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APPENDIX A: DETAILS ON MCMC ALGORITHM FOR POSTERIOR INFERENCE

Updating Ωsk: To sample Ωsk, we rely on the block Gibbs sampler proposed in Wang (2015). For

simplicity, assume each group’s data is column centered. The likelihood for each group is then

Xsk ∼ N(0,Ω−1sk ) wheres = 1, . . . , S and k = 1, . . . ,K

For the posterior full conditional of Ωsk,

P (Ωsk|Xsk,Gsk) ∝|Ωsk|nsk/2 exp{−tr(XT
skXskΩsk)}×

∏
i<j

{
exp

(
ω2
skij

2ν2gskij

)} P∏
i=1

{
exp

(
−λ

2
ωskii

)}
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2 E. SHADDOX AND OTHERS

Partitioning Ωsk into V = (v2ij) a p × p symmetric matrix with zeroed diagonal entries and (v2ij)i<j in

the upper diagonal entries where S = XT
skXsk we can focus on the last column and row to acquire

Ω =

(
Ω1,1 ω1,2

ω′1,2 ω2,2

)
, S =

(
S1,1 s1,2
s′1,2 s2,2

)
, V =

(
V1,1 v1,2
v′1,2 0

)
.

Then the conditional distribution of the last column in Ωsk is

P (ω12, ω22|Xsk,Gsk,Ω11) ∝ (ω22−ω′12Ω−111 ω12)nsk/2 exp

[
−1

2

{
ω′12D

−1ω12+2s′12ω12+(s22+λ)ω22

}]
whereD = diag(v12). Then, changing variables from (ω1,2, ω2,2) to (u = ω1,2, υ = ω2,2−ω′1,2Ω−1ω1,2)

we have full conditionals

u|· ∼ N(−Cs1,2,C) and υ|· ∼ Gamma
(
n

2
+ 1,

s2,2 + λ

2

)
,

where C = {(s2,2 + λ)Ω−11,1 + diag(v−11,2)}−1. Using this method, we can permute any column to attain

the full conditional used to generate Ωsk|Gsk,Xsk.

UpdatingGsk: Our full conditional onGsk is then an independent Bernoulli of the form

P (gskij = 1|Ωsk,Xsk) =
N(ωskij |0, ν21)π

N(ωskij |0, ν21)π +N(ωskij |0, ν20)(1− π)

where π
1−π is determined by the MRF prior on the graph structure such that

π

1− π
=
P (G′sk|νsij ,Θs, {Gsm}m6=k)

P (Gsk|νsij ,Θs, {Gsm}m6=k)
= exp{−(νsij + 2

∑
m6=k

θskmgsmij)}

for proposed new graphG′sk which differs from the current graphGsk in that only edge (i, j) is excluded

fromG′sk and included inGsk.

Updating νsij: Given the terms in the joint prior on graphsGs1, . . . ,GsK including νsij we have

P (Gs1, . . . ,GsK |νsij ,Θs) =
∏
i<j

C(νsij ,Θs)
−1 exp(νsij1

Tgsij + gTsijΘsgsij)

∝ C(νsij ,Θs)
−1 exp(νsij1

Tgsij)

Then we can find the posterior full conditional

P (νsij |·) ∝ P (νsij)P (Ψ|X) ∝ exp(νsij(a+ 1Tgsij))

C(νsij ,Θs)(1 + eνsij )a+b
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For each (i, j) pair in 1 6 i < j 6 p, we then propose a value q? from the density Beta(a?, b?) and set

ν? = logit(q?). Then the proposal density can be written in terms of ν? as

q(ν?) =
1

B(a?, b?)

ea
?ν?

(1 + eν?)a?+b?

Our Metropolis-Hastings ratio in the MCMC is then

r =
P (ν?|·)q(νsij)
P (νsij |·)q(ν?)

=
exp[(ν? − νsij)(a− a? + 1Tgsij)]C(νsij ,Θs)(1 + eνsij )a+b−a

?−b?

C(ν?,Θs)(1 + eν?)a+b−a?−b?

Updating θskm and γskm: We sample θskm and γskm from their joint posterior full conditional distribu-

tion. The terms in the joint prior on graphsGs1, . . . ,GsK including θkm are

P (Gs1, . . . ,GsK |νsij ,Θs) =
∏
i<j

C(νsij ,Θs)−1 exp(νsij1
Tgsij + gTsijΘsgsij)

∝
∏
i<j

C(νsij ,Θs)
−1 exp(2θskmgskijgsmij)

Given the prior on θskm and γskm, the posterior full conditional of θskm and γskm can be written

P (θskm, γskm|·) ∝ P (Gs1, . . . ,GsK |νsij ,Θs)P (θskm|γskm)P (γskm|{γtkm}s6=t, wkm,Φ)

∝
[∏
i<j

C(νsij ,Θs)
−1 exp(2θskmgskijgsmij)

]
×
[
(1− γkm)δ0 + γkm

βα

Γ(α)
θα−1skme

−βθskm

]

×
exp(γskm(wkm + 2

∑
s6=t φstγkmt))

