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SUMMARY
Across their dendritic trees, neurons distribute thousands of protein species that are necessary for maintain-
ing synaptic function and plasticity and that need to be produced continuously and trafficked to their final
destination. As each dendritic branchpoint splits the protein flow, increasing branchpoints decreases the to-
tal protein number downstream. Consequently, a neuron needs to produce more proteins to maintain a min-
imal protein number at distal synapses. Combining in vitro experiments and a theoretical framework, we
show that proteins that diffuse within the cell plasma membrane are, on average, 35% more effective at
reaching downstream locations than proteins that diffuse in the cytoplasm. This advantage emerges from
a bias for forwardmotion at branchpoints when proteins diffuse within the plasmamembrane. Using 3D elec-
tronmicroscopy (EM) data, we show that pyramidal branching statistics and the diffusion lengths of common
proteins fall into a region that minimizes the overall protein need.
INTRODUCTION

Neurons have highly complex dendritic trees that can span thou-

sands of micrometers. Dendrites propagate the electrochemical

stimulation received from other neurons at synapses to the

neuronal cell body to eventually elicit action potentials in the

axon hillock. To achieve this signal integration, neurons must

supply synaptic compartments with a diverse set of proteins

ranging from neurotransmitter receptors to intracellular signaling

molecules (Craciun et al., 2005; Smith and Simmons, 2001; Ziv,

2018). In addition, neurons can tune the efficiency or relevance of

synaptic signal detection by modulating the copy numbers of

synaptic proteins at individual synapses (Nusser et al., 1997;

Nair et al., 2013; Choquet, 2018). For example, each excitatory

synapse contains, on average, 60 AMPA receptors (Nair et al.,

2013), and this number is increased or decreased within minutes

(Zhang et al., 2008) during long-term potentiation and

depression.

The most energy efficient means to traffic proteins is via pas-

sive, non-directed diffusion, and experiments show that many

dendritic proteins undergo passive diffusion while moving in

the cytoplasm or at the cell surface (Hirokawa and Takemura,

2005; Dieterich et al., 2010). For example, diffusion of AMPA

receptors at a neuron’s surface is a key step for its synaptic

incorporation (Opazo and Choquet, 2011). After exocytosis,

AMPA receptors move via lateral diffusion within the cell plasma

membrane, with average synaptic dwell times of only 3–7 s (Eh-
Ce
This is an open access article under the CC BY-N
lers et al., 2007). For cytosolic proteins, passive diffusion can be

very fast (several mm2=s) and competes with active mechanisms

promoting protein subcellular targeting (Fonkeu et al., 2019). As

proteins travel across the branching dendritic tree, they can

encounter tens of different branchpoints, each of which splits

the flow of proteins. To serve distal compartments, a neuron

could compensate for the number of downstream branchpoints

by allocating more proteins to longer dendrites and those that

branch more. How does this branch-based protein allocation

work?

Theory-based attempts to understand dendritic protein dis-

tribution often consider a non-branching linear dendrite (Bressl-

off and Newby, 2013; Bressloff and Earnshaw, 2007; Fonkeu

et al., 2019) or assume that the flow of proteins splits in half

at each branchpoint (Williams et al., 2016). On the other

hand, growing experimental and theoretical evidence suggests

that protein trafficking cannot be understood by using such

simplified approaches. First, even the simplest branching rule,

introduced by Rall (1964), implies that the radii of daughter

branches may not be half of those of the mother dendrite;

recent analysis of reconstructed dendritic trees indicates that

the daughter radius ratio is highly variable (Otopalik et al.,

2017), and it may even depend on the length of the down-

stream branch (Bird and Cuntz, 2016). Second, some recent

theoretical studies focusing on electrical flow in dendritic trees

indicate that the daughter radius ratio at branchpoints can limit

backpropagation of APs (Vetter et al., 2001) and alter the
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synaptic plasticity response of a whole branch (Ebner et al.,

2019). These studies raise the possibility that branchpoints

might also regulate protein copy numbers at synapses. Howev-

er, a full understanding of the effect of dendritic arbor architec-

ture on protein distribution in entire cells requires new

computational perspectives.

Here we present a data-driven model framework that incorpo-

rates dendrite statistics of 3D electron microscopy (EM)-recon-

structed mouse cortical pyramidal neurons and the annotated

morphological database NeuroMorpho.org (Ascoli et al., 2007).

Using this framework, we explored the consequences of branch-

ing morphologies on the protein supply and made three key dis-

coveries. First, we predict a greater forward bias for themotion of

surface proteins compared with cytoplasmic proteins. We vali-

dated the existence and amplitude of this forward bias experi-

mentally using in situ fluorescent labeling of cytoplasmic and

surface proteins. By measuring the relative abundance of sur-

face and cytoplasmic proteins before and after the branchpoint,

we obtained a 35% average forward bias for surface proteins.

Second, we show that our experimental measurements of den-

dritic radius ratios and branch lengths in pyramidal neurons,

together with the diffusion lengths of common proteins, fall into

a region that minimizes overall protein need. Proteins with diffu-

sion lengths favored by the pyramidal branchpoint geometry dis-

tribution include prominent synaptic proteins such as CamkII

and the GABA-A receptor. Third, we show that daughter radius

optimization not only supports protein transport of dendritic pro-

teins but also has the potential to reduce the total protein count

needed to populate the dendritic arbors by four orders of

magnitude.

Overall, our results indicate that neuronal dendritic morphol-

ogies have a key role in shaping neuronal function and reflect

optimization strategies and constraints imposed by protein

trafficking.
RESULTS

To understand how proteins are supplied to synapses across the

dendritic tree, we propose a mathematical framework that de-

scribes protein flow in the branching dendritic tree with consid-

eration of the radii at individual branchpoints. We start by

addressing the motion of proteins along straight dendritic seg-

ments and branchpoints. We then generalize this to complex

branching geometries.

The dendritic protein density along linear dendritic stretches is

captured by the diffusion equation

vrðx; tÞ
vt

= D
v2rðx; tÞ

vx2
� frðx; tÞ; (Equation 1)

where rðx; tÞ is the protein density per unit of length, D is the

diffusion coefficient, and f= logð2Þ=T1=2 is the degradation

rate, which is inversely proportional to the half-life of the protein,

T1=2. Here we considered proteins that emerge from a source

located at x = 0 and populate the dendrite of length L.

The solution of Equation 1 is a combination of exponentials

that combine into a fraction of hyperbolic functions:
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rðxÞ = N$
cosh

�
L�x
l

�
sinh

�
L
l

�
l

: (Equation 2)

We obtained Equation 2 by considering the algebraic steps

detailed in the STARMethods. Here, L is the length of the consid-

ered dendrite and l the diffusion length, which characterizes the

spatial width of the protein density:

l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
DT1=2

��
logð2Þ

q
: (Equation 3)

Next we generalized Equation 1 to include biologically realistic

morphologies. To this end, we define boundary conditions for

each dendritic segment that capture how proteins move close

to bifurcations or dendritic tips. In Figure 1, we consider three

types of dendritic segments: continuations, branchpoints, and

terminations (representing the end of a dendritic branch). At

the continuations, protein motion is described by Equation 1.

At the terminations, the protein density fulfills the no-flux condi-

tion (see Equation 10, which states that the protein flux at the

dendritic tips is zero).

In the next sections, we derived mathematical relations and

analyzed neuronal reconstructions and in vitro protein distribu-

tions to describe the behavior of proteins in the vicinity of

branchpoints and across the dendritic tree.
Rall Exponents and Their Consequences for
Downstream Protein Distribution
At a dendritic branchpoint, the probability of a protein to take a

particular route depends on the available space in the route of in-

terest. Conversely, surface proteins diffusing within the plasma

membrane can explore the circumference of a dendrite, where

the probability of choosing a particular route is proportional to

the radius of the dendrite in that direction (surface area f2pRi,

i = 0;1;2). On the other hand, proteins moving within the cyto-

plasm can explore the volume within the dendrite, where the

probability of choosing a particular route is proportional to the

radius squared (cross-section areafpR2
i ). We considered a sit-

uation where the intracellular conditions shaping the movement

of proteins (e.g., viscosity, molecule crowding, access to degra-

dation machinery, etc.) were homogeneous in the vicinity of the

branchpoint. To parametrize the dependency of the radii of the

three afferent dendrites, we considered a generalization of Rall’s

3=2 branching rule (Rall, 1964):

Ra
0 = Ra

1 +Ra
2; (Equation 4)

where the mother branch radius is R0, and the radii of the two

daughter branches are R1 and R2 (see Figure 1, C). Pioneering

studies by Rall describing passive neuron models found that if

a= 3=2, then the flow of electrical current along the branching

dendritic tree is equivalent to that along a long cylinder (Rall,

1964).

