Supplementary Information

for

Alkyl Halides as Both Hydride and Alkyl Sources in Catalytic Regioselective Reductive Olefin Hydroalkylation

Xianxiao Chen^{1,2}, Weidong Rao¹, Tao Yang²* & Ming Joo Koh²*

¹Jiangsu Provincial Key Lab for the Chemistry and Utilization of Ago-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.

²Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549.

*Corresponding authors. Emails: chmkmj@nus.edu.sg; chmyt@nus.edu.sg.

Table of Contents

1. Supplementary Note 1	3
2. Supplementary Methods, Tables and Figures	4
2.1 Optimization of Reaction Conditions	4
2.2 Synthesis of Alkene Substrates	6
2.3 Synthesis and Characterization of Products	9
2.4 Application to Synthesis of Biologically Active Molecules	25
2.5 Mechanistic Studies	29
2.6 Attempted Hydroalkylation in the Presence of Hydrosilane/Base	35
2.7 Attempted Hydroalkylation Using Substrates Without C_{β} -H Bonds	
2.8. NMR Spectra	
3. Supplementary References	109

1. Supplementary Note 1

All commercial chemicals were used without additional purification, unless otherwise stated. Anhydrous solvent was purchased from commercial sources and transferred under argon atmosphere. NMR spectra were recorded on Bruker DPX 400 or Bruker DPX 500 spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuterium incorporation as the internal standard (CDCl₃: δ 7.26 ppm). Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and coupling constants (Hz). ¹³C NMR spectra were recorded on a Bruker DPX 400 or Bruker DPX 500spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 77.16 ppm). High-resolution mass spectrometric data were obtained using Bruker Apex IV RTMS. GC-MS analysis was performed on Shimadzu GC-2010 gas chromatography coupled to a Shimadzu QP2010 mass selective detector. Column conditions are reported in the experimental section below. Values for regioisomeric ratio of products were determined by GC and ¹H NMR. Solvents (acetonitrile, CH₂Cl₂, diethyl ether, tetrahydrofuran and toluene) were purified under a positive pressure of dry nitrogen gas by a modified innovative technologies purification system. N,N-Dimethylacetamide (anhydrous), N,N-dimethylformamide (anhydrous), N-methyl-2pyrrolidone (anhydrous), N,N'-dimethylpropyleneurea (anhydrous) and dimethyl sulfoxide (anhydrous) were used as received. Flash chromatography was performed using Merck silica gel 60 (0.040-0.063 mm) or SiliCycle silica gel F60 (0.040-0.063 mm). All purification procedures of products were carried out with reagent grade solvents.

2. Supplementary Methods, Tables and Figures

2.1 Optimization of Reaction Conditions

General procedure for condition optimization: In a N₂-filled glovebox, to an ovendried 5 mL vial equipped with a magnetic stir bar were added alkene substrate 7a (22.6 mg, 0.1 mmol), Ni(PPh₃)₂Cl₂ (9.8 mg, 0.015 mmol), Mn powder (8.3 mg, 0.15 mmol) and dry NMP (0.3 mL) sequentially. The vial was tightly capped and removed out of the glovebox followed by the addition of 1-iodobutane 8 (36.8 mg, 0.2 mmol) via a micro-syringe. The mixture was allowed to vigorously stir at ambient temperature for 12 h. After that, 20 mg *n*-tridecane was added as an internal standard. 3 μ L of the reaction mixture was taken out and subjected to GC analysis to determine the conversion of alkene 7a as well as the calibrated GC yields of products 9a and 10a.

$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$					
Entry	[Ni]	Conversion	Vield (%)	Ratio of	
Entry		of 7a (%)	1 leid (70)	9a:10a	
1	NiCl ₂	77	56	93:7	
2	NiCl ₂ DME	>99	74	>95:5	
3	NiCl ₂ (Py) ₄	70	50	92:8	
4	NiCl ₂ (PPh ₃) ₂	>99	90	>95:5	
5	NiI ₂	>99	63	>95:5	
6	Ni(COD) ₂	80	68	>95:5	

Supplementary Table 1 Effect of Nickel Catalyst^a

^{*a*}Conversion, yields and regioisomeric ratios (9a:10a) were determined by GC analysis with *n*-tridecane as internal standard.

Supplementary Table 2 Effect of Solvents^a

N Me DG	7a 8 (2 eq)	Mn (1.5 eq) Ni(PPh ₃) ₂ Cl ₂ (15 mol%) Solvent (0.33M) RT, 12 h	DG 9a	DG H 10a
Entw	Solventa	Conversion	Viald $(0/)$	Ratio of
Enuy	Solvents	of 7a (%)	1 leid (%)	9a:10a
1	NMP	>99	90	>95:5
2	DMF	>99	86	92:8
3	DMA	>99	88	93:7
4	DMSO	<2	trace	ND
5	DMPU	>99	92	94:6
6	ACN	88	70	94:6
7	THF	40	10	>95:5
8	PhMe	<2	trace	ND

^{*a*}Conversion, yields and regioisomeric ratios (9a:10a) were determined by GC analysis with *n*-tridecane as internal standard. ND, not determined.

Supplementary Table 3 Effect of Directing Groups^a

	+ I <u>—</u> <i>n</i> -Bu — 8 (2 eq)	Mn (1.5 eq) Ni(PPh ₃) ₂ Cl ₂ (15 mol%) NMP (0.33M) RT, 12 h	0 n-Bu H + 9a'	DG H n-Bu
DG =		MeO C	N H	N 25 HO-5-
	7f	7g	7h	7i 7j
Easters	DC	Conversion	\mathbf{V}_{a}	Ratio of
Entry	DG	of 7 (%)	Y leid (%)	9a':10a'
1	7 a	>99	90	>95:5
2	7f	60	40	75:25
3	7g	90	60	70:30
4	7h	90	65	45:55
5	7i	<2	trace	ND
6	7j	<2	trace	ND

"Conversion, yields and regioisomeric ratios (9a':10a') were determined by GC analysis with *n*-tridecane as internal standard. ND, not determined.

Supplementary Table 4 Effect of Other Conditions^a

	O Mn (1.5 eq Ni(PPh ₃) ₂ C + 1— <i>n</i> -Bu (15 mol%) NMP (0.331 7a 8 RT, 12 h (2 eq)	$ \stackrel{(i)}{\xrightarrow{d_2}} \xrightarrow{O} \stackrel{n-1}{\xrightarrow{DG}} \xrightarrow{Q} \stackrel{g_a}{\xrightarrow{g_a}} $		H n-Bu 0a
Entwo	Deviation from	Conversion	Viold (0/)	Ratio of
Enuy	Standard Conditions	of 7a (%)	1 leiu (%)	9a:10a
1	None	>99	90	>95:5
2	No Mn	<2	trace	ND
3	Mn (1 equiv.) instead of Mn (1.5 equiv.)	>99	70	>95:5
4	Mn (2 equiv.) instead of Mn (1.5 equiv.)	>99	90	>95:5
5	Zn instead of Mn	66	44	80:20
6	8 (1.5 equiv.) instead of 8 (2 equiv.)	80	70	>95:5
7	8 (2.5 equiv.) instead of 8 (2 equiv.)		91	>95:5
8	40 °C instead of RT	>99	90	>95:5
9	10 mol% Nickel catalyst instead of 15 mol%	<2	92	92:8

^{*a*}Conversion, yields and regioisomeric ratios (9a:10a) were determined by GC analysis with *n*-tridecane as internal standard.

Supplementary Table 5 Optimization of Reaction with Alkyl Bromide^a

^{*a*}Conversion, yields and regioisomeric ratios (9a:10a) were determined by GC analysis with *n*-tridecane as internal standard.

2.2 Synthesis of Alkene Substrates

General procedure for the synthesis of alkene substrates: According to the corresponding literature procedures^{1,2}, aryl amine (1.44 g, 10 mmol), EDCI (2.30 g, 12 mmol) and DMAP (122 mg, 1 mmol) were added sequentially in a 100 mL round-bottomed flask containing 30 mL DCM. Then enoic acid (11 mmol) was added dropwise and the reaction mixture was allowed to stir at ambient temperature for 16 h. The resulting mixture was washed with saturated aqueous NaHCO₃ solution, extracted with DCM and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: 10:1 hexanes:EtOAc) to afford alkene substrates.

N-(2-Methylquinolin-8-yl)but-3-enamide (7a):

A colorless solid, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 10.07 (s, 1H), 8.72 (dd, J = 5.6, 3.4 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.30 (d, J = 8.4 Hz, 1H), 6.16 (ddt, J = 17.3, 10.2, 7.1 Hz, 1H), 5.42 (dq, J = 10.1, 1.4 Hz, 1H), 5.40 – 5.38 (m, 1H),3.35 (d, J = 7.2 Hz, 2H), 2.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 157.2, 137.9, 136.4, 133.8, 131.3, 126.3, 126.1, 122.4, 121.4, 120.1, 116.4, 43.2, 25.3. HRMS (ESI): Calcd. 249.0998 for C₁₄H₁₄N₂NaO (M+Na)⁺, found 249.1003.

(E)-N-(2-Methylquinolin-8-yl)pent-3-enamide (7b):

A colorless solid, 78% yield. ¹H NMR (500 MHz, CDCl₃) δ 10.14 (s, 1H), 8.71 (dd, J = 7.2, 1.8 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.24 (d, J = 8.4 Hz, 1H), 5.87 – 5.80 (m, 1H), 5.78 – 5.72 (m, 1H), 3.24 (d, J = 6.9 Hz, 2H), 2.68 (s, 3H), 1.85 (dd, J = 6.2, 1.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 157.0, 137.8, 136.3, 133.8, 131.8, 126.3, 126.0, 123.7, 122.3, 121.2, 116.2, 42.1, 25.2, 18.2. HRMS (ESI): Calcd. 263.1157 for C₁₅H₁₆N₂NaO (M+Na)⁺, found 263.1155.

(E)-N-(2-Methylquinolin-8-yl)hex-3-enamide (7c):

A colorless solid, 70% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 10.14 (s, 1H), 8.74 (dd, J = 5.8, 3.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.48 - 7.43 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 5.94 - 5.86 (m, 1H), 5.76 (dtt, J = 15.5, 7.1, 1.5 Hz, 1H), 3.28 (d,J = 7.0 Hz, 2H), 2.72 (s, 3H), 2.22 (qdd, J = 7.4, 6.2, 1.3 Hz, 2H), 1.12 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.2, 157.2, 138.9, 138.0, 136.5, 134.0, 126.5, 126.2, 122.4, 121.4, 116.4, 42.3, 25.8, 25.4, 13.6. **HRMS** (**ESI**): Calcd. 277.1311 for C₁₆H₁₈N₂NaO (M+Na)⁺, found 277.1312.

(E)-N-(2-Methylquinolin-8-yl)-5-phenylpent-3-enamide (7d):

A colorless oil, 73% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 10.15 (s, 1H), 8.77 (td, J = 4.2, 3.8, 1.9 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.51 – 7.48 (m, 2H), 7.35 – 7.21 (m, 6H), 6.03 (ddd, J = 14.7, 7.1, 5.8 Hz, 1H), 5.93 – 5.85 (m, 1H), 3.57 (d, J = 6.5 Hz, 2H), 3.36 (d, J = 7.0 Hz, 2H), 2.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 157.2, 140.0, 138.0, 136.5, 135.3, 133.9, 128.7, 128.6, 126.4, 126.3, 126.2, 124.0, 122.5, 121.4, 116.5, 42.1, 39.2, 25.4. HRMS (ESI): Calcd. 339.1468 forC₂₁H₂₀N₂NaO (M+Na)⁺, found 339.1474.