1 + exp(wkm + 2
∑
s6=t φstγtkm)

Since the normalizing constant for the above mixture is analytically intractable, we use Metropolis-

Hastings steps which sample θskm and γkm for each pair (k,m) where 1 6 k < m 6 K from their

joint posterior full conditional distribution. The construction for this step follows in the manner of the

MCMC approach described in Gottardo and Raftery (2008) for sampling from mixtures of mutually sin-

gular distributions. Two steps are performed at each iteration: a between-model move and a within-model

move. This type of sampler has been shown in the literature to be effectively equivalent to a reversible

jump Markov chain Monte Carlo (RJMCMC):



4 E. SHADDOX AND OTHERS

• For the between-model move, if the sampler has current state γskm = 1, we propose γ?skm = 0 and

θ?skm = 0. Otherwise, if in the current state γskm = 0, we propose γ?skm = 1 and sample θ?skm from the

proposal density q(θ?skm) = Gamma(θ?skm|α?, β?). The Metropolis-Hastings ratio is

r =
P (θ?skm, γ

?
skm|·)q(θskm)

P (θskm, γskm|·)

=

[∏
i<j

C(νsij ,Θs) exp(−2θskmgskijgsmij)

C(νsij ,Θ?
s)

]
β?α

?

Γ(α)

βαΓ(α?)
θα

?−α
skm

exp((β − β?)θskm)

exp(wkm + 2
∑
s6=t φstγkmt)

where Θ?
s represents matrix Θs with entry θskm = θ?skm.

If in the current state γskm = 0, we propose θ?skm = 1 and sample θ?skm from the proposal density

specified before. When moving from γskm = 0 to γ?skm = 1, the Metropolis-Hastings ratio is

r =
P (θ?skm, γ

?
skm|·)

P (θskm, γskm|·)q(θ?skm)

=

[∏
i<j

C(νsij ,Θs) exp(2θ?skmgskijgsmij)

C(νsij ,Θ?
s)

]
βαΓ(α?)

β?α
?

Γ(α)
θ?skm

α−α?

exp((β? − β)θ?skm) exp(wkm + 2
∑
s6=t

φstγkmt)

•We then perform a within-model move when the value of θskm sampled from the between-model move

is 1. For this step, we propose a new value of θskm using the same proposal density as before. The

Metropolis-Hastings ratio for this step is

r =
P (θ?skm, γ

?
skm|·)q(θskm)

P (θskm, γskm|·)q(θ?skm)

=

[∏
i<j

C(νsij ,Θs) exp(2(θ?skm − θskm)gskijgsmij)

C(νsij ,Θ?
s)

](
θ?skm
θskm

)α−α?

exp[(β? − β)(θ?skm − θskm)]

Updating wkm: Considering the terms of the joint prior on the vector γkm = [γ1km, . . . , γSkm]T includ-

ing wkm we attain

P (γkm|wkm,Φ) ∝ C(wkm,Φ)−1 exp(wkm1Tγkm)

Then we can find the posterior full conditional for wkm

P (wkm|·) ∝ P (wkm)P (Ψ|X) ∝ exp(dwkm)

(1 + ewkm)d+f
C(wkm,Φ)−1 exp(wkm1Tγkm)

exp(wkm(d+ 1Tγkm))

C(wkm,Φ)(1 + ewkm)d+f
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For each (k,m) pair in 1 6 k < m 6 K, we then propose a value q?? from the density Beta(d?, f?) and

set w? = logit(q??). Then the proposal density can be written in terms of w? as

q(w?) =
1

B(d?, f?)

ed
?w?

(1 + ew?)d?+f?

Our Metropolis-Hastings ratio in the MCMC is then

r =
P (w?|·)q(wkm)

P (wkm|·)q(w?)
=

exp(w? − w(d− d? + 1Tγkm))C(wkm,Φ)(1 + ewkm)d+f−d
?−f?

C(w?,Φ)(1 + ew?)d+f−d?−f?

Updating φst and ζst: Our sampler for φst and ζst is constructed in a parallel manner to that for θskm

and γskm. The terms in the joint prior on γkm including φst are

P (Γkm|wkm,Φ) ∝
∏
k<m

C(wkm,Φ)−1 exp(2φstγskmγtkm)

Given the priors on φst and ζst, the posterior full conditional can then be written

P (φst, ζst|·) ∝ P (γkm|wkm,Φ)P (φst|ζst)P (ζst)

∝
[ ∏
k<m

C(wkm,Φ)−1 exp(2φstγskmγtkm)

]
×
[
(1− ζst)δ1 + ζst

κη

Γ(η)
φη−1st e−κφst

]
× uζst(1− u)(1−ζst)

For the between-model move, if in the current state ζst = 1, we propose ζ?st = 0 and φ?st = 0. If

in the current state ζst = 0, we propose ζ?st = 1 and sample φ?st from the proposal density q(φ?st) =

Gamma(φ?st|η?, κ?). When moving from ζst = 1 to ζ?st = 0, the Metropolis Hastings ratio is

r =
P (φ?st, ζ

?
st|·)q(φst)

P (φst, ζst|·)

=
Γ(η)

Γ(η?)