Although the relation does not hold exactly for many neuronal

families (Otopalik et al., 2017; Kernell and Zwaagstra, 1989;

http://NeuroMorpho.org


Figure 1. Protein Motion in a Branching Dendrite and the Associated Probabilities

A reconstructed dendritic arbor can be divided into compartments of equal length. The dendritic image was recorded using methods described in the STAR

Methods section Image Acquisition. Each compartment can have one (A), two (B), or three (C) neighboring compartments. If a compartment has one neighboring

compartment (A), the protein can jump back or stay, which is equivalent to a no-flux boundary condition. For two connected compartments (B), the probability of

moving in either direction is equal. For a bifurcation (C), the probability of moving in either direction is determined by the cross-section or the circumference of the

branches. These two options lead to fundamentally different outcomes: daughter branches are predicted to accumulate more protein relative to the mother

dendrites (larger surface area than cross-section area) when the proteins move along the surface rather than in the dendrite.
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Mainen et al., 1996; Desmond and Levy, 1984), its underlying

idea is used as a baseline for many dendritic models (Kubota

et al., 2011; Bird and Cuntz, 2016). It is conceivable that the

typical Rall exponent, a, is cell type specific. In the next section,

we address the statistics of the Rall exponents in cortical pyrami-

dal neurons, hippocampal pyramidal neurons, and stomatogas-

tric ganglion (STG) neurons.

To accurately capture the effect of branchpoints on the flow of

proteins, it is necessary to understand how the radii of the

mother dendrite and the daughter dendrites relate to one

another. The relation between the daughter and the mother radii

determines the number of proteins that can pass through the

branchpoint and is an important predictor of the protein number

downstream. We approximated each branchpoint as a point

where mother and daughter cylinders terminate with perfect cir-

cle cross-sections. However, dendritic branchpoint geometries

in vivo could deviate from this symmetry and exhibit variable

length of tapering cylinders, variable diameter of the branchpoint

trunk, etc. (Ferrante et al., 2013). Although we did not include this

branchpoint variability in the model, it can be captured in future

work by considering local tapering effects and including a local

drift around branchpoints using the methods introduced in the

supplement in Fonkeu et al. (2019). This more complex branch-

point geometry does not significantly alter our model predictions

regarding the global steady-state protein distributions because

the number of proteins leaving a branchpoint, after the tapering,

will depend on the radii of the daughter branches after tapering.

However, the branchpoint heterogeneity could modify the time it

takes to establish the steady state described by our model.

We proceed by considering Figure 1, C, and the definition of

the Rall exponent in Equation 4. We evaluated the mother and

daughter radii around branchpoints in cultured pyramidal neu-
rons (Figures 2A and 2C) and in pyramidal neurons recon-

structed in the posterior parietal cortex (PPC) and imaged using

3D EM (Figures 2B and 2D; Karimi et al., 2020; Boergens et al.,

2017). To examine whether the branchpoint radius statistics

vary across neural types, we used an additional, published data-

set on STG neurons (Otopalik et al., 2017; Figure 2E). For all

branchpoints, we calculated the Rall exponent using Equation

4; their resulting distribution is shown in Figure 2E.

Next we analyzed how the two daughter radii are related to

one another (Figures 2A–2E). Rmax denotes the larger of the

two radii and Rmin the smaller. The corresponding normalized

radii are rmax =Rmax=R0 and rmin =Rmin=R0, where R0 is the radius

of the mother dendrite as measured in the vicinity of the branch-

point (STAR Methods). To understand the consequences of the

measured radii, we divided them into five classes based on the

corresponding Rall exponent a; different shades of gray denote

branchpoint radii with 0<a< 1 in darkest gray, 1<a< 2 in gray,

a> 2 in lighter gray, a< 0 in light gray, and a˛C in lightest gray

(Figures 2C–2E).

Analyzing the distribution of Rall exponents in Figure 2G, we

found that the Rall exponent distributions are skewed toward

the right. We therefore used the median values rather than the

means to derive characteristic Rall exponents. We obtained

the following median Rall exponents: a= 2:28 for PPC pyramidal

neurons, a= 2:03 for cultured pyramidal neurons, and a= 1:00

for STG neurons (Figures 2F and 2G). The difference between

surface and cytoplasmic proteins at branchpoints, which we

present in the following sections, can be derived from Rall expo-

nents or directly from the ratio of the daughter radii. In the next

paragraph, we will use the Rall exponents to derive whether

the expected numbers of surface and cytoplasmic proteins after

a branchpoint are higher or lower than the numbers in the
Cell Reports 33, 108391, November 17, 2020 3



Figure 2. The Distribution of Daughter Radii at Branchpoints Is Cell Type Specific

(A) A selected branchpoint in a cultured pyramidal neuron is displayed as used in our analysis. The dendritic image was recorded using methods described in the

STAR Methods section Image Acquisition.

(B) A selected branchpoint of a neuron in a 3D reconstructed PPC pyramidal neuron as used in our analysis.

(C and D) Normalized smaller daughter radii ðrmin =Rmin =R0Þ are displayed versus the normalized larger radii ðrmax =Rmax =R0Þ in pyramidal neurons re-

constructed in the posterior parietal cortex (PPC) and imaged using 3D electron microscopy (EM). Experimental 3D EM methods can be found in the STAR

Methods section Dendrite Diameter Measurement in Three-Dimensional Electron Microscopy.

(E) For comparison, published data on stomatogastric ganglion (STG) neurons from Otopalik et al. (2017) are shown.

(C–E) Bottom: the contour lines and the corresponding gray color scale denote different parameter regimens in: Rall exponent a< 0, 0<a< 1, 1< a< 2, a> 2, and

a˛C1.
(F) Distribution of normalized radii from (C)–(E).

(G) Distribution of Rall exponents in pyramidal (red and black lines) and STG (blue) neurons. For PPC pyramidal neurons, the median value of the Rall exponent is

a= 2:28, and its 50% confidence interval is ð1:76;3:3Þ. For cultured hippocampal neurons, a= 2:03 with a 50% confidence interval of ð1:50;2:99Þ. For neurons in
the STG, a= 1:00 with a 50% confidence interval of ð0:72;1:47Þ. The mean values of a are a= 2:56± 1:78, a= 2:44± 3:86, and 0:88±2:26, respectively.
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corresponding mother dendrite, and we will use the normalized

radius, rmin;rmax, to explicitly calculate the surface-to-cytoplasm

bias for individual branchpoints.
Daughter Radii at Branchpoints Determine the
Downstream Protein Count
Next we used the Rall exponents derived in the previous sec-

tion to predict how the dendritic branchpoints affect the protein

distribution downstream. For a protein, the probability of

diffusing into either branch depends on the daughter and

mother radii because these determine how much space is

available for protein movement (Figure 3A). The probability of

moving into one of the three possible directions at a branch-

point is
4 Cell Reports 33, 108391, November 17, 2020
P
ðgÞ
i =

Rg

i

Rg

0 +Rg

1 +Rg

2

;g=

�
1; surface
2; cytoplasm:

(Equation 5)

In the following, i = 0 denotes the mother dendrite and i = 1; 2 the

two daughter dendrites, respectively. Evaluating this relation in

Figure 3B, we found that the probability of a protein to diffuse

into the daughter dendrites or to go back to the mother dendrite

is cell type specific and depends on the diffusion medium. In Fig-

ure 3B, top, we show that, for a typical pyramidal neuron with

Rall exponent a= 2:28, the fraction of proteins immediately after

the branchpoint is higher than the fraction of protein before it;

that is true for surface proteins (solid red line) and for cytoplasm

proteins (dashed red line). We repeated the same plot for a



Figure 3. Protein Diffusion toward Distal Dendrites Is Greater for Surface Proteins Than Soluble Proteins

(A) Diffusing proteins that reached a branchpoint move back toward the mother dendrite with a probability P0 and toward either distal site with probability P1 and

P2.

(B) The probability for a surface or cytoplasmic protein to move into the daughter branches, P1 +P2, depends on the normalized radius of one of the daughter

dendrites (e.g., r1) and on the Rall exponent a. Using the Rall exponents from Figure 2E, we calculated the probability of moving into the daughter dendrites as a

function of the normalized radii. The probability of forward motion ðP1 +P2Þ is larger for surface proteins than for soluble proteins (solid versus dashed lines).

(C) The probability ratio, under the assumption that the two daughter dendrites have the same radius as a function of their normalized radius ri . For each value ri%

1 (a > 0Þ, the probability ratio of surface proteins (solid line) is higher than the probability ratio for cytoplasmic proteins (dashed line), and the relative bias (solid

green line) is bigger than zero. Vertical ticks represent the median normalized radius of STG neurons (blue), PPC pyramidal neurons (red), and cultured pyramidal

neurons (black).

(D) Relations between the probability ratios (Equation 6) as function of the Rall exponent.

(E) The color code represents the predicted relative bias, Q S=C
P , as a function of the relative radii of the daughter dendrites, and the red circles represent the

location of the measured PPC pyramidal branches.

(F) The fraction of branches with a specific relative bias Q S=C
P , PPC pyramidal neurons (red) with median Q S=C

P = 0:29 with a 50% confidence interval ð0:18;0:41Þ,
STG neurons (blue) with median Q S=C

P = 0:35 with a 50% confidence interval ð0:02;0:79Þ, and cultured pyramidal neurons (black) with median Q S=C
P = 0:28 with a

50% confidence interval ð0:19;0:54Þ. The shaded area represents the mean and SE of the surface bias for the three neuronal classes. The mean and SE of the

theoretically predicted relative bias in cultured pyramidal neurons is 0.36, SE = 0:11.