(E)-N-(2-Methylquinolin-8-yl)-4-phenylbut-3-enamide (7e):

A colorless solid, 77% yield. ¹H NMR (500 MHz, CDCl₃) δ 10.27 (s, 1H), 8.76 (d, J = 6.9 Hz, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.53 – 7.44 (m, 4H), 7.38 (dd, J = 8.5, 6.8 Hz, 2H), 7.32 – 7.25 (m, 2H), 6.77 (d, J = 15.8 Hz, 1H), 6.55 (dt, J = 15.6, 7.4 Hz, 1H), 3.52 (d, J = 7.5 Hz, 2H), 2.49 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.2, 157.4, 137.9, 136.9, 136.4, 135.7, 133.8, 128.7, 127.9, 126.6, 126.4, 126.1, 122.5, 122.2, 121.5, 116.3, 42.4, 25.0. HRMS (ESI): Calcd. 325.1311 for C₂₀H₁₈N₂NaO (M+Na)⁺, found 325.1315.

N-(2-Methylquinolin-8-yl)pent-4-enamide (17a):

A colorless oil, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.77 (dd, J = 6.7, 2.4 Hz, 1H), 8.02 – 7.99 (m, 1H), 7.48 – 7.42 (m, 2H), 7.31 – 7.28 (m, 1H), 5.97 (ddt, J = 16.6, 10.1, 6.3 Hz, 1H), 5.19 (dq, J = 17.1, 1.7 Hz, 1H), 5.08 (dq, J = 10.2, 1.4 Hz, 1H), 2.74 (s, 3H), 2.68 (dd, J = 7.9, 5.9 Hz, 2H), 2.60 (dtd, J = 8.1, 6.4, 1.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 157.2, 137.7, 137.0, 136.4, 133.9, 126.3, 126.1, 122.4, 121.3, 116.4, 115.8, 37.3, 29.5, 25.3. HRMS (ESI): Calcd. 263.1155 for

 $C_{15}H_{16}N_2NaO (M+Na)^+$, found 263.1155.

(E)-N-(2-Methylquinolin-8-yl)hex-4-enamide (17b):

A colorless oil, 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 1H), 8.74 (dd, J = 6.9, 2.1 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.28 (d, J = 8.4 Hz, 1H), 5.62 – 5.51 (m, 2H), 2.72 (s, 3H), 2.61 (t, J = 7.2 Hz, 2H), 2.52 – 2.48 (m, 2H), 1.65 (d, J = 4.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 157.2, 137.8, 136.5, 134.0, 129.5, 126.4, 126.1, 122.4, 121.2, 116.5, 38.1, 28.5, 25.3, 18.0. HRMS (ESI): Calcd. 277.1311 for C₁₆H₁₈N₂NaO (M+Na)⁺, found 277.1312.

N-(2-Methylquinolin-8-yl)cyclopent-3-ene-1-carboxamide (17c):

A colorless solid, 79% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 9.99 (s, 1H), 8.75 (dd, J = 6.7, 2.3 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.30 (d, J = 8.4 Hz, 1H), 5.78 (s, 2H), 3.40 – 3.32 (m, 1H), 2.90 – 2.79 (m, 4H), 2.73 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.7, 157.2, 137.9, 136.5, 134.2, 129.4, 126.5, 126.1, 122.4, 121.2, 116.5, 45.2, 37.2, 25.4. **HRMS** (**ESI**): Calcd. 275.1155 for C₁₆H₁₆N₂NaO (M+Na)⁺, found 275.1165.

N-(2-Methylquinolin-8-yl)hex-5-enamide (17d):

A colorless oil, 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.87 (s, 1H), 8.77 (dd, J = 7.0, 2.0 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.29 (d, J = 8.4 Hz, 1H), 5.87 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.12 (ddd, J = 17.1, 3.5, 1.6 Hz, 1H), 5.05 (ddt, J = 10.2, 2.1, 1.2 Hz, 1H), 2.74 (s, 3H), 2.60 – 2.57 (m, 2H), 2.25 – 2.21 (m, 2H), 1.99 – 1.92 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 157.2, 137.9, 137.7, 136.5, 133.9, 126.4, 126.1, 122.4, 121.2, 116.4, 115.5, 37.3, 33.2, 25.3, 24.7. HRMS (ESI): Calcd. 277.1311 forC₁₆H₁₈N₂NaO (M+Na)⁺, found 277.1320.

N-(2-Methylquinolin-8-yl)hept-6-enamide (17e):

A colorless oil, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 8.74 (dd, J = 6.7, 2.3 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.28 (d, J = 8.4 Hz, 1H), 5.83 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.04 (dq, J = 17.1, 1.6 Hz, 1H), 4.97 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H), 2.73 (s, 3H), 2.56 (t, J = 7.5 Hz, 2H), 2.17 – 2.11 (m, 2H), 1.84 (tt, J = 8.3, 6.5 Hz, 2H), 1.55 (tt, J = 9.8, 6.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 157.2, 138.6, 137.7, 136.5, 134.0, 126.4, 126.1, 122.4, 121.2, 116.4, 114.8, 38.1,

33.6, 28.6, 25.3, 25.2. **HRMS** (ESI): Calcd. 291.1468 for $C_{17}H_{20}N_2NaO$ (M+Na)⁺, found 291.1470.

N-(5-Methoxyquinolin-8-yl)but-3-enamide (7g)³:

A colorless solid, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 8.80 (dd, J = 4.3, 1.8 Hz, 1H), 8.68 (d, J = 8.5 Hz, 1H), 8.56 (dd, J = 8.4, 1.7 Hz, 1H), 7.42 (dd, J = 8.4, 4.2 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 6.14 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.38 (dq, J = 10.4, 1.4 Hz, 1H), 5.37 – 5.34 (m, 1H), 3.98 (s, 3H), 3.33 (dt, J = 7.1, 1.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 150.4, 148.8, 139.3, 131.4, 131.3, 127.9, 120.8, 120.5, 120.0, 116.8, 104.5, 55.9, 43.2.

N-(5-Chloroquinolin-8-yl)but-3-enamide (7h):

A colorless solid, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.84 (dd, J = 4.2, 1.6 Hz, 1H), 8.71 (d, J = 8.4 Hz, 1H), 8.56 (dd, J = 8.4, 1.5 Hz, 1H), 7.59 – 7.55 (m, 2H), 6.20 – 6.06 (m, 1H), 5.42 – 5.39 (m, 1H), 5.37 (t, J = 1.3 Hz, 1H), 3.35 (dt, J = 7.1, 1.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 148.8, 139.1, 133.8, 133.6, 130.9, 127.4, 126.1, 124.5, 122.4, 120.4, 116.6, 43.3. HRMS (ESI): Calcd. 269.0452 for C₁₃H₁₁ClN₂ONa (M+Na)⁺, found 269.0456.

2.3 Synthesis and Characterization of Products General procedure for nickel-catalyzed reductive hydroalkylation of alkenes

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added alkene substrate (0.1 mmol), alkyl iodide or bromide (if solid, added at this time) (0.2 mmol), Ni(PPh₃)₂Cl₂ (9.8 mg, 0.015 mmol) and Mn powder (0.15 mmol). The mixture was then dissolved in dry NMP (0.3 mL). The vial was tightly capped and removed from the glovebox. The alkyl iodide or bromide (if liquid, added at this time) was added by a micro-syringe. The mixture was allowed to vigorously stir at ambient temperature (for alkyl iodide) or 60 °C (for alkyl bromide) for 12 – 20 h. When alkene was almost fully consumed (monitored by TLC), the mixture was directly subjected to flash silica gel column chromatography to afford the pure product.

3-Methyl-N-(2-methylquinolin-8-yl)heptanamide (9a):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 1-iodobutane (37 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as acolorless oil (25 mg, 88% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.84 (s, 1H), 8.76 (dd, *J* = 7.2, 1.8 Hz, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.26 (d, *J* = 8.3 Hz, 1H), 2.72 (s, 3H), 2.55 (dd, *J* = 14.2, 6.1 Hz, 1H), 2.33 (dd, *J* = 14.2, 8.1 Hz, 1H), 2.21 – 2.11 (m, 1H), 1.49 – 1.24 (m, 6H), 1.05 (d, *J* = 6.7 Hz, 3H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 157.1, 137.7, 136.4, 134.0, 126.4, 126.1, 122.4, 121.1, 116.4, 46.0, 36.6, 30.9, 29.3, 25.3, 22.9, 19.9, 14.2. HRMS (ESI): Calcd. 307.1781 for C₁₈H₂₄N₂NaO (M+Na)⁺, found 307.1789.

General procedure for reaction on 2 mmol scale: In a N₂-filled glovebox, to an ovendried 5 mL vial equipped with a magnetic stir bar were added alkene **7a** (2.0 mmol), Ni(PPh₃)₂Cl₂ (198 mg, 0.3 mmol) and Mn powder (4.0 mmol). The mixture was then dissolved in dry NMP (6.0 mL). The vial was tightly capped and removed from the glovebox. 1-Iodobutane (4.0 mmol) was then added by a micro-syringe. The mixture was allowed to vigorously stir at ambient temperature for 16 h, after which the mixture was diluted with EtOAc (20 mL) and washed with H₂O (15 mL). The mixture was filtered over Celite and rinsed with EtOAc. The organic phase was collected, dried over anhydrous Na₂SO₄, evaporated and purified by flash silica gel chromatography to afford the pure product **9a** (81% yield, 460 mg).

3-Methyl-N-(2-methylquinolin-8-yl)pentanamide (9b):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and iodoethane (31 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (24 mg, 93% yield). ¹**H NMR** (300 MHz, CDCl₃) δ 9.86 (s, 1H), 8.75 (dd, *J* = 6.0, 3.1 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.52 – 7.38 (m, 2H), 7.31 (d, *J* = 8.4 Hz, 1H), 2.75 (s, 3H), 2.57 (dd, *J* = 14.2, 6.3 Hz, 1H), 2.35 (dd, *J* = 14.2, 8.0 Hz, 1H), 2.10 (dq, *J* = 13.7, 6.8 Hz, 1H), 1.51 (tq, *J* = 13.0, 7.4, 6.5 Hz, 1H), 1.33 (dt, *J* = 13.8, 7.2 Hz, 1H), 1.05 (d, *J* = 6.7 Hz, 3H), 0.97 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 171.6, 157.3, 137.8, 136.6, 134.1, 126.5, 126.2, 122.5, 121.3, 116.5, 45.7, 32.6, 29.6, 25.4, 19.5, 11.6. **HRMS (ESI)**: Calcd. 279.1468 for C₁₆H₂₀N₂NaO (M+Na)⁺, found 279.1475.

