Complex DNA sequence readout mechanisms of the DNMT3B DNA methyltransferase

Michael Dukatz, Sabrina Adam, Mahamaya Biswal, Jikui Song, Pavel Bashtrykov, & Albert Jeltsch

SUPPLEMENTARY INFORMATION

Supplementary Figures

Supplementary Figure S1: Structural snapshots showing the contacts of the residues investigated in this study in three different DNMT3B structures.

Supplementary Figure S2: Example of a Coomassie BB stained SDS-PAGE gel image of the purified proteins used in this study.

Supplementary Figure S3: Controls related to the global base enrichment and depletion analysis.

Supplementary Figure S4: Controls related to the NNCXNN base enrichment and depletion analysis for WT DNMT3B.

Supplementary Figure S5: Flanking sequence preferences of WT DNMT3B in CpG and non-CpG methylation.

Supplementary Figure S6: Pairwise correlation of the flank profiles determined in the individual repeats of the CpG methylation experiments of WT and mutant DNMT3B.

Supplementary Figure S7: Comparison of the enrichment and depletion of bases in the -4 to +4 flank region of CpG substrates methylated by WT DNMT3B and R823A.

Supplementary Figure S8: Boxplot of the ranks of the CpG sites in the human SatII repeat (n=67) and murine minor satellite repeat (n=11) in the NNNCGNNN flanking preferences of human and mouse DNMT3B and DNMT3A.

Supplementary Tables

Supplementary Table S1: Compilation of DNMT3B-DNA structures used in this work.

Supplementary Table S2: DNA contacts of the DNMT3B amino acid residues studied in this work.

Supplementary Table S3: Protein contacts of the residues studied in this work.

Supplementary Table S4: Summary of the NGS sequencing data used in this study.

Supplementary References

Supplementary Figure S1.

Structural snapshots showing the contacts of the residues investigated in this study in three different DNMT3B structures (CGA, CGT, CAG, see Supplementary Table S1). Green lines refer to contact distances smaller than 4 Å.

Supplementary Figure S2.

Example of a Coomassie BB stained SDS-PAGE gel image of the purified proteins used in this study.

Supplementary Figure S3.

Controls related to the global base enrichment and depletion analysis. (A) Compilation of the averaged frequencies of each base at the -8 to +8 flank site. The error bars display the SD of the two measurements. (B) Histogram of the distribution of error levels (in %) among the data points. Note that in the CpG and CpA data sets >98% of the points have error margins below 10%. For the CpT and CpC data sets with lower overall methylation relative errors are larger, but even here >90% of the data points have errors below 10% and only one data point had an error above 20% (25%). (C) Pairwise correlation of the flank profiles determined in the individual repeats (R1 and R2) of the methylation experiments illustrating the high similarity of the experimental repeats. Shown are Pearson correlation factors. (D) Measurement of the position specific variance. For the averaged CpG, CpA, CpT and CpC data sets, the squared values of the deviation of the largest value. The data show that the -2 to +3 flank positions have the largest influence on the methylation rate.

Supplementary Figure S4.

Controls related to the NNCXNN base enrichment and depletion analysis for WT DNMT3B. (A) Correlation of NNCXNN methylation levels observed in the two experimental repeats. (B) Lack of correlation of methylation levels with the number of reads observed for the corresponding bin.

Supplementary Figure S5.

Flanking sequence preferences of WT DNMT3B in CpG and non-CpG methylation. (**A**) Average methylation rate of the 15% of the most preferred and most disfavored flanking sequences. Note the stronger flanking sequence effects in non-CpG methylation. Error bars show the SD. (**B**) Preference for TACXG sequences in non-CpG methylation. Note the elevated preference in CpA and CpT sequence context.

Supplementary Figure S6.