κ?η
?

κη
φη

?−η
st e(κ−κ

?)φst

[ ∏
k<m

C(wkm,Φ) exp(−2φstγskmγtkm)

C(wkm,Φ?)

]
(1− u)

u

where φ? represents the matrix φ with entry φst = φ?st. When moving from ζst = 0 to ζ?st = 1, the

Metropolis-Hastings ratio is

r =
P (φ?st, ζst|·)

P (φst, ζst|·)q(φ?st)

=
Γ(η?)

Γ(η)

κη

κ?η
? φ

?
st

(η−η?)e(κ
?−κ)φ?

st

[ ∏
k<m

C(wkm,Φ) exp(2φ?stγskmγtkm)

C(wkm,Φ?)

]
u

(1− u)
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We then perform our within-model move when the value of ζst sampled from the between-model move is

1. For this step, we propose a new value of φst using the same proposal density as before. Our Metropolis-

Hastings ratio step is then

r =
P (φ?st, ζ

?
st|·)q(φst)

P (φst, ζst|·)q(φ?st)

=

[ ∏
k<m

C(wst,Φ) exp(2(φ?st − φst)γskmγtkm)

C(wst,Φ?)

](
φ?st
φst

)η−η?
exp[(κ? − κ)(φ?st − φst)]

Appendix B: Case Study - Metabolite Selection

After matching our metabolite data to lipid and aqueous annotation files, we were able to extract KEGG

IDs for each sample, yet were left with up to 67 metabolites matching to a single KEGG ID. Consequently,

in order to reduce high correlation between covariates and improve interpretation of results, we selected a

subset of less correlated covariates using a principal component analysis (PCA) procedure outlined below.

For example purposes, we provide sample code online generating correlated normal data for 20 sub-

jects, using the Cholesky decomposition of the correlation matrix from a subset of 15 metabolites from the

Regulation of Autophagy pathway which all matched to KEGG ID “C01194”. The steps for our selection

procedure are as follows:

1. Read in data with variables as rows, observations as columns

2. Center and standardize data

3. Perform principal component analysis

4. Compute percent of variance contributed by each component

5. While first component explains less than 98%

a) Remove the least correlated variable into a Removed subset

b) Repeat Steps 2-4
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6. Return the remaining Selected subset and the Removed subset, where Selected consists

of more correlated variables, the first of which explains at least 98% of variance in PCA for the

“Selected” subset

7. Repeat steps 1-6 with the Removed subset until no variables are remaining

After this procedure, the first variable for each iteration’s Selected subset is collapsed into a dataset

for analysis. From the online example, the 15 correlated variables were collapsed into a subset of 7 less

correlated variables for analysis after carrying out the procedure.

Appendix C: Case Study - Extended Hub Listings

Extended hub results for Regulation of Autophagy gene and metabolite platforms are given in tables 1

and 2, respectively, and those for FcγR-mediated phagocytosis in tables 3, 4, and 5.

APPENDIX D: CASE STUDY ON COPD DISEASE SEVERITY

FcγR

Estimated graphs for control, moderate, and severe subgroups for the Fcγ R-mediated phagocytosis

(FcγR) pathway, obtained by selecting edges with MPPs greater than 0.5, are reported in Figures 1-2.

For the FcγR pathway, relative network similarities across subgroups, for the two platforms, were

estimated as

MPP (Θ)GenesFcyR

 · 1.000 1.000
· 1.000

·

 MPP (Θ)Metabolites
FcyR =

 · .9547 .9672
· .9499

·



with relative similarity across platforms estimated as MPP (Φ)FcyR = .9772
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Table 1. Degree results for RegAuto Gene pathway: Hub results for each compound in the pathway, as well as
average, minimum, median, and maximum degree per node computed across all compound values for each disease
subgroup. Hub nodes are those with degree > 4 and genes involved in known protein protein interactions are denoted
in bold.

Node Number Compound Degree G1 Degree G2 Degree G3
1 ULK3-225067 at 2 5 2
2 ATG3-221492 s at 8 10 1
3 DRAM2-225228 at 4 9 3
4 ATG4D-226871 s at 9 6 0
5 ATG14-204568 at 6 2 6
6 ATG16L2-229389 at 3 6 6
7 DRAM1-218627 at 5 10 1
8 ATG5-202512 s at 4 8 7
9 ATG2A-213300 at 11 5 3

10 ULK2-204063 s at 7 9 7
11 ATG13-203364 s at 6 2 0
12 ATG4B-204903 x at 4 3 4
13 ATG9A-202492 at 4 0 0
14 ATG4A-213115 at 1 8 2
15 EPG5-227638 at 3 7 4
16 ATG101-218214 at 5 5 2
17 ATG2B-226684 at 4 4 7
18 BECN1-208946 s at 7 5 4
19 ATG10-223677 at 2 8 1
20 ATG12-213026 at 3 2 0

Average 4.9 5.7 3
Median 4 5.5 2.5

Min 1 0 0
Max 11 10 7

Distributions of Network and Platform Relatedness Parameters

To illustrate variability of network and platform relatedness parameters, posterior distribution histograms

of non-zero values of ΘS and Φ for the Regulation of Autophagy pathway are shown in Figures 3-5.