3-Methyl-*N*-(2-methylquinolin-8-yl)-6-phenylhexanamide (9c):

The title compound was prepared from 7a (23 mg, 0.1 mmol) and (3-iodopropyl)benzene (49 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the

pure product as a colorless oil (31 mg, 89% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.88 (s, 1H), 8.80 (dd, J = 6.6, 2.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.34 (d, J = 8.4 Hz, 1H), 7.30 – 7.27 (m, 2H), 7.22 – 7.17 (m, 3H), 2.77 (s, 3H), 2.70 – 2.57 (m, 3H), 2.39 (dd, J = 14.2, 8.1 Hz, 1H), 2.26 (ddt, J = 14.4, 8.1, 6.5 Hz, 1H), 1.82 – 1.69 (m, 2H), 1.57 (ddt, J = 13.3, 10.7, 5.5 Hz, 1H), 1.39 (dddd, J = 13.3, 10.4, 7.9, 5.4 Hz, 1H), 1.10 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 157.3, 142.7, 137.8, 136.6, 134.0, 128.5, 128.4, 126.5, 126.2, 125.8, 122.5, 121.3, 116.5, 46.0 36.6, 36.2, 30.9, 29.1, 25.4, 19.9. HRMS (ESI): Calcd. 369.1942 for C₂₃H₂₆N₂NaO (M+Na)⁺, found 369.1937.

4-Methoxyphenyl 5-methyl-7-((2-methylquinolin-8-yl)amino)-7-oxoheptanoate (9d):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 4-methoxyphenyl 4iodobutanoate (64 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 10:1 hexanes:EtOAc) gave the pure product as a colorless oil (31 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 8.76 (dd, J = 6.0, 3.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.46 – 7.45 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 9.1 Hz, 2H), 6.85 (d, J = 9.1 Hz, 2H), 3.78 (s, 3H), 2.74 (s, 3H), 2.61 – 2.54 (m, 3H), 2.41 (dd, J = 14.3, 7.8 Hz, 1H), 2.31 – 2.18 (m, 1H), 1.93 – 1.76 (m, 2H), 1.64 – 1.56 (m, J = 13.4, 10.9, 5.5 Hz, 1H), 1.47 – 1.39 (m, 1H), 1.11 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 171.1, 157.3, 157.3, 144.3, 137.8, 136.5, 134.0, 126.5, 126.2, 122.5, 122.4, 121.3, 116.5, 114.5, 55.7, 45.8, 36.2, 34.5, 30.7, 25.4, 22.6, 19.9. HRMS (ESI): Calcd. 443.1941 for C₂₅H₂₈N₂NaO₄ (M+Na)⁺, found 443.1943.

3-Methyl-*N***-(2-methylquinolin-8-yl)-7-((2-oxo-***2H***-chromen-7-yl)oxy)heptanam** ide (9e):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 7-(4-iodobutoxy)-2H-chromen-2-one (69 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 10:1 hexanes:EtOAc) gave the pure product as a colorless oil (40 mg, 90% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 1H), 8.74 (dd, *J* = 6.0, 3.0 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 9.4 Hz, 1H), 7.47-7.42 (m, 2H), 7.31 (d, *J* = 8.6 Hz, 2H), 6.79 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.75 (d, *J* = 2.4 Hz, 1H), 6.22 (d, *J* = 9.4 Hz, 1H), 4.00 (t, *J* = 6.4 Hz, 2H), 2.74 (s, 3H), 2.56 (dd, *J* = 14.3, 6.5 Hz, 1H), 2.41 (dd, *J* = 14.3, 7.6 Hz, 1H), 2.27 – 2.17 (m, 1H), 1.87 – 1.80 (m, 2H), 1.64 – 1.52 (m, 3H), 1.42 – 1.34 (m, 1H), 1.08 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 162.5, 161.4, 157.3, 156.0, 143.6, 137.8, 136.6, 134.0, 128.8, 126.5, 126.2, 122.5, 121.3, 116.5, 113.1, 113.0, 112.5, 101.4, 68.6, 45.9, 36.4, 30.8, 29.2, 25.4, 23.6, 20.0. HRMS (ESI): Calcd. 467.1941 for C₂₇H₂₈N₂NaO₄ (M+Na)⁺, found 467.1949.

7-(1,3-Dioxoisoindolin-2-yl)-3-methyl-N-(2-methylquinolin-8-yl)heptanamide (9f):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 2-(4-iodobutyl)isoindoline-1,3-dione (66 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 10:1 hexanes:EtOAc) gave the pure product as a colorlesssolid (40 mg, 94% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.82 (s, 1H), 8.72 (dd, J = 6.1, 2.9 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.81 (dd, J = 5.4, 3.0 Hz, 2H), 7.67 (dd, J = 5.4, 3.0 Hz, 2H), 7.43-7.42 (m, 2H), 7.29 (d, J = 8.4 Hz, 1H), 3.68 (t, J = 7.3 Hz, 2H), 2.72 (s, 3H), 2.54 (dd, J = 14.3, 6.1 Hz, 1H), 2.34 (dd, J = 14.3, 8.1 Hz, 1H), 2.19 – 2.12 (m, 1H), 1.73 – 1.63 (m, 2H), 1.50 – 1.31 (m, 4H), 1.04 (d, J = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 168.5, 157.2, 137.8, 136.5, 134.0, 133.9, 132.2, 126.4, 126.1, 123.2, 122.5, 121.2, 116.5, 45.9, 38.0, 36.5, 30.8, 28.9, 25.4, 24.5, 19.8. HRMS (ESI): Calcd. 452.1945 for C₂₆H₂₇N₃NaO₃ (M+Na)⁺, found 452.1941.

3-Methyl-*N*-(**2-methylquinolin-8-yl)-7-(4-(trifluoromethyl)phenoxy)heptanamide** (9g):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 1-(4-iodobutoxy)-4-(trifluoromethyl)benzene (69 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a a colorless oil (32 mg, 72% yield, r.r. = 88:12).¹**H NMR** (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.76 – 8.74 (m, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.50 – 7.45 (m, 4H), 7.31 (d, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 8.5 Hz, 2H), 3.98 (t, *J* = 6.4 Hz, 2H), 2.74 (s, 3H), 2.57 (dd, *J* = 14.3, 6.5 Hz, 1H), 2.41 (dd, *J* = 14.3, 7.6 Hz, 1H), 2.28 – 2.18 (m, 1H), 1.85 – 1.78 (m, 2H), 1.64 – 1.36 (m, 4H), 1.09 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.5, 161.7, 157.4, 137.8, 136.6, 133.9, 126.9 (q, *J* = 3.7 Hz), 126.5,124.6 (q, *J* = 266.0 Hz), 123.1 (q, *J* = 43.4 Hz), 122.6, 121.5, 116.6, 115.7, 114.5, 68.2, 46.0, 36.5, 30.9, 29.3, 25.4, 23.6, 19.9. **HRMS** (**ESI**): Calcd. 467.1917 for C₂₅H₂₇F₃N₂NaO₂(M+Na)⁺, found 467.1908.

7-(4-Formylphenoxy)-3-methyl-N-(2-methylquinolin-8-yl)heptanamide (9h):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 4-(4-iodobutoxy)benzaldehyde (61 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 10:1 hexanes:EtOAc) gave the pure product as a colorless oil (25 mg, 62% yield). ¹H NMR (300 MHz, CDCl₃) δ 9.88 – 9.83 (m, 2H), 8.74 (t, J = 4.5 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 4.6 Hz, 2H), 7.31 (d, J = 8.3 Hz, 1H), 6.94 (d, J = 8.7 Hz, 2H), 4.04 (t, J = 6.5 Hz, 2H), 2.73 (s, 3H), 2.56 (dd, J = 14.2, 6.5 Hz, 1H), 2.41 (dd, J = 14.3,

7.5 Hz, 1H), 2.27 – 2.19 (m, 1H), 1.88 – 1.80 (m, 2H), 1.63 – 1.36 (m, 4H), 1.09 (t, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 171.3, 164.3, 157.3, 137.8, 136.6, 133.9, 132.1, 129.8, 126.4, 126.2, 122.5, 121.4, 116.5, 114.8, 68.3, 45.9, 36.4, 30.8, 29.2, 25.4, 23.5, 19.9. HRMS (ESI): Calcd. 427.1992 for C₂₅H₂₈N₂NaO₃ (M+Na)⁺, found 427.1986.

7-(4-Bromophenoxy)-3-methyl-N-(2-methylquinolin-8-yl)heptanamide (9i):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 1-bromo-4-(4-iodobutoxy)benzene (71 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (34 mg, 74% yield, r.r. = 93:7). ¹H NMR (500 MHz, CDCl₃) δ 9.86 (s, 1H), 8.75 (dd, J = 5.8, 3.3 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.46 – 7.45 (m, 2H), 7.34 – 7.30 (m, 3H), 6.73 (d, J = 8.9 Hz, 2H), 3.90 (t, J = 6.5 Hz, 2H), 2.74 (s, 3H), 2.56 (dd, J = 14.3, 6.4 Hz, 1H), 2.39 (dd, J = 14.3, 7.8 Hz, 1H), 2.26 – 2.17 (m, 1H), 1.82 – 1.75 (m, 2H), 1.61 – 1.45 (m, 4H), 1.08 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 158.3, 157.3, 136.6, 134.0, 132.3, 126.5, 126.2, 122.5, 121.4, 117.5, 116.4, 112.7, 68.2, 46.0, 36.5, 30.9, 29.4, 25.4, 23.6, 19.9. HRMS (ESI): Calcd. 477.1148 for C₂₄H₂₇BrN₂NaO₂ (M+Na)⁺, found 477.1150.

7-(4-Iodophenoxy)-3-methyl-N-(2-methylquinolin-8-yl)heptanamide (9j):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 1-bromo-4-(4-iodobutoxy)benzene (80 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (contain an inseparable hydrodeiodination side product) (26 mg, 52% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.86 (s, 1H), 8.75 (dd, J = 5.7, 3.3 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.52 – 7.43 (m, 4H), 7.31 (d, J = 8.3 Hz, 1H), 6.63 (d, J = 8.9 Hz, 2H), 3.90 (t, J = 6.5 Hz, 2H), 2.74 (s, 3H), 2.56 (dd, J = 14.3, 6.4 Hz, 1H), 2.39 (dd, J = 14.3, 7.7 Hz, 1H), 2.25 – 2.16 (m, 1H), 1.81 – 1.75 (m,2H), 1.63 – 1.45 (m, 4H), 1.08 (d, J = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 159.1, 157.3, 138.2, 136.6, 134.0, 126.5, 126.2, 122.5, 121.3, 118.1, 117.0, 116.5, 114.6, 68.1, 46.0, 36.5, 30.9, 29.5, 25.4, 23.6, 19.9. HRMS (ESI): Calcd. 503.1190 for C₂₄H₂₈IN₂O₂ (M+H)⁺, found 503.1201.

7-Methyl-9-((2-methylquinolin-8-yl)amino)-9-oxononanoic acid (9k):

The title compound was prepared from 7a (23 mg, 0.1 mmol) and 6-iodohexanoic acid (48 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 1:1 hexanes:EtOAc) gave the pure product as a

colorless oil (19 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.74 (dd, J = 5.9, 3.1 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.46 – 7.44 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H), 2.56 (dd, J = 14.3, 6.2 Hz, 1H), 2.38 – 2.31 (m, 3H), 2.20 – 2.12 (m, 1H), 1.64 (p, J = 7.4 Hz, 2H), 1.48 – 1.27 (m, 6H), 1.05 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 171.5, 157.3, 137.8, 136.6, 134.0, 126.5, 126.2, 122.5, 121.3, 116.6, 46.0, 36.7, 34.1, 30.9, 29.3, 26.8, 25.4, 24.8, 20.0. HRMS (ESI): Calcd. 343.2016 for C₂₀H₂₇N₂O₃ (M+H)⁺, found 343.2025.