		W	/T	N65	52A	N65	56A	N65	56D	V65	57A	N6	58A	R66	51A	K77	77A	N77	79A	N77	79D	R82	23A
		R1	R2	R1	R2	R1	R2	R1	R2	R1	R2	R1	R2	R1	R2	R1	R2	R1	R2	R1	R2	R1	R2
Ŵ	R1	1.00	0.96	0.95	0.95	0.86	0.86	0.77	0.77	0.96	0.96	0.90	0.92	0.85	0.86	0.00	0.04	0.84	0.85	0.58	0.57	0.95	0.95
	R2	0.96	1.00	0.95	0.94	0.81	0.83	0.76	0.76	0.94	0.95	0.85	0.88	0.87	0.87	0.09	0.11	0.80	0.84	0.50	0.50	0.94	0.93
N652A	R1	0.95	0.95	1.00	0.97	0.83	0.84	0.77	0.78	0.96	0.96	0.90	0.92	0.85	0.86	0.11	0.14	0.83	0.86	0.55	0.55	0.94	0.93
	R2	0.95	0.94	0.97	1.00	0.84	0.84	0.79	0.79	0.95	0.95	0.90	0.92	0.86	0.88	0.12	0.17	0.84	0.87	0.58	0.57	0.94	0.93
6A	R1	0.86	0.81	0.83	0.84	1.00	0.98	0.65	0.65	0.84	0.84	0.84	0.87	0.80	0.79	-0.04	0.00	0.98	0.96	0.83	0.83	0.80	0.79
N6	R2	0.86	0.83	0.84	0.84	0.98	1.00	0.67	0.66	0.85	0.85	0.85	0.87	0.82	0.80	-0.04	-0.01	0.97	0.96	0.82	0.81	0.81	0.80
N 65 6D	R1	0.77	0.76	0.77	0.79	0.65	0.67	1.00	0.98	0.73	0.77	0.73	0.74	0.87	0.88	-0.15	-0.11	0.63	0.64	0.38	0.39	0.82	0.82
	R2	0.77	0.76	0.78	0.79	0.65	0.66	0.98	1.00	0.74	0.78	0.74	0.73	0.87	0.88	-0.15	-0.12	0.63	0.64	0.39	0.39	0.82	0.83
V657A	R1	0.96	0.94	0.96	0.95	0.84	0.85	0.73	0.74	1.00	0.98	0.86	0.87	0.82	0.83	0.08	0.13	0.84	0.85	0.56	0.55	0.96	0.94
	R2	0.96	0.95	0.96	0.95	0.84	0.85	0.77	0.78	0.98	1.00	0.87	0.89	0.83	0.85	0.08	0.12	0.84	0.85	0.56	0.55	0.96	0.95
8A	R1	0.90	0.85	0.90	0.90	0.84	0.85	0.73	0.74	0.86	0.87	1.00	0.96	0.78	0.77	-0.13	-0.09	0.84	0.82	0.66	0.68	0.88	0.88
N65	R2	0.92	0.88	0.92	0.92	0.87	0.87	0.74	0.73	0.87	0.89	0.96	1.00	0.80	0.80	-0.04	-0.01	0.86	0.86	0.67	0.70	0.89	0.89
1A	R1	0.85	0.87	0.85	0.86	0.80	0.82	0.87	0.87	0.82	0.83	0.78	0.80	1.00	0.97	-0.02	0.02	0.79	0.81	0.54	0.53	0.84	0.83
R66	R2	0.86	0.87	0.86	0.88	0.79	0.80	0.88	0.88	0.83	0.85	0.77	0.80	0.97	1.00	0.03	0.07	0.77	0.80	0.53	0.51	0.85	0.85
ΤA	R1	0.00	0.09	0.11	0.12	-0.04	-0.04	-0.15	-0.15	0.08	0.08	-0.13	-0.04	-0.02	0.03	1.00	0.97	-0.01	0.06	-0.10	-0.11	0.01	-0.02
K77	R2	0.04	0.11	0.14	0.17	0.00	-0.01	-0.11	-0.12	0.13	0.12	-0.09	-0.01	0.02	0.07	0.97	1.00	0.02	0.09	-0.08	-0.09	0.05	0.02
Ae	R1	0.84	0.80	0.83	0.84	0.98	0.97	0.63	0.63	0.84	0.84	0.84	0.86	0.79	0.77	-0.01	0.02	1.00	0.97	0.84	0.83	0.79	0.78
177	R2	0.85	0.84	0.86	0.87	0.96	0.96	0.64	0.64	0.85	0.85	0.87	0.86	0.81	0.80	0.06	0.02	0.97	1.00	0.78	0.05	0.80	0.79
06	R1	0.05	0.50	0.55	0.58	0.90	0.90	0.38	0.20	0.55	0.55	0.66	0.67	0.54	0.53	-0.10	-0.09	0.84	0.78	1.00	0.70	0.50	0.75
1779	R2	0.58	0.50	0.55	0.50	0.85	0.02	0.30	0.35	0.50	0.50	0.00	0.07	0.54	0.55	0.10	0.00	0.04	0.78	0.05	1.00	0.52	0.52
A L	R1	0.57	0.50	0.55	0.57	0.85	0.01	0.39	0.39	0.55	0.55	0.00	0.70	0.55	0.51	-0.11	0.09	0.85	0.78	0.55	0.52	1.00	0.52
823	R2	0.95	0.94	0.94	0.94	0.80	0.81	0.82	0.82	0.96	0.96	0.88	0.89	0.84	0.85	0.01	0.05	0.79	0.80	0.52	0.52	1.00	1.00
Ľ.	ΝZ	0.95	0.93	0.93	0.93	0.79	0.80	0.82	0.83	0.94	0.95	0.88	0.89	0.83	0.85	-0.02	0.02	0.78	0.79	0.52	0.52	0.98	1.00