(G) Table summarizing the meaning of Q S
P,Q

C
P , and Q S=C

P .

Experimental methods and sample sizes underlying the data points in (E) and (F) can be found in the STARMethods sections Dendrite Diameter Measurement in

Three-Dimensional Electron Microscopy, Hippocampal Neuron Preparation, Neuron Transfection, and Image Acquisition.
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typical STG neuron, a= 1:03, and in Figure 3B, bottom, we

observed that the fraction of surface protein after the branch-

point is almost independent of the radius of the first dendrite

and slightly bigger than 1=2 (solid blue line), whereas the fraction
of cytoplasm protein after the branch is constantly lower than

1=2 (dashed red line). In both cases, the fraction of surface pro-

tein after the branchpoint is consistently higher than the fraction

of cytoplasmic protein before the branchpoint.
Cell Reports 33, 108391, November 17, 2020 5



Article
ll

OPEN ACCESS
Next we used these probabilities to make quantitative predic-

tions for the distribution of proteins around a branchpoint. We

defined the expected protein number ratio Q g
P as the ratio be-

tween the number of proteins immediately after and before the

branchpoint. Here, g=C for cytoplasmic proteins, and g= S

for surface proteins. In the STAR Methods, we show that the

number of proteins in a compartment adjacent to the branch-

point is proportional to the probability of moving from the

branchpoint toward that compartment. We can therefore link

the probability ratio to the expected protein numbers in the im-

mediate vicinity of a branchpoint:

Q g

P =
P1 +P2

P0

=

�
Q S

P = r1 + r2

Q C
P = r21 + r22

where ri =Ri=R0: (Equation 6)

Next we studied how the expected protein number ratio Q g
P de-

pends on the radii at the branchpoint, the mode of protein trans-

port (surface versus cytoplasm), and the Rall exponent a (Figures

3C and 3D). A probability ratio Q g
P > 1 indicates that the proteins

move preferentially forward into the daughter branches, and a

number ratio Q g
P < 1 indicates that a backward motion toward

the mother dendrite is preferred. We found that all Rall expo-

nents that are larger than zero favor transport of surface proteins

to daughter dendrites. Therefore, the relative bias,

Q S=C
P = Q S

P

.
Q C

P � 1; (Equation7)

is always positive for Rall exponents that are larger than zero

(Figure 3 D).

In Figures 2C–2G, the areas spanned by the two daughter radii

that correspond to a specific relation between the predicted

number ratios Q S
P and Q C

P are color coded to interpret the pre-

dicted number ratio for individual branchpoints. The measured

branchpoints located in the dark gray area follow 0% Q C
P <

Q S
P%1, branchpoints in the gray area follow Q C

P%1%Q S
P%

ffiffiffi
2

p
,

branchpoints in the light gray area follow 1%Q C
P%Q S

P%2, and

those in the lightest gray area follow 2%Q S
P%Q C

P . The values

of Q S
P;Q

C
P and Q S=C

P are shown in Figure 3C for the limiting

case r1 = r2. The experimental values of Q S=C
P for PPC pyramidal

neurons are shown in Figure 3F; and its distribution for the three

classes of neurons is analyzed in Figure 3G. Next we analyzed

the ðr1; r2Þ distribution to calculate the expected Q S
P and Q C

P of

cultured neurons; the mean and standard error are Q S
P = 1:48;

SE = 0:03, and Q C
P = 1:17, SE = 0:05.
Experimental Validation In Vitro

Our theory predicted that the typical pyramidal neuron dendritic

branch, with an experimentally measured median normalized

radius r = 0:71, would favor the forward motion of surface pro-

teins over cytoplasmic proteins. We tested this prediction by

measuring the distribution of fluorescent cytoplasmic or surface

protein in the vicinity of branchpoints in cultured hippocampal

neurons. We analyzed the fluorescence intensities in the vicinity

of branchpoints for a soluble cytoplasmic green fluorescent pro-

tein (GFP) and aGFP coupled to a surface-expressed transmem-

brane protein, Neuroligin-1 (GFP::Nlg-1) (Figure 4A), integrating
6 Cell Reports 33, 108391, November 17, 2020
the fluorescence in the neighborhood of the branchpoint (Figures

4A and 4B; STARMethods). Assuming that the ratio between the

protein fluorescence signals is equal to the copy number ratio of

proteins, we calculated the fluorescence ratio analogous to

Equation 6. Confirming our prediction, we found that the fluores-

cence ratio of surface proteins is higher than the fluorescence ra-

tio of cytoplasmic proteins, Q S
F >Q C

F . In Figure 4C, we show the

distribution of Q S
F and of Q C

F for a particular choice of the neigh-

borhood size, and in Figure 4D, we show the mean and SE for

varying neighborhood sizes. This difference is summarized by

the surface bias in Figure 4E. Previous studies have shown

that, in the absence of untranslated targeting sequences, trans-

fected mRNAs coding for GFP and GFP::Nlg-1 are confined to

the soma region (Tushev et al., 2018). This indicates that our pro-

teins of interest are synthesized in the soma and, from there,

populate the entire dendritic arbor. Thus, there is likely little

contribution of local protein synthesis to these measurements.

The fluorescence intensities of both expressed proteins are

continuous along the dendritic arbor. The expected value of

the protein ratios for surface and cytoplasmic proteins obtained

in Figure 3C are reported in Figure 4D (blue and red horizontal

lines denote the respective theoretical predictions) and the cor-

responding surface bias in Figure 4E. We quantified the surface

bias by calculating the mean value of the fluorescence ratio for

the surface protein and dividing it by the mean value of the fluo-

rescence ratio for the cytoplasmic protein. We found a forward

bias of 35%, SE = 10%, which is in line with our theoretical pre-

diction of 35%, SE = 3% (Figures 4D and 4E).

In Figure 4D, we see a small upward shift in the data values

compared with the model prediction. Considering two supple-

mental statistics for mean and median (Figure S1), we see that

the deviation between the predicted mean and measured

mean for surface and cytoplasmic proteins is not significant.

Can a Neuron Optimize Branchpoints for Protein
Trafficking?
Our results so far suggest that the ratio of the daughter radii is an

important determinant of downstream protein concentration

(Figure 5A). Therefore, we next investigated whether an optimal

daughter radius ratio exists that can maximize the flow of pro-

teins to longer dendrites without increasing the total protein

count. The energy needed to translate a single protein is approx-

imately 5–13 ATP per amino acid (Schimmel, 1993) (e.g.,� 7947

ATPs for a single GluA2 protein), and a neuron has to produce

� 12; 000 different proteins (Sharma et al., 2015), each of which

lives only for a few days (Dörrbaum et al., 2018). This imposes a

large energy demand and suggests that the total copy number of

synaptic proteins should be kept as low as possible to minimize

the overall energy expenditure of the neuron (Harris et al., 2012).

If an optimal radius ratio exists that can help lower the energy

cost of maintaining synaptic protein counts at longer dendrites,

then what is the energy cost of not meeting this optimality

criterion?

Let us consider two daughter branches that have different

lengths downstream of a branchpoint; we assume that they are

assigned the same protein number (equal daughter radii). The

shorter dendritic branch would now receive an overabundance

of proteins, whereas the longer is deprived of them. In such a



Figure 4. In Vitro Experiments Confirm that Surface Proteins Are Favored over Cytoplasmic Proteins at Branchpoints
(A) Representative images of a surface protein, GFP::Nlg-1 (top), and cytoplasm protein, GFP (bottom), in cultured pyramidal neurons, along with the regions of

interest for the mother and daughter dendrites.

(B) A sketch of the parameter definitions used in the data analysis in (C)–(E). The fluorescent signal (black line) is integrated betweenm andm+ Dm. The integrated

fluorescence is denoted by Fi , where i = 0 represents the mother dendrite and i = 1; 2 the daughter dendrites.

(C) Distribution of the fluorescence ratios Q F for GFP (red) and GFP::Nlg-1 (blue). The error bars represent the mean and SE for the two proteins. Vertical shaded

areas represent the predicted value of the fluorescence ratio, obtained in Figure 3 for cytoplasmic (red) and surface (blue) proteins. Here we chosem= 0mm and

D= 3mm.

(D and E) The bootstrapped mean and SE of the fluorescence ratio Q F for GFP and GFP::Nlg-1 proteins (D; red and blue, respectively) and of the relative bias (E,

black) in cultured pyramidal neurons for different values ofm= 0;1; 2; 3; 4 andD= 1; 2; 3; 4. The solid lines represent themean values obtained in Figure 3F and the

shaded area their SE. The bold error bars summarize (C).