4-Methyl-6-((2-methylquinolin-8-yl)amino)-6-oxohexyl (2*R*,5*S*)-3,3-dimethyl-7oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate 4,4-dioxide (9l):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 3-iodopropyl (2*R*,5*S*)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate 4,4-dioxide (80 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 4:1 hexanes:EtOAc) gave the pure product as a colorlesssolid (38 mg, 75% yield, dr = 5:1). ¹**H** NMR (500 MHz, CDCl₃) δ 9.84 (s, 1.2H), 8.72 (t, *J* = 4.5 Hz, 1.2H), 8.03 (d, *J* = 8.4 Hz, 1.2H), 7.45 (d, *J* = 4.5 Hz, 2.4H), 7.32 (d, *J* = 8.4 Hz, 1.2H), 4.61 (dd, *J* = 4.3, 2.1 Hz, 0.2H), 4.59 – 4.57 (m, 1H), 4.37 (d, *J* = 4.0 Hz, 0.2H), 4.34 (d, *J* = 3.6 Hz, 1H), 4.21 (t, *J* = 6.0 Hz, 2.4H), 3.46 – 3.38 (m, 2.4H), 2.74 (s, 3.6H), 2.59 – 2.42 (m, 2.4H), 2.25 – 2.18 (m, 1.2H), 1.83 – 1.70 (m, 4.8H), 1.60 (d, *J* = 6.3 Hz, 0.6H), 1.53 (d, *J* = 4.0 Hz, 3H), 1.40 (d, *J* = 5.2 Hz, 0.6H), 1.36 (d, *J* = 1.6 Hz, 3H), 1.08 (d, *J* = 6.6 Hz, 3.6H). ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 170.8, 167.1, 157.4, 137.7, 136.6, 133.8, 126.4, 126.2, 122.6, 121.5 116.5, 66.7, 66.7, 63.4, 62.8, 61.2, 45.7, 45.7, 38.4, 32.8, 32.8, 30.4, 26.2, 26.1, 25.4, 20.4, 19.9, 19.9, 18.7, 18.6. HRMS (ESI): Calcd. 524.1826 for C₂₅H₃₁N₃NaO₆S (M+Na)⁺, found524.1821.

4-Methyl-6-((2-methylquinolin-8-yl)amino)-6-oxohexyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (9m):

97:3

The title compound was prepared from 7a (23 mg, 0.1 mmol) and 3-iodopropyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (105 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 4:1 hexanes:EtOAc) gave the pure product as a colorlesssolid (contain an inseparable self-coupling side product) (35 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 8.73 (dd, *J* = 5.1, 3.9 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H),

7.66 – 7.63 (m, 2H), 7.45 – 7.43 (m, 4H), 7.31 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 2.5 Hz, 1H), 6.87 (d, J = 9.0 Hz, 1H), 6.67 (dd, J = 9.0, 2.5 Hz, 1H), 4.12 (t, J = 6.6 Hz, 2H), 3.82 (s, 3H), 3.64 (s, 2H), 2.73 (s, 3H), 2.51 – 2.46 (m, 1H), 2.36 (s, 3H), 2.30 (dd, J = 14.4, 8.0 Hz, 1H), 2.21 – 2.10 (m, 1H), 1.79 – 1.62 (m, 2H), 1.51 – 1.42 (m, 1H), 1.32 – 1.23 (m, 1H), 1.01 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.9, 170.8, 168.2, 157.2, 156.0, 139.2, 137.6, 136.4, 135.9, 133.9, 133.8, 131.1, 130.8, 130.7, 129.1, 126.3, 126.0, 122.4, 121.2, 116.4, 114.9, 112.7, 111.6, 101.4, 65.1, 55.7, 45.5, 32.9, 30.4, 28.4, 26.2, 25.2, 19.6, 13.3 ppm. HRMS (ESI): Calcd. 626.2416 for C₃₆H₃₇CIN₃O₅ (M+H)⁺, found 626.2422.

3-Methyl-N-(2-methylquinolin-8-yl)hept-6-enamide (9n):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 4-bromobut-1-ene (27 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (20 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.75 (dd, J = 6.1, 2.9 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.46 – 7.43 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 5.83 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.04 (dq, J = 17.1, 1.6 Hz, 1H), 4.96 (ddt, J = 10.2, 2.3, 1.2 Hz, 1H), 2.74 (s, 3H), 2.58 (dd, J = 14.3, 6.0 Hz, 1H), 2.36 (dd, J = 14.2, 8.1 Hz, 1H), 2.24 – 2.06 (m, 3H), 1.66 – 1.52 (m, 2H), 1.07 (d, J = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 157.3, 138.8, 137.8, 136.5, 134.0, 126.5, 126.2, 122.5, 121.3, 116.5, 114.7, 45.9, 36.1, 31.4, 30.5, 25.4, 19.8. HRMS (ESI): Calcd. 305.1624 for C₁₈H₂₂N₂NaO (M+Na)⁺, found 305.1624.

5-(1,3-Dioxolan-2-yl)-3-methyl-N-(2-methylquinolin-8-yl)pentanamide (90):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 2-(2-bromoethyl)-1,3-dioxolane (36 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 8:1 hexanes:EtOAc) gave the pure product as a colorless oil (21mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 8.75 (dd, J = 5.9, 3.1 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 4.87 (t, J = 4.7 Hz, 1H), 3.98 – 3.94 (m, 2H), 3.86 – 3.82 (m, 2H), 2.75 (s, 3H), 2.60 (dd, J = 14.2, 5.8 Hz, 1H), 2.35 (dd, J = 14.3, 8.3 Hz, 1H), 2.26 – 2.17 (m, 1H), 1.83 – 1.71 (m, 2H), 1.63 – 1.56 (m, 1H), 1.48 – 1.40 (m, 1H), 1.08 (d, J = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 157.3, 137.8, 136.5, 134.0, 126.5, 126.2, 122.5, 121.3, 116.5, 104.8, 65.0, 45.8, 31.6, 31.1, 30.8, 25.4, 19.8. HRMS (ESI): Calcd. 351.1679 for C₁₉H₂₄N₂NaO₃ (M+Na)⁺, found 351.1680.

5-Hydroxy-3-methyl-N-(2-methylquinolin-8-yl)pentanamide (9p):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 2-bromoethan-1-ol (25mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 3:1 hexanes:EtOAc) gave the pure product as a colorless oil (23 mg, 85% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.88 (s, 1H), 8.72 – 8.70 (m, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.44 (d, J = 4.2 Hz, 2H), 7.30 (d, J = 8.4 Hz, 1H), 3.79 – 3.66 (m, 2H), 2.73 (s, 3H), 2.59 (dd, J = 14.5, 7.2 Hz, 1H), 2.49 (dd, J = 14.5, 6.4 Hz, 1H), 2.38 (dq, J = 13.5, 6.7 Hz, 1H), 1.66 (q, J = 6.5 Hz, 2H), 1.10 (d, J = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 157.4, 137.8, 136.6, 133.8, 126.4, 126.2, 122.5, 121.5, 116.9, 60.7, 45.4, 39.6, 27.6, 25.3, 20.7. HRMS (ESI): Calcd.295.1417 for C₁₆H₂₀N₂NaO₂ (M+Na)⁺, found 295.1412.

6-Hydroxy-3-methyl-N-(2-methylquinolin-8-yl)hexanamide (9q):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 3-bromopropan-1-ol (28 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 3:1 hexanes:EtOAc) gave the pure product as a colorless oil (20 mg, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 1H), 8.73 (dd, J = 5.8, 3.2 Hz, 1H), 8.02 (d, J = 8.3 Hz, 1H), 7.46 – 7.43 (m, 2H), 7.30 (d, J = 8.3 Hz, 1H), 3.67 (t, J = 6.4 Hz, 2H), 2.74 (s, 3H), 2.56 (dd, J = 14.5, 6.7 Hz, 1H), 2.40 (dd, J = 14.4, 7.5 Hz, 1H), 2.25 – 2.16 (m, 1H), 1.89 (brs, 1H), 1.73 – 1.53 (m, 3H), 1.38-1.31 (m, 1H), 1.07 (d, J = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 157.3, 137.8, 136.6, 133.9, 126.5, 126.2, 122.5, 121.4, 116.6, 63.0, 45.8, 32.8, 30.4, 30.1, 25.4, 20.0. HRMS (ESI): Calcd. 309.1573 for C₁₇H₂₂N₂NaO₂ (M+Na)⁺, found 309.1579.

7-(4-Hydroxyphenoxy)-3-methyl-N-(2-methylquinolin-8-yl)heptanamide (9r):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 4-(4-bromobutoxy)phenol (49 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 5:1 hexanes:EtOAc) gave the pure product as a colorless solid (30 mg, 77% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 9.91 (s, 1H), 8.87 (s, 1H), 8.59 (dd, J = 7.7, 1.3 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.59 (dd, J = 8.2, 1.4 Hz, 1H), 7.50 -7.46 (m, 2H), 6.73 – 6.63 (m, 4H), 3.82 (t, J = 6.5 Hz, 2H), 2.72 (s, 3H), 2.54 (dd, J = 14.4, 6.2 Hz, 1H), 2.39 (dd, J = 14.5, 7.9 Hz, 1H), 2.04 (td, J = 14.9, 14.0, 7.5 Hz, 1H), 1.71 – 1.60 (m, 2H), 1.52 – 1.21 (m, 4H), 0.97 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 171.3, 157.9, 152.0, 151.5, 150.2, 137.8, 137.1, 134.2, 126.4, 123.3, 121.9, 116.8, 116.1, 115.8, 68.3, 44.9, 36.3, 30.6, 29.5, 25.4, 23.5, 20.0. HRMS (ESI): Calcd. 415.1992 for C₂₄H₂₈N₂NaO₃ (M+Na)⁺, found415.1995.

7-Chloro-3-methyl-N-(2-methylquinolin-8-yl)heptanamide (9s):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 1-bromo-4chlorobutane (34 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless solid (21 mg, 66% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 1H), 8.74 (dd, J = 6.1, 2.9 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.46 – 7.44 (m, 2H), 7.31 (d, J = 8.3 Hz, 1H), 3.54 (t, J = 6.7 Hz, 2H), 2.74 (s, 3H), 2.55 (dd, J = 14.3, 6.4 Hz, 1H), 2.38 (dd, J = 14.3, 7.8 Hz, 1H), 2.21 – 2.14 (m, 1H), 1.83- 1.76 (m, 2H), 1.59 – 1.48 (m, 3H), 1.35-1.30 (m, 1H), 1.07 (d, J = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 157.3, 137.8, 136.6, 134.0, 126.5, 126.2, 122.5, 121.3, 116.5, 45.9, 45.2, 36.0, 32.8, 30.8, 25.4, 24.5, 19.9. HRMS (ESI): Calcd.341.1391 for C₁₈H₂₃ClN₂NaO (M+Na)⁺, found 341.1399.