Pairwise correlation of the flank profiles determined in the individual repeats of the CpG methylation experiments of WT and mutant DNMT3B. The data illustrate the high similarity of the experimental repeats. Shown are Pearson correlation factors.

Supplementary Figure S7.

Comparison of the enrichment and depletion of bases in the -4 to +4 flank region of CpG substrates methylated by WT DNMT3B and R823A. The figure shows the N4 flanking preference profiles determined in the analysis of the methylation of CN substrate pools (taken from Figure 5) and of hemimethylated CpG substrate pools.

Supplementary Figure S8.

Boxplot of the ranks of the CpG sites in the human SatII repeat (n=67) and murine minor satellite repeat (n=11) in the NNNCGNNN flanking preferences of human and mouse DNMT3B and DNMT3A. A low rank indicates high preference. The boxes display the 1st and 3rd quartiles with medians indicated by vertical lines. Whiskers display the data range. Murine DNMT3B and DNMT3A data were taken from (1). Note that DNMT3A disfavors both sequences.

Supplementary Tables

Supplementary Table S1: Compilation of DNMT3B-DNA structures used in this work.

Name of complex	DNA sequence context	PDB number	Reference
CGA	CATG <u>CG</u> ATCT	6U8P	Gao et al., 2020
CGT	CATG <u>CG</u> TTCT	6U8V	Gao et al., 2020
CAG	CATG <u>CA</u> GTCT	6U8X	Gao et al., 2020
CGG	AATT <u>CG</u> GAAA	6KDA	Lin et al., 2020
CGT2	CATG <u>CG</u> TTCT	6KDB	Lin et al., 2020

Supplementary Table S2: DNA contacts of the DNMT3B amino acid residues studied in this work. Numbers refer to atom distances in Å.