Experimental methods and sample sizes underlying the images and data can be found in the STARMethods sections Hippocampal Neuron Preparation, Neuron

Transfection, and Image Acquisition.
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scenario, the neuron would need to increase overall production

of proteins to ensure that the protein concentration in the

deprived dendrite is above the minimal threshold for synaptic

function. In an optimal branching tree, the protein density r at

the tips of the branches would be the same, and the shorter den-

dritic branches would be assigned smaller dendritic radii

because they have a lower protein demand than longer

branches. When examining the terminal branch points of a

dendrite, we noted that each protein type has its optimal radius

ratio, given its diffusion length and the length of daughter

dendrites:

coshðL1=lÞ
coshðL2=lÞ =

Rg

1

Rg

2

; (Equation 8)

where l is the diffusion length (Equation 3). Next we considered

28 EM-reconstructed pyramidal branchpoints with known

daughter lengths L1;L2 and known mother and daughter radii

R0, R1, and R2. For 19 measured branchpoints, we computed

the diffusion length l, for which the measured daughter radius

ratio is optimal. We did this by inserting L1;L2 and R1; R2, for

each measured branchpoint into Equation 8 and identifying l,

which fulfills this relation. Proteins whose diffusion length corre-
sponds to such ls will minimize the total protein count needed to

achieve equal protein density at both dendritic tips.

The resulting distribution of diffusion lengths is shown in Fig-

ure 5C for cytoplasmic proteins (red) and surface proteins (blue).

For comparison, the distribution of diffusion lengths for dendritic

proteins n= 26ð Þ is shown in yellow. We found that the protein

diffusion lengths for which the dendritic branchpoints are opti-

mized have significant overlap with the experimentally reported

diffusion lengths of dendritic proteins (Figure 5C). The overlap re-

gion corresponds to diffusion lengths ranging from 50–500 mm.

This range includes important synaptic proteins, such as receptor

subunit GluA1, a subunit of AMPA-type glutamate receptors, and

the a1 subunit of GABA-A receptors (Table S1). Experimental

methods to obtain diffusion coefficients in these studies are based

on the mean square displacement along straight dendritic seg-

ments; methods to obtain the protein half-life are based on

mass spectrometry and cycloheximide chase assay experiments.

Overall, dendritic proteins are a diverse set and can exhibit

different diffusion properties and have different diffusion lengths.

Therefore, any branchpoint radii and dendritic lengths that may

be optimal for one protein type may not be optimal for another.

If the daughter radii deviate from the optimal ratio, then the

number of proteins needed to maintain equal protein concentra-

tion at the dendritic tips would increase. To measure this cost,
Cell Reports 33, 108391, November 17, 2020 7



Figure 5. Daughter Radii in Pyramidal Neu-

rons Are Optimized for Protein Diffusion

Lengths that Overlap with the Experimen-

tally Reported Distribution of Dendritic Pro-

teins

(A) A sketch of a dendritic branch and its corre-

sponding radii, lengths, and density of proteins at

the tips of the daughter dendrites.

(B) Predicted protein density at the tips of the

daughter dendrites as a function of the daughter

radius ðr1Þ. The second daughter radius is set to

the median radius for PPC pyramidal neurons

r2 = 0:75, L1 = 50mm, L2 = 25mm and diffusion

length l= 110mm.

(C) Distribution showing the number of branches

optimized for a particular diffusion length for

cytoplasmic (red) and surface (blue) proteins.

Shown in yellow are diffusion lengths for 26 den-

dritic proteins with experimentally reported diffu-

sion coefficients and half-lives (STAR Methods).

The median values of the distributions are

l= 65mm, l= 110mm, and l= 329mm, respectively.

(D) For a given set of l, L1, and L2, there is only one

value of the normalized radius r1 (here, r2 = 0:75)

that minimizes the total amount of proteins

needed to ensure at least Ntarget proteins are

localized to the tips of both daughter branches. A

normalized radius r1 of less than the optimal r1
leads to a substantial increase in the number of

proteins (cost) needed to populate the dendritic

arbor, whereas a higher r1 value does not signifi-

cantly increase the cost.

(E) Proteins with small diffusion lengths (short-

diffusivity proteins) incur a larger cost for non-

optimal daughter radii than those with large

diffusion lengths.

Experimental methods underlying the data can be

found in the STAR Methods sections Dendrite

Diameter Measurement in Three-Dimensional

Electron Microscopy, Hippocampal Neuron

Preparation, Neuron Transfection, and Image

Acquisition.
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we studied the amount of extra proteins needed to maintain

equal protein concentrations at the tips of the two daughter

branches (Figure 5A) and expressed it as a percentage of the to-

tal protein count under optimal conditions. We calculated this

percentage cost for daughter radius deviations (R1=R0 relative

to its optimal value) and for deviations in l (Figures 5D and 5E).

We found that radii smaller than the optimal value incur a higher

cost than those that are larger (Figure 5). Finally, we analyzed the

non-optimality cost for different diffusion lengths. We found that

proteins with smaller diffusion lengths incur a larger cost for non-

optimal radii compared with proteins whose diffusion lengths are

larger than the optimal value. Intuitively, this can be understood

by considering that proteins with larger diffusion lengths travel

longer distances and, thus, reach both dendritic tips in larger

numbers, making their concentration less dependent on any

particular branching radius ratio. Conversely, proteins with

shorter diffusion lengths reach the dendritic tips less readily,

and their concentration is dependent on dendritic radii. Next

we generalized our model calculations to consider the anatomy

of spines that branch off a dendrite and found (see STAR
8 Cell Reports 33, 108391, November 17, 2020
Methods section Spine-Dendrite Coupling and Figure S3) that

the dendritic radius and spine head size have a larger role in pro-

tein availability in spines compared with the radius of the spine

neck or its length.

Consequences for Protein Distributions in
Reconstructed and Artificial Morphologies
Our next goal was tomove from individual branchpoints to whole

dendritic trees. How do the number of branchpoints and lengths

of dendritic segments determine the downstream protein copy

number? To answer this question, we considered two types of

dendritic trees: synthetic dendritic trees with a controlled num-

ber of branchpoints and reconstructed hippocampal pyramidal

neurons from Ascoli et al. (2007). First we considered dendritic

trees with symmetrical branching, where the radius of the

daughter dendrites is equal to the average value obtained for py-

ramidal neurons (R1 =R2 = 0:75$R0; Figure 2F). We applied these

considerations to artificial morphologies (Figure 6A) and 65 re-

constructed pyramidal neurons. We found that, as the number

of branchpoints increases toward the dendritic tips, the fraction



Figure 6. Influence of Dendritic

Morphology and Radius Optimization on

the Distribution of Proteins

(A) Synthetic dendritic morphologies with zero,

two, and eight consecutive branches.

(B) Protein number ratio between surface and

cytoplasmic proteins versus distance calculated

for proteins with the same diffusion coefficient

and half-life. Red, blue, and green correspond to

synthetic morphologies in (A). The solid black line

corresponds to an average of 65 reconstructed

pyramidal morphologies obtained from the Neu-

roMorpho database (Ascoli et al., 2007).

(C) Predicted number of proteins per micrometer

in a pyramidal neuron (morphology taken from

Dalrymple-Alford et al., 2015). The color code

represents the predicted number of proteins per

micrometer. The number of proteins in the distal

parts is larger for surface proteins than for cyto-

plasmic proteins. Here we considered symmetri-

cal daughter branches where the radius of a

daughter dendrite is R1 =R2 = 0:75R0.

(D) Predicted number of proteins per micrometer

for optimized radii.

(E) Dendritic trees with optimized radii need

smaller protein counts to supply dendritic com-

partments with at least one protein per compart-

ment.

(F) Percent cost ððN�NoptÞ =Nopt100%Þ versus

fraction of compartments supplied. The diffusion

coefficient and half-life are kept constant

throughout: D= 0:36mm2=s and T1=2 = 5:0 days,

respectively, leading to a diffusion length of

472mm corresponding to GABA-A subunit a2

(Table S1).
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of surface/cytoplasmic proteins away from the soma increases,

too. As expected, this effect accumulates with each branchpoint

(Figure 6B), which explains the step-like increase in the distribu-

tion in synthetic morphologies. Because of the high number of

branchpoints in the reconstructed pyramidal neurons and their

random positions, we found a smooth increase in the surface-

to-cytoplasm ratio in the 0� 500mm range.

Our previous results indicated that daughter radii in pyramidal

neuron are not necessarily equal and that their ratio can reflect

an optimization strategy for downstream protein numbers. To

find out how effectively this optimization strategy is able to raise

protein copy numbers at the distal sites, we simulated it in pyra-

midal morphologies. We compared protein distributions for sym-

metrical and optimized daughter radii in the same dendritic

morphology of a representative pyramidal neuron. We set the to-

tal protein count to N= 2:1$1012 to ensure that at least one

protein is allocated to all dendritic compartments. As predicted,

surface proteins had a higher protein copy number at distal sites

compared with cytoplasmic proteins with equal diffusion coeffi-

cients and half-lives (Figure 6C). The same proteins and the

same morphology resulted in significantly higher distal protein
counts when radii were optimized using the strategy in Equation

8 (Figure 6D). We found that daughter radius optimization could

reduce 1,000-fold the total protein necessary to supply all com-

partments of a dendritic tree with at least one protein. In our

example, we found that 1:7$109 surface proteins (this is an

average of 65 morphologies) and N= 2:1$1012 cytoplasmic pro-

teins were necessary to supply a dendritic tree with symmetrical

daughter radii. Daughter radius optimization reduced this num-

ber 100- to 10,000-fold to 1:2$107 and 2:1$108, respectively.