3-Methyl-*N*-(**2-methylquinolin-8-yl**)-**7**-(**4**,**4**,**5**,**5**-tetramethyl-1,**3**,**2**-dioxaborolan-2-yl)heptanamide (9t):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 2-(4-bromobutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (53 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless solid (34 mg, 83% yield). ¹H **NMR** (500 MHz, CDCl₃) δ 9.83 (s, 1H), 8.75 (dd, J = 6.6, 2.4 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.30 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H), 2.57 (dd, J = 14.2, 5.8 Hz, 1H), 2.31 (dd, J = 14.2, 8.4 Hz, 1H), 2.21 – 2.12 (m, 1H), 1.47 – 1.29 (m, 6H), 1.23 (s, 12H), 1.04 (d, J = 6.6 Hz, 3H), 0.79 (t, J = 7.3 Hz, 2H). ¹³C **NMR** (75 MHz, CDCl₃) δ 171.5, 157.2, 137.8, 136.5, 134.1, 126.5, 126.1, 122.5, 121.2, 116.5, 83.0, 46.10, 36.8, 30.9, 29.9, 25.4, 24.9, 24.3, 19.9. **HRMS** (**ESI**): Calcd. 433.2637 for C₂₄H₃₅BN₂NaO₃ (M+Na)⁺, found 433.2637.

7-(1*H*-Indol-1-yl)-3-methyl-*N*-(2-methylquinolin-8-yl)heptanamide (9u):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 1-(4-bromobutyl)-1*H*-indole (50 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 12:1 hexanes:EtOAc) gave the pure product as a colorless solid (35 mg, 88% yield, r.r. = 92:8). ¹**H NMR** (400 MHz, CDCl₃) δ 9.84 (s, 1H), 8.77 (dd, *J* = 6.3, 2.7 Hz, 1H), 8.03 (d, *J* = 8.3 Hz, 1H), 7.63 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.47 – 7.44 (m, 2H), 7.35 – 7.31 (m, 2H), 7.19 (ddd, *J* = 8.3, 7.0, 1.2 Hz, 1H), 7.11 – 7.07 (m, 2H), 6.47 (dd, *J* = 3.1, 0.9 Hz, 1H), 4.12 (t, *J* = 7.1 Hz, 2H), 2.74 (s, 3H), 2.52 (dd, J = 14.5, 6.6 Hz, 1H), 2.37 (dd, J = 14.4, 7.6 Hz, 1H), 2.23 – 2.12 (m, 1H), 1.91 – 1.83 (m, 2H), 1.52 – 1.32 (m, 4H), 1.04 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 157.3, 137.79, 136.6, 136.0, 134.0, 128.7, 127.9, 126.5, 126.2, 122.5, 121.4, 121.3, 121.0, 119.2, 116.5, 109.5, 101.0, 46.4, 45.9, 36.4, 30.8, 30.4, 25.4, 24.6, 19.9. HRMS (ESI): Calcd. 400.2383 for C₂₆H₃₀N₃O (M+H)⁺, found 400.2389.

8-Benzo[*d*]oxazol-2-yl)-3-methyl-*N*-(2-methylquinolin-8-yl)octanamide (9v):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 2-(5bromopentyl)benzo[*d*]oxazole (54 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 12:1 hexanes:EtOAc) gave the pure product as a colorless solid (37 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1H), 8.67 (dd, J = 6.4, 2.6 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.59 – 7.57 (m, 1H), 7.40 – 7.33 (m, 3H), 7.23 – 7.17 (m, 3H), 2.84 (t, J = 7.6 Hz, 2H), 2.66 (s, 3H), 2.47 (dd, J = 14.3, 6.1 Hz, 1H), 2.27 (dd, J = 14.3, 8.0 Hz, 1H), 2.13 – 2.05 (m, 1H), 1.84 – 1.78 (m, 2H), 1.42 – 1.32 (m, 6H), 0.97 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 167.4, 157.2, 150.9, 141.5, 137.8, 136.5, 134.0, 126.5, 126.2, 124.5, 124.1, 122.5, 121.2, 119.6, 116.5, 110.4, 46.0, 36.7, 30.9, 29.4, 28.7, 26.8, 26.8, 25.4, 19.9. HRMS (ESI): Calcd.438.2152 for C₂₆H₂₉N₃NaO₂ (M+Na)⁺, found 438.2151.

3,4-Dimethyl-*N*-(2-methylquinolin-8-yl)pentanamide (9x):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 2-iodopropane (34 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (19 mg, 71% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.86 (s, 1H), 8.75 (dd, J = 6.6, 2.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.46 – 7.43 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 2.75 (s, 3H), 2.62 (dd, J = 14.2, 5.3 Hz, 1H), 2.29 (dd, J = 14.2, 9.1 Hz, 1H), 2.15 – 2.08 (m, 1H), 1.73 (pd, J = 6.8, 4.6 Hz, 1H), 1.00 (d,J = 6.8 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.8, 157.3, 137.8, 136.6, 134.1, 126.5, 126.2, 122.5, 121.2, 116.5, 43.3, 36.5, 32.2, 25.4, 20.2, 18.4, 15.9. HRMS (ESI): Calcd. 293.1624 for C₁₇H₂₂N₂NaO (M+Na)⁺, found 293.1625.

tert-Butyl 4-(4-((2-methylquinolin-8-yl)amino)-4-oxobutan-2-yl)piperidine-1carboxylate (9y):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and *tert*-butyl 4iodopiperidine-1-carboxylate (62 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless solid (28 mg, 68% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 1H), 8.73 (dd, J = 5.7, 3.3 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.45 – 7.44 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 4.15 (brs, 2H), 2.74 (s, 3H), 2.64 (dd, J = 14.4, 5.3 Hz, 3H), 2.33 (dd, J = 14.4, 8.6 Hz, 1H), 2.18 – 2.10 (m, 1H), 1.70 – 1.65 (m, 3H), 1.45 (s, 9H), 1.35 – 1.24 (m, 2H), 1.02 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 157.3, 155.0, 137.8, 136.6, 133.9, 126.5, 126.2, 122.5, 121.4, 116.5, 79.4, 44.3, 42.9, 41.0, 35.2, 29.8, 28.6, 28.2, 25.4, 22.8, 16.6. HRMS (ESI): Calcd. 434.2414 for C₂₄H₃₃N₃NaO₃ (M+Na)⁺, found 434.2416.

3-((8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl)-*N*-(2-methylquinolin-8-yl)butanamide (9z):

The title compound was prepared from 7a (23 mg, 0.1 mmol) and (8S,9S,10R,13R,14S,17R)-3-iodo-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthrene (99 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless solid (30 mg, 51% yield, dr = 1:1). ¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 1H), 8.75 (dt, J = 6.6, 2.3 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 5.32 - 5.29 (m, 1H), 2.75 (s, 3H), 2.69 (ddd, J = 14.3, 5.1, 1.8 Hz,1H), 2.31 (dd, J = 14.3, 9.2 Hz, 1H), 2.15 – 1.79 (m, 8H), 1.66 – 1.30 (m, 16H), 1.16 – 1.07 (m, 6H), 1.04 (dd, J = 6.9, 2.7 Hz, 3H), 0.98 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.86 (dd, J = 6.6, 2.3 Hz, 6H), 0.68 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 157.3, 143.3, 137.8, 136.6, 134.1, 126.5, 126.2, 122.5, 121.2, 119.8, 119.8, 116.5, 57.0, 56.3, 50.6, 44.3, 44.2, 43.3, 43.3, 42.5, 40.0, 39.8, 39.7, 39.7, 37.4, 36.9, 36.3, 35.9, 35.7, 35.6, 35.6, 32.1, 32.0, 28.4, 28.2, 26.4, 25.4, 24.9, 24.4, 24.0, 23.0, 22.7, 21.1, 19.7, 18.9, 16.8, 16.7, 12.0. **HRMS (ESI)**: Calcd. 597.4778 for C₄₁H₆₁N₂O (M+H)⁺, found 597.4769.

3-Cyclopentyl-N-(2-methylquinolin-8-yl)butanamide (9aa):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and bromocyclopentane (30 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (18 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.75 (dd, J = 6.5, 2.5 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.31 (d, J = 8.4 Hz,

1H), 2.74 (s, 3H), 2.71 (dd, J = 14.2, 4.7 Hz, 1H), 2.30 (dd, J = 14.2, 9.2 Hz, 1H), 2.09-1.99 (m, 1H), 1.86 – 1.79 (m, 3H), 1.67 – 1.51 (m, 4H), 1.29 – 1.20 (m, 2H), 1.06 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 157.2, 137.8, 136.6, 134.1, 126.5, 126.2, 122.5, 121.2, 116.5, 46.3, 45.1, 36.2, 32.8, 31.0, 30.3, 25.6, 25.4, 18.5. HRMS (ESI): Calcd. 319.1781 for C₁₉H₂₄N₂NaO (M+Na)⁺, found 319.1782.

N-(2-methylquinolin-8-yl)-3-(tetrahydro-2*H*-pyran-4-yl)butanamide (9ab):

The title compound was prepared from **7a** (23 mg, 0.1 mmol) and 4-bromotetrahydro-2*H*-pyran (33 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 10:1 hexanes:EtOAc) gave the pure product as a colorless oil (23 mg, 73% yield, r.r. = 90:10). ¹**H NMR** (300 MHz, CDCl₃) δ 9.86 (s, 1H), 8.74 (dd, *J* = 5.9, 3.1 Hz, 1H), 8.03 (d, *J* = 8.3 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.32 (d, *J* = 8.3 Hz, 1H), 4.01 (dt, *J* = 10.4, 5.0 Hz, 2H), 3.38 (tdd, *J* = 11.6, 4.6, 2.3 Hz, 2H), 2.74 (s, 3H), 2.67 (dd, *J* = 14.3, 5.2 Hz, 1H), 2.32 (dd, *J* = 14.2, 8.7 Hz, 1H), 2.24 – 2.02 (m, 1H), 1.64 – 1.38 (m, 5H), 1.04 (d, *J* = 6.7 Hz, 3H). ¹³C **NMR** (75 MHz, CDCl₃) δ 171.3, 157.3, 137.8, 136.6, 133.9, 126.5, 126.2, 122.5, 121.3, 116.5, 68.4, 68.4, 42.8, 40.0, 35.5, 30.7, 29.3, 25.4, 16.5. **HRMS** (**ESI**): Calcd. 335.1730 for C₁₉H₂₄N₂NaO₂ (M+Na)⁺, found 335.1736.

The title compound was prepared from **7b** (24 mg, 0.1 mmol) and *tert*-butyl 4iodopiperidine-1-carboxylate (62 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 6:1 hexanes:EtOAc) gave the pure product as a colorless solid (21 mg, 50% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.87 (s, 1H), 8.72 (dd, J = 5.6, 3.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.49-7.42 (m, 2H), 7.32 (d, J = 8.4 Hz, 1H), 4.14 (brs, 2H), 2.74 (s, 3H), 2.64 (brs, 2H), 2.56 (dd, J = 14.8, 6.2 Hz, 1H), 2.45 (dd, J = 15.1, 7.3 Hz, 1H), 2.00-1.94 (m, 1H), 1.68 – 1.63 (m, 5H), 1.44 (s, 9H), 1.31 – 1.27 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 157.3, 155.0, 137.8, 136.6, 134.0, 126.5, 126.2, 122.6, 121.3, 116.5, 79.4, 44.3, 41.7, 39.7, 38.7, 36.8, 29.1, 28.6, 25.4, 23.7, 11.9. HRMS (ESI): Calcd. 448.2571 for C₂₅H₃₅N₃NaO₃ (M+Na)⁺, found 448.2570.