Residue	Position	CGA complex	CGT complex	CAG complex
N652	+1	Ade-OP1 N652-ND2 3.2	Ade-OP1 N652-ND2 3.3	Ade-OP1 N652-ND2 3.2
N656	-2	Ade'-O4' N656-ND2 4.3	Ade'-N3 N656-ND2 3.9	Ade'-O4' N656-OD1 4.1
	-1	Gua-N2 N656-ND2 3.7	Gua-N2 N656-ND2 3.7	
		Cyt'-O2 N656-ND2 4.4	Cyt'-O2 N656-ND2 4.3	
V657	-1		Gua-C1' V657-CG 3.8	
			Gua C2' V657-CG 3.8	
	Target C	Gua'-N2 V657-O 3.3	Gua'-N2 V657-O 3.3	Gua'-N2 V657-O 3.3
		Gua'-N3 V657-O 3.7	Gua'-N3 V657-O 4.3	Gua'-N3 V657-O 4.3
	CpN site	Gua-N2 V657-CG 3.7	Gua-N3 V657-O 3.8	Ade-N7 V657-CG 3.5
		Gua-N7 V657-CG 3.4		
		Gua-C5' V657-CG 3.5		
N658	CpN site	Gua-O3' N658-ND2 4.3	Gua-O3' N658-ND2 4.1	Ade-O3' N658-ND2 4.4
		Gua-O4' N658-ND2 4.4	Gua-O4' N658-ND2 4.2	Ade-O4' N658-ND2 4.1
		Gua-N3 N658-OD1 4.4	Gua-N3 N658-OD1 4.6	Ade-N3 N658-ND2 4.6
		Gua-N7 N658-OD1 4.4	Gua-N7 N658-OD1 4.5	Ade-N7 N658-OD1 4.5
	+1	Ade-O4' N658-ND2 3.9	Thy-O4' N658-OD2 3.8	Gua-O4' N658-ND2 3.8
T775	Target C	Gua-C2 ⁺ T775-CG2 4.1	Gua-C2 ⁺ T775-CG2 4.1	Gua-C2' T775-CG2 4.2
		Gua-C3 ⁺ T775-CG2 4.4	Gua-C3' T775-CG2 4.4	Gua-C3' T775-CG2 4.5
	CpN site	Gua-N7 T775-OG1 4.4	Gua-N7 T775-OG1 4.5	Ade-N7 T775-OG1 4.5
K777	CpN site	Gua-N7 K777-CG 4.1	Gua-C8 K777-CG 4.4	Ade-N7 K777-CG 3.7
		Gua-C8 K777-CG 4.1		Ade-C8 K777-CG 3.7
	+1	Ade-N7 K777-CE 3.3	Thy-C7 K777-CG 3.5	Gua-N7 K777-NZ 3.1
		Ade-N6 K777-CG 3.9		Gua-O6 K777-NZ 4.1
	+2	Thy-O4 K777-NZ 4.4	Ade'-N6K777-CE 3.6	Thy-O4 K777-NZ 3.5
		Thy-C7 K777-NZ 3.8	Thy-O4 K777-CE 3.6	Thy-C7 K777-NZ 3.7
	+3		Gua'-O6 K777-NZ 4.5	
			Gua'-N7 K777-NZ 4.8	
N779	CpN site	Gua-O6 N779-ND2 3.2	Gua-O6 N779-ND2 2.9	
		Cyt'-N4 N779-ND2 4.1	Cyt'-N4 N779-ND2 4.3	
	+1	Ade-N6 N779-ND2 3.8	Thy-O4 N779 ND2 5.0	
		Thy'-O4 N779-ND2 2.8	Ade'-N6 N779ND2 3.6	
	+2	Ade'-N6 N779-ND2 4.3	Ade'-N6 N779-ND2 4.5	Ade'-N7 N779-ND2 3.9
DODO				Ade - OP2 N//9-OD1 3.5
K823	+3	Gua-OP1 K823-NE 4.5	Gua-OP1 K823-NZ 4.0	Gua-OP1 R823-NE 4.5
	+4	Ade: OP2 R823-N 4.3	Ade: OP2 R823-N 4.3	Ade: 0P2 R823-N 4.5
			R823-NZ 2.6	K823-NZ 3.4
			Ade'-O5' R823-NZ 3.3	Ade'-O5' R823-NZ 2.7

Supplementary Table S3: Protein contacts of the residues studied in this work. Numbers refer to atom distances in Å.