We chose the GABA-A receptor as an example because its

diffusion length is close to the median diffusion length of the

experimentally characterized proteins in Table S1 and Figure 5C.

In Figure S4, we show the predicted protein distributions for an

alternative diffusion length l= 109mm, which corresponds to

the median of the EM-inferred diffusion lengths (Figure 5C, blue).

Next we asked whether the optimization strategy is still bene-

ficial when only a part of the dendritic tree is supplied with pro-

teins. If 90% of compartments require this type of proteins,

does radius optimization still matter? Here we found that this

reduced the total protein count to 7:1$106 for surface proteins

and 4:5$108 for cytoplasmic proteins in dendritic trees with
Cell Reports 33, 108391, November 17, 2020 9
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symmetrical radii. However, daughter radius optimization

reduced this number 10–100 times to 9:5$105 and 4:0$ 106,

respectively.

These results indicate that daughter radius optimization and

membrane-bound protein transport can be powerful strategies

that help supply proteins to distal dendrites while minimizing

the total neuronal energy expenditure for protein synthesis.

Combining these optimization strategies with dendritic mRNA

localization or active protein transport could help to further lower

the necessary total protein counts and provide neurons with a

powerful arsenal of candidate mechanisms to maintain synaptic

copy numbers. What could be the consequences of these opti-

mization strategies for synaptic plasticity?

Synaptic plasticity alters the local demand for proteins on

short and long timescales. To maintain synaptic potentiation

over a long period of time, the local proteome at individual syn-

apses (and, thus, protein supply) needs to be altered persistently

(Schanzenbächer et al., 2016; Dörrbaum et al., 2018). This

means that global proteostasis following the induction of long-

term plasticity needs to be adjusted to this new demand by pro-

ducing an altered constellation of proteins. The question is how

to serve such global protein demand change long term in a way

that is energetically favorable for the neuron. Our results indicate

that a neuron can minimize the energy needed for translation of

proteins in the maintenance phase by harnessing the optimality

of dendritic branching radii (Figure 5; Figure S2) and can tune

the amount of proteins diffusing in a spine (Bloodgood andSaba-

tini, 2005) by varying spine geometry (see STARMethods section

Spine-Dendrite Coupling and Figure S3).

DISCUSSION

Dendritic morphology is highly diverse across cell types and has

a critical role in synaptic plasticity (Ebner et al., 2019) and

computation (Vetter et al., 2001; Bird and Cuntz, 2016). To

keep synapses functional, it is important to maintain protein sup-

ply across the dendritic tree (Nusser et al., 1997; Cottrell et al.,

2000). The short half-life of proteins, only 5–7 days on average

(Dörrbaum et al., 2018; Cohen and Ziv, 2019), together with the

highly branched structure of the dendritic and axonal arbor,

poses a severe trafficking challenge because every second,

more than 50;000 proteins need to be synthesized, trafficked,

and replaced. How this is accomplished across the complex,

branching dendritic trees is still a puzzle. Existing models

describing the protein dynamics in a dendritic tree often assume

that the flow of proteins is independent of the daughter radius ra-

tio at a branchpoint (Williams et al., 2016) and often simplify the

complex morphology by a linear dendrite (Bressloff and Earn-

shaw, 2007; Fonkeu et al., 2019). This limits the ability to under-

stand the functional consequences of dendritic morphology

because many key features, such as dendritic radius ratios at

branchpoints or lengths of dendritic segments, are not captured

accurately. Here we present a model of passive dendritic protein

dynamics that is based on experimentally measured dendritic

morphologies and dendritic radius distributions. We derived

mathematical predictions for the distribution of proteins by incor-

porating experimental data on protein degradation and synthe-

sis, protein diffusion, dendritic radii, and dendritic morphology.
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We validated our model predictions using in situ protein distribu-

tions in cultured pyramidal neurons for two types of proteins: sur-

face proteins moving within the plasmamembrane and cytosolic

proteins that diffuse in the cytoplasm of a dendrite. Our model

and our experimental results offer insights into how proteins

are supplied across the dendritic tree.

First we showed that the classic dendritic Rall exponent of 3/2

does not hold for all cell types. Instead, we found that themedian

Rall exponent is approximately a= 2:28 in EM-reconstructed

PPC pyramidal cells (a= 2:03 for cultured pyramidal cells) and

a= 1:00 in STG neurons (Otopalik et al., 2017). This indicates

that the Rall exponent is not universal but a cell-type-specific

feature, and it even varies within cells. While studying the conse-

quences of dendritic branchpoints on protein flow in dendrites,

we predicted that the ratio of dendritic radii determines the

amount of proteins moving downstream toward the distal tips

or upstream toward the soma. Specifically, we found that all

Rall exponents larger than unity, as is the case for the median

Rall exponent in STG and pyramidal neurons, facilitate motion

of surface proteins toward distal sites to a greater degree than

of cytoplasmic proteins. We confirmed the presence and ampli-

tude of the expected forward bias, providing a visual display of

the distribution of a cytoplasmic and surface protein in cultured

hippocampal neurons. Bymeasuring the relative fluorescence of

surface and cytoplasmic proteins before and after branchpoints,

we obtained a 35% higher average forward bias for surface pro-

teins, as predicted by our theory.

Second, we have shown, using EM-reconstructed branch-

points of pyramidal neurons, that the combination of daughter

radii and the corresponding lengths of each daughter dendrite

can facilitate protein transport for dendritic proteins. The protein

diffusion lengths for which the dendritic branchpoints are opti-

mized ðl� 100mmÞ have significant overlap with the experimen-

tally reported diffusion lengths of dendritic proteins.

Last, our results show that such daughter radius optimization

has the capacity to reduce the total protein count needed to

populate the dendritic arbor with proteins by up to four orders

of magnitude relative to symmetrical daughter branches. These

results underscore the surprising capacity of dendritic

morphology to facilitate protein transport and reconcile it with

other competing demands, including fast transmission of back-

propagating APs (Stuart and Sakmann, 1994; Vetter et al., 2001)

and electrical current transfer between somata and dendrites

(Bird and Cuntz, 2016). Our results provide data-driven insights

into how dendritic morphology is interwoven not only with elec-

tric signaling but also with protein dynamics. The data andmath-

ematical framework we present here fill a crucial gap in the cur-

rent understanding of the regulation of protein numbers in

dendritic trees and the role of different molecular transport

modes.
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Cottrell, J.R., Dubé, G.R., Egles, C., and Liu, G. (2000). Distribution, density,

and clustering of functional glutamate receptors before and after synaptogen-

esis in hippocampal neurons. J. Neurophysiol. 84, 1573–1587.

Craciun, G., Brown, A., and Friedman, A. (2005). A dynamical systemmodel of

neurofilament transport in axons. J. Theor. Biol. 237, 316–322.

Dalrymple-Alford, J.C., Harland, B., Loukavenko, E.A., Perry, B., Mercer, S.,

Collings, D.A., Ulrich, K., Abraham, W.C., McNaughton, N., and Wolff, M.

(2015). Anterior thalamic nuclei lesions and recovery of function: Relevance

to cognitive thalamus. Neurosci. Biobehav. Rev. 54, 145–160.

Dean, C., and Scheiffele, P. (2009). Imaging synaptogenesis by measuring

accumulation of synaptic proteins. Cold Spring Harb. Protoc. 2009,

pdb.prot5315.

Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron mi-

croscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol.

2, e329.

Desmond, N.L., and Levy, W.B. (1984). Dendritic caliber and the 3/2 power

relationship of dentate granule cells. J. Comp. Neurol. 227, 589–596.

Dieterich, D.C., Hodas, J.J.L., Gouzer, G., Shadrin, I.Y., Ngo, J.T., Triller, A.,

Tirrell, D.A., and Schuman, E.M. (2010). In situ visualization and dynamics of

newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13,

897–905.
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Mouse cortex
For the measure of dendrite diameter in adult pyramidal neuron we used posterior parietal cortex tissue from male adult (postnatal

day 57) C57BL/6J mouse (see Karimi et al., 2020 for experimental details). All experimental procedures were performed according to

the law of animal experimentation issued by the German Federal Government under the supervision of local ethics committees and

according to the guidelines of the Max Planck Society. The experimental procedures were approved by Regierungspräsidium Darm-

stadt, under protocol ID V54 - 19c20/15 F126/1015 (LPtA, PPC-2) or V54 - 19 c 20/15 - F126/1002 (V2, PPC, ACC). The S1 sample

was prepared following experimental procedures approved by Regierung von Oberbayern, 55.2-1-54-2532.3-103-12.