Ethyl 5-(2-((2-methylquinolin-8-yl)amino)-2-oxoethyl)octanoate (9ad):

The title compound was prepared from **7c** (25 mg, 0.1 mmol) and ethyl 4bromobutanoate (39 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 10:1 hexanes:EtOAc) gave the pure product as a colorless oil (23 mg,61% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 1H), 8.73 (dd, J = 6.1, 2.9 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.47-7.43 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 2.74 (s, 3H), 2.50 (dd, J = 6.9, 1.8 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 2.11 (qd, J = 6.7, 3.4 Hz, 1H), 1.73 – 1.70 (m, 2H), 1.46 – 1.40 (m, 6H), 1.22 (t, J = 7.1 Hz, 3H), 0.93 – 0.90 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 171.4, 157.3, 137.8, 136.6, 134.0, 126.5, 126.2, 122.5, 121.3, 116.5, 60.3, 43.1, 36.1, 35.1, 34.7, 33.4, 25.4, 22.2, 19.9, 14.5, 14.4. HRMS (ESI): Calcd. 393.2149 for C₂₂H₃₀N₂NaO₃ (M+Na)⁺, found 393.2153.

3-(2-Hydroxyethyl)-N-(2-methylquinolin-8-yl)hexanamide (9ae):

The title compound was prepared from **7d** (32 mg, 0.1 mmol) and 2-bromoethan-1-ol (25 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 10:1 hexanes:EtOAc) gave the pure product as a colorless oil (21 mg, 58% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.99 (s, 1H), 8.74 (t, *J* = 4.5 Hz, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.50 (d, *J* = 4.5 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.23 – 7.18 (m, 3H), 3.84 – 3.75 (m, 2H), 2.78 – 2.74 (m, 6H), 2.68 – 2.63 (m, 1H), 2.40 – 2.32 (m, 1H), 1.91 – 1.87 (m, 1H), 1.81 (dt, *J* = 8.9, 7.0 Hz, 2H), 1.69 – 1.65 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 157.5, 142.4, 137.9, 136.7, 133.8, 128.5, 128.5, 126.5, 126.3, 125.9, 122.6, 121.7, 117.1, 60.7, 42.7, 37.4, 37.2, 33.6, 32.3, 25.3. HRMS (ESI): Calcd. 385.1886 for C₂₃H₂₆N₂NaO₂ (M+Na)⁺, found 385.1893.

3-Benzyl-N-(2-methylquinolin-8-yl)heptanamide (9af):

The title compound was prepared from 7e (30 mg, 0.1 mmol) and 1-iodobutane (37 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (21 mg, 57% yield, r.r. 91:9). ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 8.66 (dd, J = 6.2, 2.8 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.37 – 7.34 (m, 2H), 7.24 – 7.17 (m, 5H), 7.12 – 7.07 (m, 1H), 2.72 – 2.59 (m, 5H), 2.40 (d, J = 7.2 Hz, 2H), 2.35 – 2.27 (m, 1H), 1.37 – 1.31 (m, 4H), 1.26 – 1.18 (m, 2H), 0.79 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 157.2, 140.6, 137.8, 136.5, 134.0, 129.5, 128.4, 126.5, 126.2, 126.0, 122.5, 121.2, 116.5, 42.4, 40.4, 37.6, 33.4, 29.1, 25.4, 23.0, 14.2. HRMS (ESI): Calcd. 383.2094 for C₂₄H₂₈N₂NaO (M+Na)⁺, found 383.2099.

3-Benzyl-4-methyl-N-(2-methylquinolin-8-yl)pentanamide (9ag):

The title compound was prepared from 7e (30 mg, 0.1 mmol) and 2-bromopropane (25mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (21 mg, 60% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.83 (s, 1H), 8.70 (dd, J = 5.9, 3.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.45 – 7.43 (m, 2H), 7.32 (d, J = 8.4 Hz, 1H), 7.26 (d, J = 4.3 Hz, 4H), 7.17 – 7.13 (m, 1H), 2.79 – 2.75 (m, 4H), 2.62 (dd, J = 13.7, 7.5 Hz, 1H), 2.57 – 2.52 (m, 1H), 2.42– 2.37 (m, 2H), 1.89 (ddq, J = 10.0, 6.9, 3.4 Hz, 1H), 1.01 (d, J = 6.9 Hz, 3H), 1.00 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 157.2, 141.1, 137.8, 136.6, 134.0, 129.4, 128.4, 126.5, 126.2, 126.0, 122.5, 121.2, 116.5, 43.5, 39.1, 37.2, 29.0, 25.4, 19.5, 18.8. HRMS (ESI): Calcd. 369.1937 for C₂₃H₂₆N₂NaO (M+Na)⁺, found 369.1941.

3-Ethyl-N-(2-methylquinolin-8-yl)heptanamide (18a):

The title compound was prepared from **17a** (24 mg, 0.1 mmol) and 1-iodobutane (37 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (24 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 8.75 (dd, J = 6.4, 2.6 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H), 2.49 (d, J = 7.0 Hz, 2H), 2.06 – 1.97 (m, 1H), 1.51 – 1.30 (m, 8H), 0.96 (t, J = 7.5 Hz, 3H), 0.92 – 0.86 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 157.2, 137.8, 136.5, 134.1, 126.5, 126.2, 122.5, 121.2, 116.5, 43.0, 37.0, 33.2, 29.0, 26.5, 25.4, 23.1, 14.2, 11.1. HRMS (ESI): Calcd. 321.1937 for C₁₉H₂₆N₂NaO (M+Na)⁺, found321.1943.

3-Ethyl-7-(4-hydroxyphenoxy)-N-(2-methylquinolin-8-yl)heptanamide (18b):

The title compound was prepared from **17a** (24 mg, 0.1 mmol) and 4-(4-bromobutoxy)phenol (49 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 5:1 hexanes:EtOAc) gave the pure product as a colorless solid (27 mg, 66% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.92 (s, 1H), 8.86 (s, 1H), 8.58 (dd, *J* = 7.6, 1.4 Hz, 1H), 8.26 (d, *J* = 8.5 Hz, 1H), 7.59 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.50 – 7.46 (m, 2H), 6.69 – 6.61 (m, 4H), 3.81 (t, *J* = 6.5 Hz, 2H), 2.72 (s, 3H), 2.52 – 2.49 (m, 2H), 1.94 – 1.85 (m, 1H), 1.67 – 1.62 (m, 2H), 1.48 – 1.32 (m, 6H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.5, 157.9, 151.9, 151.5, 137.8, 137.1, 134.3, 126.4, 126.4, 123.3, 121.9, 116.8, 116.1, 115.8, 68.3, 41.9, 36.6, 33.1, 29.6, 26.2, 25.4, 23.1, 11.2. HRMS (ESI): Calcd. 429.2149 forC₂₅H₃₀N₂NaO₃ (M+Na)⁺, found 429.2145.

N-(2-Methylquinolin-8-yl)-3-(tetrahydro-2*H*-pyran-4-yl)pentanamide (18c):

The title compound was prepared from **17a** (24 mg, 0.1 mmol) and 4-bromotetrahydro -2*H*-pyran (33 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 10:1 hexanes:EtOAc) gave the pure product as a colorless oil (20 mg, 60% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.88 (s, 1H), 8.73 (dd, J = 5.9, 3.2 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.46-7.44 (m, 2H), 7.32 (d, J = 8.4 Hz, 1H), 4.00 (dd, J = 11.5, 4.4 Hz, 2H), 3.37 (td, J = 11.7, 2.3 Hz, 2H), 2.74 (s, 3H), 2.59 (dd, J = 14.9, 6.1 Hz, 1H), 2.45 (dd, J = 14.8, 7.3 Hz, 1H), 1.94 (ddt, J = 12.8, 7.1, 5.5 Hz, 1H), 1.77 – 1.72 (m, 1H), 1.62 – 1.47 (m, 6H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 157.3, 137.8, 136.6, 134.0, 126.5, 126.2, 122.5, 121.3, 116.5, 68.5, 41.8, 39.5, 37.6, 30.1, 29.9, 25.4, 23.5, 11.7. HRMS (ESI): Calcd. 349.1886 for C₂₀H₂₆N₂NaO₂ (M+Na)⁺, found 349.1896.

N-(2-Methylquinolin-8-yl)-3-propylheptanamide (18d):

The title compound was prepared from **17b** (25 mg, 0.1 mmol) and 1-iodobutane (37 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (20 mg, 63% yield). The title compound could also be prepared from **4i** (25 mg, 0.1 mmol) and 1-iodobutane (37 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (22 mg, 71% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.86 (s, 1H), 8.75 (dd, *J* = 6.6, 2.4 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.31 (d, *J* = 8.4 Hz, 1H), 2.74 (s, 3H), 2.49 (d, *J* = 7.0 Hz, 2H), 2.14 – 2.01 (m, 1H), 1.44 – 1.29 (m, 10H), 0.93 – 0.87 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 157.2, 137.8, 136.6, 134.1, 126.5, 126.2, 122.5, 121.2, 116.5, 43.4, 36.4, 35.4, 33.7, 29.0, 25.4, 23.1, 20.0, 14.5, 14.3. HRMS (ESI): Calcd. 335.2094 for C₂₀H₂₈N₂NaO (M+Na)⁺, found 335.2099.

(1*R*,2*S*)-2-Butyl-*N*-(2-methylquinolin-8-yl)cyclopentane-1-carboxamide (18e):

The title compound was prepared from **17c** (25 mg, 0.1 mmol) and 1-iodobutane (37 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (15 mg, 47% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.87 (s, 1H), 8.74 (dd, J = 6.7, 2.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.31 (d, J = 8.3 Hz, 1H), 3.01 (td, J = 7.7, 5.6 Hz, 1H), 2.74 (s, 3H), 2.24 – 2.12 (m, 2H), 2.01 – 1.94 (m, 2H), 1.90 – 1.85 (m, 1H), 1.70 – 1.62 (m, 2H), 1.36 – 1.20 (m, 6H), 0.79 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.1, 157.2, 138.0, 136.5, 134.2, 126.6, 126.2, 122.5, 121.1, 116.4, 51.2, 44.5, 31.3, 31.3, 30.7, 28.7, 25.4, 24.1, 22.9, 14.2. HRMS

3-Cyclopentyl-N-(2-methylquinolin-8-yl)hexanamide (18f):

The title compound was prepared from **17d** (25 mg, 0.1 mmol) and bromocyclopentane (30 mg, 0.2 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (21 mg, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.88 (s, 1H), 8.74 (dd, J = 6.7, 2.3 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.32 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H), 2.58 (dd, J = 14.5, 5.6 Hz, 1H), 2.49 (dd, J = 14.5, 7.2 Hz, 1H), 2.02 – 1.78 (m, 5H), 1.65 – 1.47 (m, 9H), 0.92 – 0.89 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 157.2, 137.9, 136.6, 134.2, 126.6, 126.2, 122.5, 121.1, 116.5, 44.1, 41.8, 40.4, 35.1, 30.4, 25.6, 25.6, 25.4, 20.0, 14.7. HRMS (ESI): Calcd.347.2094 for C₂₁H₂₈N₂NaO (M+Na)⁺, found 347.2095.

