868/
http://ieeexplore.ieee.org/document/6008868/
http://proceedings.mlr.press/v95/liu18b.html
http://ieeexplore.ieee.org/document/6969583/
http://ieeexplore.ieee.org/document/6969583/
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://linkinghub.elsevier.com/retrieve/pii/S0167819115001155
https://linkinghub.elsevier.com/retrieve/pii/S0167819115001155
https://linkinghub.elsevier.com/retrieve/pii/0167819196000245
https://linkinghub.elsevier.com/retrieve/pii/0167819196000245
https://amstat.tandfonline.com/doi/abs/10.1080/10618600.1996.10474713
https://amstat.tandfonline.com/doi/abs/10.1080/10618600.1996.10474713
http://www.sciencedirect.com/science/article/pii/S0167739X08001374
http://www.sciencedirect.com/science/article/pii/S0167739X08001374
https://dl.acm.org/doi/10.1145/2934664
https://conference.scipy.org/proceedings/scipy2015/matthew_rocklin.html
https://conference.scipy.org/proceedings/scipy2015/matthew_rocklin.html
https://www.nature.com/articles/s41586-020-2649-2
http://portal.acm.org/citation.cfm?doid=361002.361007
http://portal.acm.org/citation.cfm?doid=361002.361007
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://link.springer.com/10.1007/s00335-012-9427-x
http://link.springer.com/10.1007/s00335-012-9427-x
http://gigadb.org/dataset/100810
http://ieeexplore.ieee.org/document/6903792/

Your PDF file "main.pdf" cannot be opened and processed. Please see the

common list of problems, and suggested resolutions below.

Reason:

Other Common Problems When Creating a PDF from a PDF file

You will need to convert your PDF file to another format or fix the

current PDF file, then re-submit it.

Manuscript (reference rendering of the LaTeX source) Click here to access/download;Manuscript;main.pdf

https://www.editorialmanager.com/giga/download.aspx?id=105489&guid=003b4d0f-a93b-40b9-aef3-f4049ee5bfbc&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=105489&guid=003b4d0f-a93b-40b9-aef3-f4049ee5bfbc&scheme=1

Supplementary Figures and Code

Click here to access/download
Supplementary Material

supplementary.pdf

https://www.editorialmanager.com/giga/download.aspx?id=105487&guid=c4ede20f-e281-47ee-acab-f337e38df157&scheme=1