METHOD DETAILS

Linear dendrite
The diffusion dynamics in Equation 1 along a linear dendrite of length L, at position x, has the following equilibrium distribution

rðxÞ = Ae�x=l +Be+ x=l; (Equation 9)

whereA andB are determined by the no-flux boundary condition at the end of the dendrite (length L) and the total number of proteins,

N, in the dendrite

vrðxÞ
vx

����
L

= 0 and (Equation 10)
Z L

0

rðxÞdx =N: (Equation 11)

A and B are therefore equal to:

A = N
1+ cothðL=lÞ

2l
and (Equation 12)
B = Ae�2L
l ; (Equation 13)

leading to Equation 2. At equilibrium, the number of newly synthesized proteins and the number of proteins degraded along the

Bifurcations
The density distributions ri (proteins per unit length) for three branches i = 0;1; 2 connected to a bifurcation need to satisfy three

boundary conditions. For proteins diffusing within the cytoplasm, the volume densities, rCi = ri=pR
2
i , need to be continuous at the

branch point, i.e., the volume densities of all branches need to be the same in this point. Analogously, for proteins diffusing on

the surface, rSi = ri=2pRi, the surface density needs to be equal. This leads to the first two boundary conditions:

R�g

0 r0ðbÞ = R�g

1 r1ðbÞ=R�g

2 r2ðbÞ= const; (Equation 14)

where b indicates the branch point, and g=S;C for surface and cytoplasmic proteins, respectively. Additionally, the in- and out-

fluxes at the branch point need to balance. If the coordinate x points away from the bifurcation, the influxes are given by

Dðvr =vxÞ, and therefore the third boundary condition is:

X
i

vri
vx

�����
b

= 0: (Equation 15)
Discretization procedure
To simulate proteinmovement along a dendritic segment, we discretized Equation 1 using a finite differencemethod in space and the

Euler-forward discretization in time to obtain the steady state. Numerical stability of the diffusion equation requires (Jaluria, 2002)

Dt%Dx2=ð2DÞ. For numerical convenience, we chose the limiting case Dt =Dx2=ð2DÞ.

Protein-based interpretation
The diffusion equation (Equation 1) with boundary conditions (Equations 14 and 15) describes the average dynamics of proteins per-

forming a randomwalk in the cytoplasm or at the surface. Here we showwhich laws each individual protein follows. Along a dendrite,

the probability of a protein moving in either direction is equal, see Figure 1, B.
e2 Cell Reports 33, 108391, November 17, 2020
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At a bifurcation, see Figure 1, C, the proteins can move into one of the three possible directions, i = 0; 1 or 2. The proteins at the

branch point are re-distributed according to the cross-sectional areas and the circumference lengths of the branches for volume

and surface diffusing proteins, respectively. Let us consider a pool of proteins, Nb, which is re-distributed within the branch point

in each time step. This pool is equal to

Nb =
p

2

X
i

riðDxÞ; (Equation 16)

where p= 2DðDt =Dx2Þ is the fraction of mobile proteins, and riðDxÞ is the density per unit length in branch i, evaluated at the compart-

ment at distance Dx from the branch point.

The probability P
ðgÞ
i that a protein moves in direction i from the branch point is then proportional to the circumference or cross-sec-

tion of the respective branch:

P
ðgÞ
i =

Rg

i

Rg

0 +Rg

1 +Rg

2

: (Equation 17)

Here, g=S for surface proteins that diffuse in the plasma membrane, and g=S for cytoplasmic diffusion. The incoming flux per time

step into branch i is then set equal to pP
ðgÞ
i Nb. For Dx;Dt/0, this is equivalent to the conditions in Equations 14 and 15.

Generalized Rall Rule
A generalized Rall’s Rule, Equation 4, is used to connect the radii of the mother and of the two daughter dendrites:

1 = ra1 + ra2 ; (Equation 18)

where ri =Ri=R0 is the normalized radius of the dendrite i. A non-negative value of ameans that both daughter dendrites are smaller

than the mother dendrite, and therefore ri%1.

A negative value of a means that both daughter dendrites are bigger than the mother dendrites, and therefore riR 1. A

complex value of a means that one of the two daughter dendrites is smaller than the mother dendrite and the other is

bigger: r1 > 1> r2. In Figures 2A–2E, we show the scatterplot of experimentally measured values of the normalized

maximum radius versus the normalized minimum radius. The three background colors reflect the three possible regimes of

Rall exponents.

Radii measurements in cultured neurons
To calculate the Rall exponent distribution for cultured neurons and compare it to its EM-reconstructed counterpart, we manually

measured the mother and daughter diameters at branch points of cultured pyramidal neurons (n = 68). To this end, we analyzed

the fluorescence signal of GFP or GFP::Neuroligin-1a in these neurons around the branch points (Figure 2G). In an area of 2�
5mm around the branch point we manually measured the mother and daughter diameters in dendrites whose thickness was greater

than 3 pixels, four times, and calculated the average diameter.

Spine-Dendrite coupling
Our result in Equation 14 can be generalized to understand spine-dendrite coupling. If the size of a synapse is considerably

smaller than the diffusion length of a protein, which can justified by the following consideration Rneck ; Rspinez1mm � l z
100mm, the local density of protein in the spine and dendrite are equal. In this case, the number of proteins inside the spine

and in the local dendritic segment is equal and proportional to the volume or surface of these structured. To calculate the pro-

tein number in the spine relative to the local dendritic segment, we use a simplified geometric model (Figure S3), where a spine

has a cylindrical neck of length Lneck, radius Rneck and a spherical spine head with radius Rspine. The protein density in the spine

and in the dendrite is equal in this scenario, but the protein number is determined by the spine versus dendrite space. We

consider the ratio of protein numbers inside the spine and in an interval of dendrite around the spine and calculate the ratio

of the two:

Nspine = Ndend

8>>><
>>>:

Sspine

Sdend

; surface

Vspine

Vdend

; cytoplasm

=Ndend

8>>>><
>>>>:

2prneckLneck + 4pR2
spine

2pRdendDL
; surface

pr2neckLneck +
4

3
pR3

spine

pR2
dendDL

; cytoplasm;

(Equation 19)

where DL is a small dendritic segment around the spine, DL= 1mm in the Figure S3 to mimic the typical distance of spines in a py-

ramidal neuron. In the Figures S3B–S3E, we show the fraction of proteins in the spine relative to the local dendritic segment,

Nspine=ðNspine +NdendriteÞ, while varying the spine neck radius and length, spine head radius and the dendritic radius.
Cell Reports 33, 108391, November 17, 2020 e3
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Detailed calculations of optimal branch radii and optimal diffusion lengths
We considered a branch point where the daughter dendrites had different lengths, L1 and L2 (Figure 5A). We assumed that the same

dendritic density of proteins was needed at the tip of each daughter branch to maintain the synaptic copy numbers at the dendritic

tips. Therefore, the daughter radii after the branch point needed to be such that more proteins diffused toward the longer branch.

Then, we calculated the optimal daughter radii ratio resulting in equal protein density values at the tips of the daughter branches.

We started by considering the density of proteins in the mother dendrite and the two daughter dendrites as given by Equation 2. We

were interested in a solution where r1ðL1Þ= r2ðL2Þ. This occurs when

N1

sinhðL1=lÞ =
N2

sinhðL2=lÞ (Equation 20)

whereby N1 and N2 denote the total number of proteins in the dendritic segments of length L1 and L2, respectively. Considering that

the number of proteins at the branch point must fulfill the branching conditions (Equation 14,) we obtained

r1ð0Þ
rg1

=
r2ð0Þ
rg2

: (Equation 21)

Combining Equations 20 and 21 we obtained

r2
r1

=

�
coshðL2=lÞ
coshðL1=lÞ

	1=g

; (Equation 22)

where g= 1 denotes diffusion of surface proteins and g= 2 the diffusion of cytoplasmic proteins. If the thicker branch is not the longer

branch, then Equation 22 does not have a real solution, which occurred for 9 of the 28 analyzed branches.

We used this relation to obtain the optimal l for EM-reconstructed branch points in which L1; L2 and r1; r2 had been measured

using methods described in the STAR Methods section ‘‘Dendrite diameter measurement in three-dimensional electron micro-

scopy.’’ We used this procedure to obtain optimal inferred l in Figure 5C (blue and red histograms). Out of the 65 measured branch

points, 28 were terminal branches. To these we could directly apply Equation 22. Our inversion procedure converged for 19 branch

points and led to a finite value for the optimal l.

The result is summarized in Figure 5C in blue and red bars. As expected, the optimal l for diffusion of surface proteins is bigger than

the corresponding value for cytoplasmic proteins.

Themedian optimal l for diffusion on the surface is 109 mm and its 50% confidence interval is ð58;197Þ mm; while themedian value

of l for proteins diffusing in the cytoplasm is 65 mm and its 50% confidence interval is ð32;132Þ mm. As a comparison to experimental

reports of dendritic proteins, we present the same statistics for the diffusion lengths of 26 dendritic proteins in the Table S1.