Residue 1	Residue 2	Atom 1	Atom 2	CGA	CGT	CAG
N652	N658	N652-ND2	N658-N	2.7	2.7	2.7
N656	N658	N652-ND2	N658-N	2.7	2.7	2.7
	R661	N656- OD1	R661- NH2	2.6	2.6	2.7
	M703	N656- ND2	M703-N			3.5
V657	T775	V657-CG2	T775-CG2	4.9	4.9	5.3
N658	R661	N658-O	R661-NH2	3.8	4.1	3.5
T775	K777	T775-OG1	К777-О	OG1 3.8	3.7	3.9
		T775-OG1	K777-N	OG1 3.6	3.6	3.4
	N779	T775-OG1	N779-OD1	4.1	3.9	

Enzyme	Sequence context	Concentration [µM]	Number of reads	Average methylation (%)
DNMT3B WT	CG	0.5	47424	23.7
		1	45734	38.3
	CA	0.5	30213	2.9
		1	28040	7.4
	СТ	0.5	30729	1.1
		1	28670	3.2
	CC	0.5	31270	1.1
	HMCC		2/5/0	2.4
	HIVI CO	1	909805 631992	37.9
N652A	ſG	1	12608	36.1
1002/1		2	31551	44.8
	CA	1	12162	6.1
		2	30009	10.3
	СТ	1	12069	1.9
		2	27703	3.2
	CC	1	12721	1.7
		2	31881	2.4
N656A	CG	0.5	40523	17.9
		1	27707	28.1
	CA	0.5	25768	3.6
	CT	1	1/644	7.3
	CI	0.5	20305	1.3
		0.5	27368	2.7
		1	18290	2.0
N656D	CG	5	42586	11.4
		10	44724	12.2
	CA	5	26889	1.0
		10	27554	1.3
	СТ	5	26735	0.6
		10	27541	0.6
	CC	5	29128	0.7
		10	29519	0.9
V657A	CG	1	32673	37.8
		2	30748	43.6
	CA	2	31013	4.5
	СТ	1	285/1	5.8
		2	26911	9.2
	СС	1	32625	2.0
		2	30436	3.7
N658A	CG	3	20296	16.0
		6	22440	20.3
	CA	3	20562	4.6
		6	22497	6.1
	СТ	3	19487	1.2
		6	20793	1.4
		3	213/6	0.9
DCC1A	<u> </u>		235/3	0.9
KOOIA	CG	3	37233 AA18A	39.2
	CA	15	23343	53
		3	26909	7.7
	СТ	1.5	23548	2.5
		3	27043	3.6
	СС	1.5	24091	1.7
		3	27464	2.3
K777A	CG	1	11839	48.3
		2	13262	56.8
	CA	1	9236	16.3
		2	9882	24.2
	СТ	1	9308	4.1
		2	9595	8.1

Supplementary Table S4: Summary of the NGS sequencing data used in this study.

	CC	1	9817	6.3
		2	10730	10.6
N779A	CG	0.5	42293	26.1
		1	40945	34.0
	CA	0.5	26360	5.3
		1	25258	9.8
	СТ	0.5	26428	1.6
		1	25223	3.7
	CC	0.5	27770	1.3
		1	26154	2.8
N779D	CG	0.5	18340	11.5
		1	20120	25.7
	СА	0.5	18300	2.3
		1	19489	5.8
	СТ	0.5	17274	0.6
		1	18573	1.7
	сс	0.5	19883	1.0
		1	20698	1.9
R823A	CG	1.5	44328	30.7
		3	38794	36.6
	CA	1.5	25999	3.7
		3	23440	5.8
	СТ	1.5	25824	1.3
		3	23529	1.9
	CC	1.5	27690	1.3
		3	24452	2.0
	HM CG	3	974408	23.6
no enzyme	CG		13629	0.5
	CA		12608	0.6
	СТ		12809	0.3
	СС		13981	0.4

Supplementary References

 Gao, L., Emperle, M., Guo, Y., Grimm, S.A., Ren, W., Adam, S., Uryu, H., Zhang, Z.M., Chen, D., Yin, J. *et al.* (2020) Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. *Nature communications*, **11**, 3355.