Biological Background for Pathways

Autophagy pathway When inspecting the hub listing, Autophagy related genes (ATG) typically showed

decreased connectivity with severity (ATG2A, ATG3, ATG4D, ATG9A, ATG12, ATG13, ATG101) but
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Table 2. Degree results for Reg Auto Metabolite pathway: Hub results for each compound in the pathway, as well
as average, minimum, median, and maximum degree per node computed across all compound values for each disease
subgroup. Hub nodes are those with degree > 4

Node Number Compound Degree G1 Degree G2 Degree G3
1 PI(44:6) 4 2 3
2 1-Phosphatidyl-D-myo-inositol 2 1 4
3 PI(34:4) 5 3 3
4 PI(0-42:1) 1 0 2
5 PI(38:6) 4 3 5
6 PI(33:0) 1 2 1
7 PI(37:1) 4 5 4
8 PI(36:2) 3 7 5
9 PI(20:4) 0 3 3

10 PI(40:8) 3 4 2
11 PE(33:0) 1 1 3
12 PE(41:7) 4 5 3
13 PE(34:2) 4 4 2
14 PE(20:0) 4 2 2
15 PE(41:5) 4 5 4
16 PE(P-36:4) 2 4 4
17 PE(P-40:5) 1 1 3
18 PE(P-38:5) 1 1 2
19 PE(42:8) 4 4 3
20 PE(P-38:6) 3 2 3
21 PE(P-36:1) 1 1 1

Average 2.67 2.86 2.95
Median 3 3 3

Min 0 0 1
Max 5 7 5

a few showed increased connectivity (ATG2B, ATG5, ATG16L2). In addition, BECN1 also showed de-

creased connectivity with severity. There were also known protein-protein interactions (Radoshevich and

others, 2010; Qiu and others, 2013; Huttlin and others, 2017) that were decreased with severity among

these gene hubs (ATG3-ATG12, ATG3-BECN1). In general, there is elevated autophagy in response to

cigarette smoke exposure and in lung specimens from COPD subjects (Ryter and others, 2010; Chen and

others, 2008), and this pathway may be a potential therapeutic target for lung disease (Nakahira and Choi,

2013).

Four metabolites stood out in the hub listing. Phosphatidylethanolamine (PE) (33:0) and PE(P-40:5)
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Table 3. Degree results for FcγR Gene pathway: Hub results for each compound in the pathway, as well as average,
minimum, median, and maximum degree per node computed across all compound values for each disease subgroup.
Hub nodes are those with degree > 4 and genes involved in known protein protein interactions are denoted in bold.
The remaining portion of the hub listing for this pathway is continued in Table 4

Node Number Compound Degree G1 Degree G2 Degree G3
1 PLA2G6-210647 x at 18 10 13
2 LAT-209881 s at 20 21 18
3 BIN1-202931 x at 20 21 17
4 PAK1-230100 x at 11 27 10
5 ARPC5L-226915 s at 16 11 13
6 HCK-208018 s at 12 23 17
7 AKT2-225471 s at 17 15 11
8 MAPK1-212271 at 11 18 2
9 PIK3R1-212240 s at 13 11 10

10 CRK-202225 at 19 23 10
11 SYK-226068 at 11 18 20
12 ASAP1-224791 at 13 14 14
13 PLCG2-204613 at 9 16 4
14 RAC1-208640 at 11 3 4
15 ARPC3-208736 at 13 8 5
16 MARCKS-225897 at 20 21 17
17 PRKCA-213093 at 9 8 6
18 FCGR2A-203561 at 16 19 15
19 PIK3CB-212688 at 18 14 21
20 ARPC5-211963 s at 19 11 3
21 MAP2K1-202670 at 16 11 7
22 PIK3CG-239294 at 8 16 9
23 ARPC1B-201954 at 3 8 1
24 LYN-210754 s at 21 20 11
25 MARCKSL1-200644 at 3 8 14
26 PIP5K1B-205632 s at 12 15 13
27 VASP-202205 at 4 8 3
28 DOCK2-213160 at 3 12 7
29 ARPC1A-200950 at 19 14 12

were unaffected in controls and moderate COPD, but showed increased connectivity with other metabo-

lites with severe COPD. Alternatively PE(20:0) and phosphatidylinositol (PI) (34:4) hub metabolites

showed decreased connectivity from control to moderate COPD, but remained constant from moderate

to severe COPD. The edges were then explored for connectivity and disruption. Six metabolite-metabolite

connections stood out. PI(34:4)–PE(P-38:6), PE(20:0)–PE(42:8), and PI(40:8)–PE(20:0) were connected
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Table 4. Degree results for FcγR Gene pathway Continued: Hub results for each compound in the pathway, as well
as average, minimum, median, and maximum degree per node computed across all compound values for each disease
subgroup. Hub nodes are those with degree > 4, genes involved in known protein protein interactions are denoted in
red.