3-Butyl-N-(2-methylquinolin-8-yl)heptanamide (18g):

The title compound was prepared from **17e** (27 mg, 0.1 mmol) and 1-iodobutane (92 mg, 0.5 mmol) according to the general procedure. Purification using flash silica gel column chromatography (eluent: 15:1 hexanes:EtOAc) gave the pure product as a colorless oil (19.5 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 8.75 (dd, J = 6.5, 2.5 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.49-7.40 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 2.75 (s, 3H), 2.49 (d, J = 6.9 Hz, 2H), 2.09 – 2.01 (m, 1H), 1.43 – 1.30 (m, 12H), 0.89 (t, J = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 157.2, 137.8, 136.6, 134.1, 126.6, 126.2, 122.5, 121.2, 116.5, 43.4, 35.6, 33.7, 29.0, 25.3, 23.1, 14.3. HRMS (ESI): Calcd. 349.2250 for C₂₁H₃₀N₂NaO (M+Na)⁺, found 349.2253.

Regioconvergent hydroalkylation

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added alkene substrate 7c (25 mg, 0.1 mmol), 17b (25 mg, 0.1 mmol), 17d (25 mg, 0.1 mmol), Ni(PPh₃)₂Cl₂ (29 mg, 0.045 mmol), Mn powder (25 mg, 0.45 mmol) and dry NMP (1 mL). sequentially. The vial was tightly capped and removed from the glovebox followed by addition of 1-iodobutane 8 (110 mg, 0.6 mmol) by a microsyringe. The mixture was allowed to vigorously stir at ambient temperature for 12 h. When alkene was almost fully consumed (monitored by GC-MS), the mixture was directly subjected to flash silica gel column chromatography (eluent: 10:1)

hexanes:EtOAc) to afford the pure product 18d (61 mg, 62% yield).

2.4 Application to Synthesis of Biologically Active Molecules

The directing group was removed by the following literature procedure⁴. To a flamedried 50 mL sealed vessel equipped with a stir bar were added *tert*-butyl 4-(4-((2methylquinolin-8-yl)amino)-4-oxobutan-2-yl)piperidine-1-carboxylate (**9y**, 41 mg, 0.1 mmol), NaOH (60 mg, 15 eq) and EtOH (2 mL). The resulting mixture was allowed to stir at 130 °C for 16 h, after which the reaction mixture was allowed to cool to RT, diluted with 20 ml EtOAc and washed with HCl (1 M, 3×3 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: 2:1 hexanes:EtOAc) to afford 3-(1-(*tert*-butoxy carbonyl)piperidin-4-yl) butanoic acid.

3-(1-(*tert*-Butoxycarbonyl)piperidin-4-yl)butanoic acid (11):

A:

A colorless oil, 85% yield. ¹H NMR (500 MHz, DMSO- d_6) δ 12.02 (s, 1H), 3.96 (brs, 2H), 2.60 (brs, 2H), 2.29 (dd, J = 15.1, 5.1 Hz, 1H), 2.00 – 1.93 (m, 1H), 1.80 – 1.70 (m, 1H), 1.58 – 1.51 (m, 2H), 1.38 (s, 9H), 1.12 – 0.92 (m, 3H), 0.84 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.9, 155.0, 79.5, 44.3, 44.3, 41.0, 38.8, 34.7, 29.5, 28.6, 28.2, 16.6. HRMS (ESI): Calcd. 294.1676 for C₁₄H₂₅NNaO₄ (M+Na)⁺, found 294.1673.

B:

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added alkene substrate **7e** (151 mg, 0.5 mmol), NiI₂ (31.2 mg, 0.1 mmol), Mn powder (55 mg, 1.0 mmol) and dry NMP (2 mL) sequentially. The vial was tightly capped and removed from the glovebox followed by addition of 4-iodotetrahydro-2*H*-pyran (318 mg, 1.5 mmol) by a micro-syringe. The mixture was allowed to vigorously stir at 40 °C for 18 h. The mixture was then directly subjected to flash silica gel column chromatography (eluent: 5:1 hexanes:EtOAc) to afford the pure product **9ah** (83 mg, 43% yield, 96:4 r.r.).

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added **9ah** (0.1 mmol), Cp₂ZrHCl (0.15 mmol) and dry 1,4-dioxane (1.0 mL). The vial was tightly capped and removed from the glovebox. The mixture was allowed to stir at 60 °C for 50 min, after which the solution was cooled to RT, diluted with Et₂O (5 mL) and transferred to 25 mL round-bottom flask. To the mixture was added 5 mL aq. HCl (2 M). The mixture was allowed to stir for 30 min. The organic phase was separated and the aqueous phase was washed with Et_2O (5 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to a small volume (about 1 mL). The residual solution was passed through a short pad of silica gel and eluted with 1:1 hexanes:EtOAc. The solution was collected and concentrated, and the resulting aldehyde 12 (75% yield) was used directly in the next step without further purification. Under a N₂ atmosphere, 12 was dissolved in dry (CH₂Cl)₂ (1 mL). Benzyl amine 13 (0.083 mmol, 1.1 eq) and AcOH (1.0 eq) were subsequently added. The mixture was allowed to stir for 10 min followed by the addition of NaBH(OAc)₃ (1.5 eq). The resulting mixture was allowed to stir for another 12 h, after which the mixture was quenched with saturated NaHCO₃ (5 mL) and washed with EtOAc (2×5 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford the crude amine product.

The crude amine was dissolved in *t*BuOH (0.5 mL), then 0.3 mL aq. NaOH (1 M) and Boc₂O (2.0 eq) were added. The mixture was allowed to stir at RT for 4 h, after which the mixture was diluted with EtOAc (5 mL) and H₂O (5 mL). The organic phase was separated and the aqueous phase was washed with EtOAc (5 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by silica gel flash chromatography to give the pure product **14** (23.7 mg, 51% yield over three steps).

N-(2-Methylquinolin-8-yl)-4-phenyl-3-(tetrahydro-2*H*-pyran-4-yl)butanamide (9ah):

¹H NMR (300 MHz, CDCl₃) δ 9.84 (s, 1H), 8.76 – 8.72 (m, 1H),

8.08 (d, J = 8.3 Hz, 1H), 7.49 (d, J = 4.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 1H), 7.33 – 7.28 (m, 4H), 7.25 – 7.18 (m, 1H), 4.05 (d, J = 11.1 Hz, 2H), 3.40 (tdd, J = 11.3, 3.9, 2.5 Hz, 2H), 2.89 (dd, J = 13.7, 6.2 Hz, 1H), 2.79 (s, 3H), 2.67 (dd, J = 13.7, 8.1 Hz, 1H), 2.56 (dd, J = 18.8, 6.1 Hz, 1H), 2.46 – 2.40 (m, 1H), 1.91 – 1.79 (m, 2H), 1.76 – 1.55 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 157.3, 140.7, 137.7, 136.6, 133.9, 129.3, 128.6, 128.6, 126.5, 126.2, 122.5, 121.3, 116.5, 68.4, 42.3, 38.8, 37.3, 37.1, 30.1, 29.8, 25.4 ppm. **HRMS (ESI**): Calcd. 389.2224 for C₂₅H₂₉N₂O₂⁺ (M+H)⁺, found 389.2235.

tert-Butyl (4-(dimethylamino)benzyl)(4-phenyl-3-(tetrahydro-2*H*-pyran-4-yl) butyl) carbamate (14):

¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H), 7.19 (t, J =

7.3 Hz, 1H), 7.12 (d, J = 6.4 Hz, 2H), 7.02 (s, 2H), 6.69 (d, J = 6.8 Hz, 2H), 4.18 – 4.13 (m, 2H), 3.97 (t, J = 9.5 Hz, 2H), 3.35 – 3.27 (m, 2H), 3.22 – 3.02 (m, 2H), 2.93 (s, 6H), 2.66 (dd, J = 13.6, 5.2 Hz, 1H), 2.42 (d, J = 40.8 Hz, 1H), 1.76 – 1.64 (m, 2H), 1.50 – 1.39 (m, 15H); ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 149.7, 141.2, 129.1, 128.4, 128.3, 126.1, 125.8, 112.7, 79.3, 68.4, 49.1(48.9), 44.2(43.9), 42.6, 40.8, 37.1, 37.0, 1.5(31.4), 30.0(29.7), 29.5(29.2), 28.5, 27.8(27.5) ppm(two rotating isomers). **HRMS (ESI**): Calcd. 467.3268 for C₂₉H₄₃N₂O₃⁺ (M+H)⁺, found 467.3282.

C:

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added alkene substrate **7a** (113 mg, 0.5 mmol), Ni(PPh₃)₂Cl₂ (49 mg, 0.075 mmol),

Mn powder (41 mg, 0.75 mmol) and dry NMP (2 mL) sequentially. The vial was tightly capped and removed from the glovebox followed by addition of 1-(2-iodoethyl)-4-(trifluoromethyl)benzene (300 mg, 1.0 mmol) by a micro-syringe. The mixture was allowed to vigorously stir at ambient temperature for 12 h. When alkene was almost fully consumed (monitored by GC-MS), the mixture was directly subjected to flash silica gel column chromatography (eluent: 10:1 hexanes:EtOAc) to afford the pure product **9ai** (140 mg, 70% yield).

To a flame-dried 50 mL sealed vessel equipped with a stir bar were added 3-methyl-N-(2-methylquinolin-8-yl)-5-(4-(trifluoromethyl)phenyl)pentanamide (**9ai**, 140 mg, 0.35 mmol), NaOH (210 mg, 15 eq) and EtOH (5 mL). The resulting mixture was allowed to stir at 130 °C for 16 h, after which the reaction mixture was allowed to cool to RT, diluted with 20 ml EtOAc and washed with HCl (1M, 3×5 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: 3:1 hexanes:EtOAc) to afford 3-methyl-5-(4-(trifluoromethyl)phenyl) pentanoic acid (77.4 mg, 85% yield).

The acid prepared above (68 mg, 0.26 mmol), 2-hydroxyisoindoline-1,3-dione (NHPI, 46 mg, 1.1eq), DIC (39 mg, 1.2 eq) and DMAP (2 mg) were added sequentially in a 10 mL round-bottomed flask containing DCM (3 mL). The reaction mixture was allowed to stir at ambient temperature for 1 h. The white precipitate was filtered and washed with Et_2O , and the resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: 6:1 hexanes:EtOAc) to afford NHPI ester **15** (83 mg, 81% yield).