Cost for non-optimal daughter radii
We denote the total number of proteins needed to ensure at least one protein is at the end of each dendritic branch byN= Nðr1;r2ðr1Þ;
L1;L2;lÞ. For each choice of r1, the minimum values of N is obtained when r1=r2 satisfied Equation 22. We refer to it as the optimal

number. It is equal to the inverse of the density of proteins at either dendritic tip:

Noptðl; r1Þ = 1

r1
�
L1; r1; r

opt
2 ðr1Þ; l

�= 1

r2
�
L2; r1; r

opt
2 ðr1Þ; l

�: (Equation 23)

If the radii ratio differs from the optimal ratio, then the minimum number of proteins N, needed to guarantee at least one protein at the

end of both daughter dendrites is higher and equal to the inverse of the minimum density of proteins at the dendritic tips:

Nnon�optðl; r1Þ = 1

minðr1ðL1; r1; r2ðr1Þ; lÞ; r2ðL2; r1; r2ðr1Þ; lÞÞ: (Equation 24)

The percentage cost for non-optimality is therefore defined as the rescaled ratio of Equations 24 and 23:

%C =

�
Nnon�opt

Nopt
� 1

	
$100 (Equation 25)

Note that a given ratio r1=r2 alone is not sufficient to determine the optimal N, it is also necessary to know r2. In Figure 5D we set r2 to

be the median measured value of r in 3D-EM pyramidal neuron (Figures 2B and 2D). We then varied the dendritic radius r1, and we

further assumed l= 110mm. We set the dendritic lengths L1 and L2 such that they represented the minimal experimentally measured

L1=L2 ratio: L1 = 48:5mm and L2 = 114:5mm.

Cost for non-optimal diffusion lengths
Considering the diversity of the protein diffusion coefficients and half-lives, one could expect a variety of diffusion lengths (Figure 5C).

To this end, we aimed to quantify the cost associated with non-optimal diffusion length. For each branch point k, and diffusion length

l, we calculated Nopt
k ðlÞ and Nnon�opt

k ðlÞ as in Equations 23 and 24. For Nopt
k ðlÞ we assumed r2 to be equal to the median value of the
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relative radius, as in the previous section and r1 we obtained from Equation 22. ForNnon�opt
k ðlÞwe used themeasured values of r1 and

r2. We defined the percentage cost for non-optimal diffusion length analogously to Equation 25, averaged over branches:

%C =

�
median

k



Nnon�opt

Nopt

�
� 1

	
$100 (Equation 26)

and used this quantity in Figure 5E.

Synthetic dendritic trees
We considered synthetic dendritic trees in order to control the number and the location of branch points. Each tree was constructed

as follows. First, the soma was connected to primary dendrites of length L= 500mm, L= 167mm or 56mm. Next, at each termination

point in the red and the green graphs two additional dendrites of the same length were added. This procedure was repeated twice for

the red graph, and eight times for the green graph. In each tree, we chose symmetrical daughter radii where the normalized ratio is

equal to the median value of the normalized radii, from Figure 2F, R1 =R2 = 0:75R0.

To simulate the distribution of proteins along each synthetic tree, we injected N proteins at the soma at t = 0 and measured the

distribution at the equilibrium, to obtain the protein density we divided the number of proteins by N. We integrated the protein

numbers at distance d across all dendrites both for surface and for cytoplasm diffusion, and calculate their ratio (Figure 6B):

Ratio S=C =

P
x:jx�0j=dr

SðxÞP
x:jx�0j=dr

CðxÞ (Equation 27)
Optimization algorithm
Equation 8 determines the optimal ratio of the daughter radii for terminal branches. However, it cannot be used for non-terminal

branches.We therefore extended the optimality concept to comprise non-terminal branches and to collapse each branch into an equiv-

alent linear dendrite of effective length Leff. To find the value of the effective length, first we optimize the radii of the terminal branch, and

then we calculate the decay in density in the original branch from the root of the mother dendrite to the tip of one of the two daughters.

And, finally, we impose this ratio to be equal to the ratio of an effective dendrite, reffðxÞ, without branches, of length Leff:

riðLiÞ
r0ð0Þ

=
reffðLeffÞ
reffð0Þ

:o (Equation 28)

Leff can be obtain analytically from Equation 28, and its value depends on the lengths of the dendritic segments, L0, L1, L2, on the

diffusion length l, the Rall exponent a, and the value of g (g= 1 for surface diffusion and g= 2 for cytoplasmic diffusion).

This procedure allowed us to calculate the effective length for the whole dendritic arbor as Nth-to-terminal branches are progres-

sively collapsed into a linear dendrite of growing Leff, which became the daughter dendrite of the next branch.

Numerical convergence
We considered in Figure 6 the limiting case of surface and cytoplasmic proteins with the same diffusion coefficient and half-life: D=

0:36mm2=s, and t1=2 = 5:0 days. We calculated the protein distributions by iterating the dynamical equations forward until the differ-

ence between two consecutive time points was smaller than ε= 10�10:

ε>max
x

�����1� minðrnewðxÞ; roldðxÞÞ
maxðrnewðxÞ; roldðxÞÞ

����
	
: (Equation 29)
Hippocampal neuron preparation
Dissociated rat hippocampal neuron cultures were prepared and maintained essentially as described previously (Aakalu et al., 2001;

Banker and Goslin, 1990). Briefly, we dissected hippocampi from postnatal day 0 to 1 rat pups of either sex (Sprague-Dawley strain;

Charles River Laboratories), dissociated themwith papain (Sigma) and plated them at a density of 40–303 103 cells/cm2 onto poly(d-

lysine)-coated (BD Biosciences) glass-bottom Petri dishes (MatTek). Hippocampal neurons were maintained, fed weekly with a

neuronal growth medium and allowed to mature in a humidified atmosphere at 37� C and 5% CO2 in a growth medium (Neuro-

basal-A supplemented with B27 and GlutaMAX-I, Life Technologies) for 8 days in vitro.

Neuron transfection
Glass-bottom dishes with cultured hippocampal neurons were transfected after 7 days in vitro with plasmids coding for either GFP

(cytoplasmic protein) or GFP::Neuroligin-1 (GFP::Nlg-1, which is a surface protein expressed at the dendritic surface). Transfections

were performed using Effectene (QIAGEN) according to the supplier recommendations with 0.5 mg DNA per MatTek (18 mm

diameter). Cells were fixed 13 hours after transfection in vitro in paraformaldehyde 4% in a lysine phosphate buffer (pH = 7.4) con-

taining 2.5%of sucrose for 30min at room temperature. Nuclei were stained for 1min in PBSwith DAPI (Sigma-Aldrich, 1:1000). Cells

were kept at 4� C in PBS until imaging, up to 4 days following fixation.
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Image acquisition
Hippocampal neurons were imaged using a Zeiss LSM780 confocal microscope using a 40X oil objective (NA 1.4). Z stacks spanning

the entire volume of neurons were acquired.

Full dendritic reconstructions of pyramidal neurons
To calculate the average protein distribution in pyramidal neurons (black line in Figure 6B) we simulated the protein distribution in 65

hippocampal pyramidal morphologies and obtained their average. To this end, we started with 5813 reconstructed hippocampal C1

pyramidal neurons from the NeuroMorpho database (Ascoli et al., 2007) and imposed the following criteria to obtain a homogeneous

population of 65 hippocampal pyramidal neurons. From the initial pool of morphologies, we excluded those containing branch points

with three daughter dendrites, we required that each morphology had at least 75 branch points at 900 m from the soma, that at least

the 15% of the total dendritic length belonged to the apical dendrite and that the total dendritic length was at least 15000 mm. To

ensure that the distal dendrites were densely reconstructed, we selectedmorphologies where at least 1%of the total dendritic length

was located in the most distal region, corresponding to 90% or more of the maximum distance from the soma. Of the 65 reconstruc-

tions that met these criteria, we extracted the dendritic tree (without axon) from each and replaced the soma by a point source. All

reconstructed dendritic trees contained information about the location of branch points and the lengths of dendritic segments. We

considered two branching rules for the radii: either symmetric, using the equal daughter radii, r1 = r2 = 0:75, or optimized radii for the

Rall exponent a= 2:28. We then inserted at the soma N proteins, where N is the minimum number such that each micrometer of

dendrite contains at least 1 protein: N= 1=min½rðxÞ�= 2$1012.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dendrite diameter measurement in three-dimensional electron microscopy
To measure the diameter of dendrites around branch points, we used a three-dimensional electron microscopy volume acquired us-

ing serial block-face imaging (Denk and Horstmann, 2004) from adult mouse posterior parietal cortex (PPC-2 dataset, see Karimi

et al., 2020 for experimental details). The dataset contained L1-5 of cortex and allowed for reconstruction of dendrites from layer

2-5 pyramidal neurons. The three-dimensional skeleton of 35 apical dendrites were reconstructed using webKnossos (Boergens

et al., 2017). Next, we selected a random subset of branch points for measuring the diameter of the mother and two daughter

branches (n = 39 branch points). Since dendrites taper in diameter, we used a distance of at least 3� 4mm from the branch point,

where the dendriteâVs diameter was stable. The data slice that was most orthogonal to the dendritic path was used for diameter

annotation to avoid overestimation. Furthermore, the dendrite diameter wasmeasured along two axes to estimate the elliptical shape

of the cross-section. In addition, we searched for terminal branches, where the exact length and diameter of each daughter branch

were measured (n = 29 branches). The diameter annotations were retrieved as an NML file (XML-based file format) and exported to

MATLAB (MathWorks, USA, 2019a) for diameter length extraction.