Node Number Compound Degree G1 Degree G2 Degree G3
30 PRKCD-202545 at 21 21 24
31 PTPRC-212588 at 5 13 1
32 ARF6-224788 at 13 16 10
33 PIP5K1A-207391 s at 1 4 3
34 RPS6KB1-204171 at 16 14 8
35 GSN-200696 s at 19 11 8
36 RAF1-201244 s at 1 2 0
37 PRKCB-209685 s at 6 3 0
38 WAS-38964 r at 4 1 1
39 CFL1-1555730 a at 12 17 13
40 RAC2-213603 s at 1 13 4
41 CDC42-208728 s at 1 4 0
42 INPP5D-203332 s at 28 22 18
43 LIMK1-204357 s at 8 8 2
44 VAV1-206219 s at 13 14 12
45 FCGR2B-210889 s at 12 3 6
46 ARPC4-217818 s at 11 15 11
47 WASF2-221725 at 7 17 11
48 ARPC2-208679 s at 0 5 0
49 VAV3-218807 at 4 16 9
50 AKT3-212607 at 14 16 19
51 PIK3CA-204369 at 15 5 10
52 LIMK2-202193 at 9 12 6
53 PIK3CD-203879 at 9 15 8
54 PIK3R5-220566 at 13 14 13
55 PIP5K1C-212518 at 14 7 4
56 AKT1-207163 s at 17 13 9
57 CRKL-212180 at 14 23 16
58 ARPC4-TTLL3-211672 s at 11 18 15

Average 11.79 13.21 9.45
Median 12 14 10

Min 0 1 0
Max 28 27 24
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Table 5. Degree results for FcγR Metabolite pathway: Hub results for each compound in the pathway, as well as
average, minimum, median, and maximum degree per node computed across all compound values for each disease
subgroup. Hub nodes are those with degree > 4

Node Number Compound Degree G1 Degree G2 Degree G3
1 DG(35:6) 6 3 3
2 DG(38:9) 1 2 1
3 DG(36:3) 4 3 4
4 DG(43:4) 2 3 2
5 DG(36:2) 4 4 7
6 DG(39:3) 1 2 1
7 DG(39:2) 4 5 3
8 DG(33:3) 0 2 0
9 DG(46:0) 6 3 5

10 DG(36:6) 4 3 1
11 DG(0-34:1) 4 2 7
12 DG(36:0)-d5 (internal standard) 4 5 3
13 Arachidonic acid 1 1 4
14 PA(24:0) 3 3 2
15 PA(0-28:0) 2 3 4
16 PA(0-34:1) 1 3 2
17 PA(P-30:0) 5 2 4
18 PA(P-20:0) 4 3 4
19 PA(0-38:4) 4 3 1
20 PA(42:2) 5 7 4
21 PA(28:0) 3 2 3
22 PA(15:0) 1 0 1
23 Sphingosine 1-phosphate 3 4 4

Average 3.13 2.96 3.04
Median 4 3 3

Min 0 0 0
Max 6 7 7

in the control group but these interactions were disrupted in the moderate and severe subgroups. The

PI(40:8)–PE(42:8) connectivity was absent in controls and present in the moderate and severe subgroups.

Finally, PI(38:6)–PE(P-38:6) and PE(42:8)–PE(P-36:1) were only connected in the severe subgroup.

These compounds are all glycerophospholipids. Glycerophospholipids are part of lung surfactant and

have been reported to be perturbed in COPD (Telenga and others, 2014). The increase in connectivity or

the disruption of connections may suggest the transition to alternate routes due to pathway compensation

as a consequence of disease.
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Fig. 1. Fcγ R-mediated phagocytosis (FcγR) pathway, gene platform: Estimated graphs for control (top left), moderate
(top right), and severe (bottom) subgroups, obtained by selecting edges with MPPs greater than 0.5. The size of the
nodes is proportional to their degree.

FcγR- mediated phagocytosis pathway In the Fcγ R-mediated phagocytosis pathway, two gene families

stood out as important in the hub listing (AKT and PRKC). All three of the AKT family genes showed ei-

ther decreased connectivity with COPD severity (AKT1, AKT2) or increased connectivity (AKT3). Phos-

phatase and tensin homolog (PTEN) is a regulator of the AKT signaling pathway, and genetic variation in

PTEN is associated COPD (Hosgood and others, 2009). When selected edges with any of the AKT genes

were explored for gene-gene interactions, many connections were broken in the moderate and severe sub-

groups of known protein-protein interactions to the AKT genes (AKT1-PIK3CA, AKT1-PIK3CB, AKT1-

RPS6KB1, AKT2-PIK3CB, AKT1-AKT2). Many of these connections were with phosphoinositide-3-

kinase (PI3K) genes. The PI3K pathway is activated by nicotine and plays a role in the pathology of

COPD (Medina-Tato and others, 2007). Furthermore, there is evidence of miRNA targeting of PI3KCA

transcripts that may contribute to initiation of COPD (Shi and others, 2015). The Protein Kinase C (PRKC)
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Fig. 2. Fcγ R-mediated phagocytosis (FcγR) pathway, metabolite platform: Estimated graphs for control (top left),
moderate (top right), and severe (bottom) subgroups, obtained by selecting edges with MPPs greater than 0.5. The
size of the nodes is proportional to their degree.

Fig. 3. Regulation of Autophagy (RegAuto) pathway, gene platform: posterior distributions of non-zero values for
off-diagonal elements of Θ, providing relative similarity of subgroups for the gene platform.
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Fig. 4. Regulation of Autophagy (RegAuto) pathway, metabolite platform: posterior distributions of non-zero values
for off-diagonal elements of Θ providing relative similarity of subgroups for the metabolite platform

Fig. 5. Posterior distribution of non-zero values for Φ12 providing relative similarity of platforms

family is the other gene family that showed either decreased connectivity with severity (PRKCA, PRKCB)

or increased connectivity (PRKCD). PRKC isoenzymes are expressed in human lung and tracheal smooth

muscle (Webb and others, 1997). Furthermore, PRKCA has increased expression in pulmonary artery

smooth muscle cells of smokers with COPD compared to non-smokers (Xaing and others, 2010). There

was one gene-gene interaction (PRKCA-PLCG2) with one of the PRKC genes that was disrupted in the

more severe COPD groups and was a known protein-protein interaction (Wang and others, 2006).

Three metabolites stood out as important in the hub listing for the FCγR pathway. The hub metabo-

lite diacylglycerol (DG) (35:6) showed decreased connectivity with disease severity, while the DG(36:2)

and arachidonic acid hub metabolites showed increased connectivity with disease severity. When se-

lected edges were explored for metabolite-metabolite interactions, many connections were broken in
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the moderate and severe groups while connections, absent in the control and moderate subgroups, were

present in the severe subgroup. Some notable examples include the following: the DG(46:0)–phosphatidic

acid (PA) (42:2) interaction was disrupted with disease severity while the DG(36:3)–PA(42:2) was com-

pletely disrupted in the severe subgroup. The DG(38:9)–sphingosine-1-phosphate connection was only

present in the control subgroup with no interactions in the moderate and severe group. Other notable

interactions are DG(O-34:1)–sphingosone-1-phosphate, arachidonic acid–PA(P-20:0), arachidonic acid–

PA(15:0), and arachidonic acid–sphingosine -1-phosphate; these connections were only present in the

severe group. DGs are one of the constituents of pulmonary surfactant (Lopez-Rodriguez and Perez-

Gil, 2014) and a disruption in surfactant is observed in COPD (More and others, 2010) and emphysema

(Cruickshank-Quinn and others, 2014, 2017). Arachidonic acid is increased in COPD due to its produc-

tion by inflammatory cells (Barnes, 2016; Jamalkandi and others, 2015) while sphingosine-1-phosphate

accumulation in COPD is caused by cigarette smoke exposure (Petrache and Petrusca, 2013).

Appendix E: Simulation - Sensitivity Analysis

For sensitivity analysis, we generated data based on simulation setting one and p = 80 and studied the

impact on cross-group and cross-platform relative similarity across differing hyperparameter values. We

first looked at sensitivity by varying u, the Bernoulli indicator of relatedness across platforms, η and κ, the

hyperparameters on the gamma slab of the mixture prior on Φ, while keeping the other parameters fixed

as specified in the main paper. Resulting marginal posterior probability for Θ and Φ are given in Table

6. For platform one (the ‘gene’ platform), shared edge similarity for groups 1 and 2 was between 89%

to 92% while for groups 1 and 3 it was around 23% and for groups 2 and 3 about 24%. For the second

platform (the ‘metabolites’ platform), groups 1 and 2 and 1 and 3 shared approximately 91% and 90% of

edges while groups 2 and 3 share approximately 81% of edges. Consequently, we determined that trial 1

from Table 6 resulted in relative similarity that was the most representative of our simulation set up, and

therefore set u = .1, η = 4, and κ = 5 for future simulations and applications. Next, we looked at the
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Table 6. Sensitivity Analysis: Inferred marginal posterior probability of Θ and Φ for varying u, η, and κ values.

Trial u η κ θG12 θG13 θG23 θM12 θM13 θM23 Φ

1 .1 4 5 1 .513 .5115 1 1 .999 .767
2 .5 4 5 1 .5585 .5775 1 1 1 .945
3 .9 4 5 1 .531 .639 1 1 .997 .996
4 .1 1 9 1 .1405 .1965 1 1 .9965 .151
5 .1 4 9 1 .2145 .2385 1 1 1 .4535
6 .5 4 9 1 .259 .326 1 1 1 .8115
7 .5 1 9 1 .151 .182 1 1 .9975 .576

Table 7. Sensitivity Analysis: Inferred marginal posterior probability of Θ and Φ are given for varying α, β, a, and b.