Image analysis
The fluorescence signals from GFP and GFP::Neuroligin 1a (GFP::Nlg-1) were each obtained using the open-source image process-

ing package Fiji, while the data analysis was performed in MATLAB R2017b (MathWorks). In our analysis, we used 31 branch points

for the GFP-expressing neurons and 39 for GFP::Nlg-expressing neurons. First, we tracked all dendritic branches where the signals

of the mother and of the daughter dendrites were unambiguous and not overlapping with other dendrites. For each branch point, we

manually selected triplets consisting of two daughter and one mother Regions Of Interest (ROIs). For each of these ROIs, we quan-

tified the spatial dependent fluorescence signal fiðxÞ and considered the integrated fluorescence.

Fi =

Z m+D

m

fiðxÞdx; (Equation 30)

wherem is the minimum distance from the branch point and D is the length of the considered integral (Figure 6B). Assuming that the

intensity of the fluorescence is proportional to the number of molecules present in that area, we were able to link the integrated fluo-

rescence Equation 30 to the number of proteins in this region of dendrite:

Fi =

Z m+D

m

fiðxÞdx = k

Z m+D

m

riðxÞdx = kNi (Equation 31)

Next, we expressed the daughters-to-mother ratio for GFP and GFP::Nlg-1 using the respective fluorescence intensities:

Q S or C
F =

F1 +F2

F0

: (Equation 32)

For each couple of m= 0� 4 and D= 1� 4, we showed the bootstrapped mean of Q S or C
F in Figure 4D, and the value of Q S=C

F =

Q S
F=Q

C
F � 1 in Figure 4E.
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Figure S1: Supplemental data analysis related to Fig. 4 D. Two alternative calculations of error bars and averages
associated with fluorescent signals and dendritic radii for surface and cytoplasmic proteins. (A) The error bar and
center of each data point is calculated using the mean and standard deviation for GFP (cytoplasmic) and Nlg::GFP
(surface) proteins, hereby QS

F (1.66, std= 0.99) and QC
F (1.26, std= 0.39). The predicted means and standard

deviations of QS
P (1.48, std= 0.28) and QC

P (1.17, std= 0.43) that are calculated from dendritic radii ratios at
branch points are shown as blue and red boxes. (B) The error bar and center of each data point is calculated using
the median and interquartile range, hereby QS

F (1.41, IQR 1.1, 1.9) and QC
F (1.18, IQR 1.01, 1.44). The predicted

medians and interquartile intervals of QS
P (1.45, IQR 1.27, 1.65) and QC

P (1.12, IQR 0.84, 1.38) that are calculated
from dendritic radii ratios at branch points are shown as blue and red boxes.
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Figure S2: Supplemental analysis related to Fig. 5. Asymmetric protein demand and the associated optimal
daughter radii. Synaptic plasticity can introduce asymmetric long-term protein demand downstream of a branch
point (N1 vs N2). Here, we show how daughter radii that are optimal for the symmetric protein demand (shown in
Fig. 5) deviate from those optimized for the asymmetric protein demand at the dendritic tips. Parameter choices
as in Fig. 5.
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Figure S3: Supplemental figure related to Fig. 5. How does spine geometry shape the protein number in spines? To
answer this question we assumed a constant protein density across the spine and dendrite and applied our branching
calculations. (A) Spine geometry and default values used to exemplify the distribution of proteins in the spine and
the local dendritic segment. Starting from this setting we varied each variable individually to investigate how it
impacts the protein number in the spine. (B) Varying the radius of the spine head leads to a proportional increase
in protein number. (C) Varying the radius of the spine neck has only a week influence on the protein number in
a spine (D) Increasing the radius of the dendrite carrying the spine reduces the number of proteins in the spine.
(E) Increasing the length of the spine neck does not significantly alter the protein number in the spine. On the left
column we reported the absolute values of the fraction of proteins in spine, while on the right column we show the
percentage variation of the fraction of protein in spines.
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a protein with a different diffusion length λ = 109µm (top), this diffusion length corresponds to the median of the
optimal diffusion lengths inferred from EM (Fig. 5C, blue) . As in Fig. 6 C,D the color code represents the predicted
number of proteins per µm. We confirm that the number of proteins in the distal parts is larger for surface proteins
than for cytoplasmic proteins with this diffusion length. As in Fig. 6, we considered symmetrical daughter branches
where the radius of a daughter dendrite is R1 = R2 = 0.75R0 and optimized daughter radii. In the bottom panels
we show the distributions from Fig. C, D for comparison. Since we choose in the top panel a diffusion length that
is smaller than that in Fig. 6 C,D the number of proteins that reach the dendritic tips is smaller than than in Fig.
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Supplemental Table

λ Protein Name τ1/2 DOI D DOI Method
(µm) (days) (µm2/s)

686.9 Peroxiredoxin
(half-life -3,
diffusion -4)

7.3 10.7554/eLife.34202 0.52 10.1016/j.redox.
2017.01.003

SER

450.7 Plexin-A 6.5 10.7554/eLife.34202 0.25 10.1016/j.bpj.2015.04.043 FC
97.4 Grm5

(Metabotropic
glutamate re-
ceptor 5)

3.0 10.7554/eLife.34202 0.025 10.1523/JNEUROSCI.22-
10-03910.2002

SPT

314.3 CamKII 7.2 10.7554/eLife.34202 0.111 10.1523/JNEUROSCI.4364-
13.2014

SPT

75.5 Synaptophysin 9.2 10.7554/eLife.34202 0.005 10.3389/fnmol.2014.00091 FC
312.6 L1CAM (Neural

cell adhesion
molecule L1)

7.1 10.7554/eLife.34202 0.11 10.1083/jcb.200211011 SPT

104.2 Clathrin-L (b
for half-life, c
for Diffusion
coeff.)

9.1 10.7554/eLife.34202 0.0096 10.3389/fnmol.2014.00091 FC

111.6 GluA1-AMPAR 2.0 10.1016/S0028
-3908(98)00135-X

0.005 10.1093/brain/aws092 SPT

472.3 GABAAR sub-
unit alpha 2

5.0 10.7554/eLife.34202 0.36 10.1093/brain/aws092 SPT

78.2 potassium chan-
nel Kv1.3

0.2 10.1016/j.neuroscien 0.31 10.1093/brain/aws092 SPT

ce.2006.09.055
891.1 Syt7 (Synapto-

tagmin 7)
7.0 10.7554/eLife.34202 0.91 10.1021/bi5012223 SPT

73.4 Neurexin 3.6 10.7554/eLife.34202 0.012 10.1523/JNEUROSCI.4041-
14.2015

SPT

168.3 AChE (acetyl-
cholinesterase)

2.8 10.1111/j.1471-
4159.
1974.tb04319.x

0.08 10.1016/S0012-1606
(89)80051-X

FRAP

344.6 VAMP2-
pHluorin

6.8 10.7554/eLife.34202 0.14 10.1083/jcb.201604001 SPT

3360.5 Calbindin 4.5 10.7554/eLife.34202 20 10.1073/pnas.0407855102 FRAP
2137.6 GAP43(S41A)

(Neuromodulin)
17.5 10.7554/eLife.34202 2.09 10.1091/mbc.e13-12-0737 FC

6162.8 Microtubule-
Associated
Protein Tau

101.6 10.7554/eLife.34202 3 10.1523/JNEUROSCI.0927-
07.2007

FRAP

986.7 Phosphatidyl
serine

22.0 10.1042/bj1600195 0.355 10.1091/mbc.e11-11-0936 FRAP
& SPT

204 Actin 8.4 10.7554/eLife.34202 0.04 10.1073/pnas.1504762112 FRAP
4256.1 Rho-associated

protein kinase 2
5.6 10.7554/eLife.34202 26 10.1038/ncomms10029 FC

103.1 GABA-A sub-
unit α1

3.9 10.7554/eLife.34202 0.022 10.3389/fncel.2014.00151 SPT

302.4 GABA-A sub-
unit α5

7.6 10.7554/eLife.34202 0.097 10.1038/ncomms7872 SPT

15 GluN2B 3.4 10.7554/eLife.34202 0.00053 10.1016/j.cell.2012.06.029 SPT
2110.7 Phosphoinositide

phospholipase C
8.5 10.7554/eLife.34202 4.2 10.1101/521369 FC



λ Protein Name τ1/2 DOI D DOI Method
(µm) (days) (µm2/s)
3709.6 Glutamine syn-

thetase
3.5 10.7554/eLife.34202 32 10.1023/A:1020574003027 QELS

582.7 Vesicle-
associated
membrane pro-
tein 2

6.8 10.7554/eLife.34202 0.4 10.1016/j.cell.2009.01.016 SPT

Table S1: Supplemental statistics of protein diffusion lengths related to Fig. 5. The first column of the table
contains the protein diffusion length, the second column contains the name of the protein, the third and fourth
contain the half life and the doi of the corresponding source. The fifth and sixth column contain the diffusion
coefficient and the doi of the corresponding source. The last column is the technique used to measure the diffusion
coefficient. SER stands for Stokes-Einstein Relationship, FC stands for Fluorescence Correlation, SPT stands for
Single Particle Tracing and QELS for Quasi-elastic light scattering.
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