Trial α β a b θG12 θG13 θG23 θM12 θM13 θM23 Φ

1 1 9 1 19 1 1 1 1 1 1 .9945
2 4 5 1 19 1 1 1 1 1 1 .994
3 1 9 1 4 .149 .002 .0045 .1915 .11 .033 .372
4 1 9 1 10 1 .9545 .9805 1 1 1 .9845
5 1 9 1 6 1 .139 .148 1 .9935 .9685 .5485
6 1 9 1 5 .994 .0425 .0285 .954 .87 .5495 .461
7 1 9 1 7 1 .51 .5105 1 1 .998 .764
8 1 9 1 8 1 .762 .7995 1 1 1 .903
9 1 9 2 7 .776 .014 .008 .7465 .4435 .1825 .41
10 4 5 2 7 .3675 .077 .0765 .424 .2625 .178 .3765

marginal posterior probability for Θ and Φ for different combinations of values for the hyperparameters

α, β, a, and b, keeping u, η and κ as specified above. Results are given in Table 7. Based on those results,

we determined to use Trial 7 values for our simulations and application, setting α = 1 and β = 9 for the

gamma slab portion of the mixture prior of cross group super graphs Θs, and setting a = 1, b = 7 for the

prior on the sparsity parameter of the MRF prior linking networks within each platform.

Appendix F: Simulations - Power Analysis

To analyze the improvement of power attained through joint inference from our method, we compared

the true positive rates across all methods for fixed false positive rates of .10 and .05. Results are given

in table 8. For lasso methods, true positive rates were acquired by selecting the similarity parameters
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which resulted in maximum AUC for each simulation as reported in the manuscript and then varying the

sparsity parameter to attain the TPR which corresponded to the FPR threshold. As expressed in the table,

our method is able to acquire a higher TPR for both settings in the p = 80 scenario, and in setting 2 of

the p = 40 scenario our method performs better than both the fused and hub lasso methods; the higher

TPR achieved by our method in some scenarios shows our method has provided improvement in terms of

statistical power.

Appendix G: Case Study - Sensitivity Analysis

Graph Learning To study impact of hyper parameter settings on graph learning, we analyzed sensitivity

of inferred networks for the Regulation of Autophagy pathway with 20 unique genes and 21 metabolites.

These networks are compared in terms of sparsity levels as well as overlap with reported results from our

paper.

As seen in tables 9, 10, and 11, hyper parameter settings have very little impact on graph learning per-

formance and inferred network structure remains fairly stable across varying settings. In contrast, varying

hyper parameters can cause quite an impact on inferred marginal posterior probabilities for Θ and Φ pa-

rameters, however ordering is generally preserved even as magnitude changes, and as these parameters

are interpretable primarily on a relative scale we selected the hyper parameter settings that seemed to best

reflect the true similarity for our simulation settings which are of the same approximate size as our data.

Relative Similarity Measures Hyperparameter settings and relative Similarity Measures ΘS and Φ are

listed in tables 12, 13, 14 for all trials. As these parameters are relative measures, final hyper parameter

settings were determined as those which reflected the true similarity for our simulation settings which

were of approximate size to the data.
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Table 8. Simulation study: In setting one, one group on one of the two platforms is dissimilar from the others. In
setting two, both platforms have dissimilar groups. True positive rates are reported as Mean over 25 replicates for
p = 80 scenarios and 50 replicates for p = 40 scenarios.

Setting one, p = 40
Method FPR = .10 FPR = .05
Fused Lasso 0.843 0.779
Group Lasso 0.849 0.780
Hub Group Lasso 0.752 0.619
Multi-Platform Bayes 0.801 0.717

Setting two, p = 40
Method FPR = .10 FPR = .05
Fused Lasso 0.757 0.675
Group Lasso 0.831 0.753
Hub Group Lasso 0.761 0.641
Multi-Platform Bayes 0.817 0.735

Setting one, p = 80
Method FPR = .10 FPR = .05
Fused Lasso 0.926 0.680
Group Lasso 0.945 0.631
Hub Group Lasso 0.900 0.659
Multi-Platform Bayes 1.000 1.000

Setting two, p = 80
Method FPR = .10 FPR = .05
Fused Lasso 0.804 0.621
Group Lasso 0.883 0.629
Hub Group Lasso 0.903 0.662
Multi-Platform Bayes 1.000 1.000
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Table 9. Sensitivity Analysis to determine impact of graph learning from u, the Bernoulli prior on indicators of
platform similarity, and η and κ, the hyper parameters influencing the Gamma slab portion of the mixture prior on
Φ. Comparison is reported as edge counts for subgroups within each platform for each trial as well as the count
of matching indicators when comparing adjacency matrices of learned networks vs the reported networks for each
subgroup. As gene networks consist of 20 variables and metabolite networks have 21 variables, maximum matching
indicator counts are 400 and 441 respectively for gene and metabolite subgroups.

Count Edges Count Matching Indicators
Trial G1 G2 G3 M1 M2 M3 G1 G2 G3 M1 M2 M3
1 128 136 88 77 85 89 388 386 386 441 437 439
2 122 134 84 79 83 91 392 384 386 439 439 441
3 120 128 98 77 85 85 390 386 384 441 437 435
4 112 126 82 75 83 93 386 384 380 439 439 439
5 114 132 84 77 83 89 388 386 382 441 439 435
6 122 132 86 77 85 89 388 386 384 441 441 435
7 124 126 90 75 85 89 386 388 384 439 437 439

Table 10. Sensitivity Analysis to determine impact of graph learning from α and β, hyper parameters for the slab
portion of the mixture prior on off-diagonal entries of ΘS linking sample groups within a platform, as well as a and b,
the hyper parameters for the sparsity parameter of the MRF prior linking networks within each platform. Comparison
is reported as edge counts for subgroups within each platform for each trial as well as the count of matching indica-
tors when comparing adjacency matrices of learned networks vs the reported networks for each subgroup. As gene
networks consist of 20 variables and metabolite networks have 21 variables, maximum matching indicator counts are
400 and 441 respectively for gene and metabolite subgroups. Trial 7 has hyper parameter settings equivalent to those
reported in the document.

Count Edges Count Matching Indicators
Trial G1 G2 G3 M1 M2 M3 G1 G2 G3 M1 M2 M3
1 124 134 86 77 85 87 390 384 392 441 441 437
2 124 138 90 81 85 89 394 384 380 437 441 435
3 120 124 86 79 85 87 386 386 392 435 441 437
4 122 136 90 81 85 85 388 382 384 437 441 435
5 114 126 86 79 85 89 388 384 388 439 441 435
6 120 132 80 75 85 89 386 390 378 439 441 439
7 122 126 86 77 85 91 400 400 400 441 441 441
8 124 130 90 79 85 89 390 392 392 439 441 435
9 126 138 92 79 87 93 388 384 382 439 439 439
10 130 142 94 83 85 95 384 384 384 435 441 437
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Table 11. Sensitivity Analysis to determine impact of graph learning from d and f , the hyper parameters for the
sparsity parameter of the MRF prior linking platforms. Comparison is reported as edge counts for subgroups within
each platform for each trial as well as the count of matching indicators when comparing adjacency matrices of
learned networks vs the reported networks for each subgroup. As gene networks consist of 20 variables and metabolite
networks have 21 variables, maximum matching indicator counts are 400 and 441 respectively for gene and metabolite
subgroups.

Count Edges Count Matching Indicators
Trial G1 G2 G3 M1 M2 M3 G1 G2 G3 M1 M2 M3
1 122 128 92 75 87 89 384 390 390 439 439 439
2 126 130 90 79 85 87 388 388 388 439 441 437
3 122 130 90 79 85 93 388 380 376 439 437 439

Table 12. Sensitivity Analysis: Inferred marginal posterior probability of Θ and Φ for varying u, η, and κ values while
holding constant α = 1, β = 9, a = 1, b = 7, d = 1, and f = 19.

Trial u η κ θG12 θG13 θG23 θM12 θM13 θM23 Φ

1 .1 4 5 .985 .958 .975 921 .932 .928 .171
2 .5 4 5 .989 .963 .978 .930 .943 .937 .993
3 .9 4 5 .984 .968 .977 .926 .942 .936 .999
4 .1 1 9 .953 .852 .910 .724 .776 .766 .173
5 .1 4 9 .962 .865 .933 .792 820 .806 .611
6 .5 4 9 .966 .899 .944 .836 .850 .834 .908
7 .5 1 9 .947 .850 .923 .756 .776 .760 .644

Table 13. Sensitivity Analysis: Inferred marginal posterior probability of Θ and Φ are given for varying α, β, a, and
b while holding constant u = .1, η = 4, κ = 5, d = 1, and f = 19.

Trial α β a b θG12 θG13 θG23 θM12 θM13 θM23 Φ

1 1 9 1 19 .999 .990 .998 .991 .992 .990 .991
2 4 5 1 19 .999 .990 .996 .989 .993 .991 .991
3 1 9 1 4 .817 .631 .742 .455 .434 .440 .551
4 1 9 1 10 .997 .982 .990 .971 .978 .970 .979
5 1 9 1 6 .967 .918 .950 .862 .881 .877 .900
6 1 9 1 5 .927 .844 .883 .735 .755 .731 .786
7 1 9 1 7 .982 .955 .978 .920 .932 .930 .949
8 1 9 1 8 .991 .972 .985 .954 .957 .948 .969
9 1 9 2 7 .918 .797 .871 .685 .683 .681 .740
10 4 5 2 7 .876 .721 .795 .570 .579 .550 .585
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Table 14. Sensitivity Analysis: Inferred marginal posterior probability of Θ and Φ for varying d and f values while
holding constant u = .1, η = 4, κ = 5, α = 1, β = 9, a = 1, and b = 7.

Trial d f θG12 θG13 θG23 θM12 θM13 θM23 Φ

1 1 4 .986 .956 .975 926 .934 .933 .768
2 2 7 .987 .963 .975 .927 .933 .937 .813
3 1 7 .973 .957 .973 .917 .941 .928 .867
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