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added **15** (27 mg, 0.065 mmol), NiBr₂(diglyme) (1.8 mg, 0.005 mmol), 4,4'-di*tert*-butyl-2,2'-bypyridine (dtbbpy, 1.7 mg, 0.006 mmol), Zn powder (10 mg, 0.15 mmol) and dry DMA (0.2 mL) sequentially. The vial was tightly capped and removed from the glovebox followed by addition of 1-(benzyloxy)-3-iodobenzene (16 mg, 0.05 mmol) by a micro-syringe. The mixture was allowed to vigorously stir at ambient temperature for 12 h. When 1-(benzyloxy)-3-iodobenzene was almost fully consumed (monitored by GC-MS), the mixture was directly subjected to flash silica gel column chromatography (eluent: 50:1 hexanes:EtOAc) to afford **16** (13.0 mg, 65% yield).

3-Methyl-*N***-(2-methylquinolin-8-yl)-5-(4-(trifluoromethyl)phenyl)pentanamide** (9ai):

^he ¹**H NMR** (500 MHz, CDCl₃) δ 9.85 (s, 1H), 8.75 (dd, J = 5.7, 3.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.50 (d, J = 8.1 Hz, 2H), 7.47 – 7.45 (m, 2H), 7.31 (t, J = 8.5 Hz, 3H), 2.84 – 2.78 (m, 1H), 2.70 – 2.70 (m, 1H), 2.72 (s, 3H), 2.61 (dd, J = 14.3, 6.3 Hz, 1H), 2.44 (dd, J = 14.3, 7.8 Hz, 1H), 2.30 – 2.20 (m, 1H), 1.87 – 1.80 (m, 1H), 1.66 – 1.59 (m, 1H), 1.14 (d, J = 6.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 157.2, 146.5, 137.6, 136.4, 133.8, 128.6, 128.1 (q, J = 32.1 Hz), 126.3, 126.0, 125.2 (q, J = 3.5 Hz), 124.3 (q, J = 252.0 Hz), 122.4, 121.2, 116.4, 45.7, 38.2, 33.3, 30.5, 25.2, 19.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.28 (s, 3F) ppm. **HRMS (ESI)**: Calcd. 401.1835 for C₂₃H₂₄F₃N₂O⁺ (M+H)⁺, found 401.1834.

1,3-Dioxoisoindolin-2-yl 3-methyl-5-(4-(trifluoromethyl)phenyl)pentanoate (15):

CF₃ **¹H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.5, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 2.82 – 2.69 (m, 3H), 2.57 (dd, J = 15.1, 7.4 Hz, 1H), 2.21 – 2.12 (m, 1H), 1.90 – 1.81 (m, 1H), 1.70 – 1.60 (m, 1H), 1.16 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 162.1, 146.2, 134.9, 129.1, 128.8, 128.4 (q, J = 32.1 Hz), 125.5 (q, J = 3.7 Hz), 124.5 (q, J = 273.7 Hz), 124.1, 38.3, 37.8, 33.2, 30.4, 19.6. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.27 (s, 3F) ppm. **HRMS** (**ESI**): Calcd. 428.1080 for C₂₁H₁₈F₃NNaO₄⁺ (M+Na)⁺, found 428.1087.

1-(Benzyloxy)-3-(2-methyl-4-(4-(trifluoromethyl)phenyl)butyl)benzene (16):

¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 7.3 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.25 (d, J = 8.1 Hz, 2H), 7.19 (t, J = 7.8 Hz, 2H), 6.81 (dd, J = 8.0, 2.3 Hz, 1H), 6.76 (d, J = 2.1 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 5.04 (s, 2H), 2.78 – 2.72 (m, 1H), 2.66 – 2.60 (m, 2H), 2.42 (dd, J = 13.4, 7.9 Hz, 1H), 1.80 – 1.74 (m, 1H), 1.72 – 1.65 (m, 1H), 1.49 – 1.45 (m, 1H), 0.93 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 147.0, 142.9, 137.3, 129.3, 128.8, 128.7, 128.1, 127.7, 125.3 (q, J = 3.9 Hz), 124.6 (q, J = 279.1 Hz), 122.0, 116.1, 112.1, 70.1, 43.7, 38,2, 34.6, 33.5, 19.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.25 (s, 3F) ppm. **HRMS** (**ESI**): Calcd. 399.1930 for C₂₅H₂₆F₃O⁺ (M+H)⁺, found 399.1924.

2.5 Mechanistic Studies

Control experiment to preclude the intermediacy of α , β -unsaturated amide 7a'

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added (*E*)-*N*-(2-methylquinolin-8-yl)but-2-enamide **7a'** (23 mg, 0.1 mmol), Ni(PPh₃)₂Cl₂ (10 mg, 0.015 mmol) and Mn powder (0.15 mmol). The mixture was then dissolved in dry NMP (0.3 mL). The vial was tightly capped and removed from the glovebox followed by addition of 1-iodobutane **8** (37 mg, 0.2 mmol) by a micro-syringe. The mixture was allowed to vigorously stir at ambient temperature for 12 h. When alkene was almost fully consumed (monitored by GC-MS), the mixture was directly subjected to flash silica gel column chromatography to afford the hydrogenation product **19** as colorless oil (14 mg, 61% yield).

(E)-N-(2-methylquinolin-8-yl)but-2-enamide (7a'):

A colorless solid. ¹**H** NMR (300 MHz, CDCl₃) δ 9.88 (s, 1H), 8.80 (dd, J = 6.4, 2.6 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 7.06 (dq, J = 15.0, 6.9 Hz, 1H), 6.29 – 6.16 (m, 1H), 2.75 (s, 3H), 1.97 (dd, J = 6.9, 1.7 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 164.3, 157.3, 141.1, 136.6, 134.2, 126.5, 126.3, 126.2, 122.5, 121.4, 116.8, 25.4, 18.0. **HRMS (ESI)**: Calcd. 249.0998 for C₁₄H₁₄N₂NaO (M+Na)⁺, found 249.1001.

N-(2-Methylquinolin-8-yl)butyramide (19):

A colorless oil, 61% yield. ¹H NMR (300 MHz, CDCl₃) δ 9.87 (s, 1H), 8.75 (dd, J = 6.0, 3.0 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H), 2.55 (t, J = 7.5 Hz, 2H), 1.85 (dt, J = 14.8, 7.4 Hz, 2H), 1.07 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 171.8, 157.3, 137.8, 136.6, 134.1, 126.5, 126.2, 122.5, 121.2, 116.5, 40.3, 25.4, 19.2, 14.0. HRMS (ESI): Calcd. 251.1155 for C₁₄H₁₆N₂NaO (M+Na)⁺, found 251.1157.

Deuterium labeling experiment

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added alkene substrate **7a** (23 mg, 0.1 mmol), deuterated iodide *d*-**20** (62 mg, 0.2 mmol), Ni(PPh₃)₂Cl₂ (10 mg, 0.015 mmol) and Mn powder (0.15 mmol). The mixture was then dissolved in dry NMP (0.3 mL). The vial was tightly capped and removed from the glovebox. The mixture was allowed to vigorously stir at ambient temperature for 12 h. When alkene was almost fully consumed (monitored by GC-MS), the mixture was directly subjected to flash silica gel column chromatography to afford the β -H elimination product *d*-**21**(a colorless solid, 0.92 mmol) and hydroalkylation product *d*-**9aj** (a colorless solid, 0.9 mmol).

Procedure for the synthesis of *d***-20:** 2-([1,1'-Biphenyl]-4-yl)ethanol- d_2 was synthesized according to a literature procedure⁵. Triphenylphosphine (1.18 g, 4.5 mmol) and imidazole (306 mg, 4.5 mmol) were dissolved in Et₂O (6 mL) and acetonitrile (6

mL). The mixture was cooled to 0°C and iodine (1.14 g, 4.5 mmol) was added in one portion. The mixture was allowed to vigorously stir for 20 min. The resulting yellow slurry was warmed to RT for 10 min and then cooled to 0°C again. 2-([1,1'-Biphenyl]-4-yl)ethanol- d_2 (600 mg, 3 mmol) was dissolved in Et₂O (6 mL) and the resulting solution was added dropwise via syringe over a period of 10 min. The reaction was warmed to RT and allowed to stir overnight. The reaction was quenched by addition of a saturated solution of sodium thiosulfate and extracted 3 times with DCM. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was dissolved in a minimal amount of DCM and triphenylphosphine oxide was precipitated upon slow addition of pentane. The mixture was filtered and the filtrate was concentrated. The crude product was purified by flash silica chromatography to afford *d*-20.

4-(2-Iodoethyl-1,1-*d*₂)-1,1'-biphenyl (*d*-20):

A colorless solid. 62% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (dd, J = 17.1, 7.7 Hz, 4H), 7.44 (t, J = 7.6 Hz, 2H), 7.36 (d, J = 7.1 Hz, 1H), 7.28 (d, J = 8.2 Hz, 2H), 3.37 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.9, 140.0, 139.7, 128.9, 128.9, 127.5, 127.4, 127.2, 5.3. ²D NMR (77 MHz, CHCl₃) δ 3.17 (s, 2D) ppm. HRMS (EI): Calcd. 310.0182 for C₁₄H₁₁D₂I (M), found 310.0186.

4-(vinyl-1-*d*)-1,1'-biphenyl (*d*-21)^{6,7}:

A colorless solid, 92% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (ddd, J = 15.5, 7.4, 1.5 Hz, 4H), 7.50 (d, J = 8.4 Hz, 2H), 7.45 (t, J = 7.8 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 6.81 – 6.74 (m, 0.09H), 5.83 – 5.77 (m, 0.8H), 5.30 – 5.26 (m, 0.8H). ¹³C NMR (125 MHz, CDCl₃) δ 140.9, 140.7, 136.7, 128.9, 127.5, 127.4, 127.1, 126.8, 113.9.

5-([1,1'-biphenyl]-4-yl)-3-methyl-N-(2-methylquinolin-8-yl)pentanamide (d-9aj):

A colorless solid, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.88 (s, 1H), 8.78 (dd, J = 6.9, 2.2 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.57 (dd, J = 8.3, 1.3 Hz, 2H), 7.52 – 7.41 (m, 6H), 7.35 – 7.27 (m, 4H), 2.73 (s, 3H), 2.65 (dd, J = 14.3, 6.1 Hz, 1H), 2.44 (dd, J = 14.3, 8.0 Hz, 1H), 2.38 – 2.16 (m, 1H), 1.86 (dd, J = 13.4, 5.6 Hz, 1H), 1.66 (dd, J = 13.5, 7.6 Hz, 1H), 1.16 (t, J = 8.1 Hz, 2.6H). ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 157.3, 141.7, 141.2, 138.8, 137.8, 136.5, 134.0, 128.9, 128.8, 127.2, 127.1, 126.5, 126.17, 122.5, 121.3, 116.5, 46.0, 38.7, 30.8, 30.7, 25.4, 20.0. ²D NMR (77 MHz, CHCl₃) δ 2.79 – 2.72 (m, 2D), 1.19 (s, 0.4D) ppm. HRMS (ESI): Calcd. 412.2463 for C₂₈H₂₆D₃N₂O (M+H)⁺, found 412.2454.

Radical clock experiment

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added alkene substrate **7a** (23 mg, 0.1 mmol), Ni(PPh₃)₂Cl₂ (10 mg, 0.015 mmol) and Mn powder (0.15 mmol). The mixture was then dissolved in dry NMP (0.3 mL). The vial was tightly capped and removed out of the glovebox followed by the addition of (bromomethyl)cyclopropane **22** (27 mg, 0.2 mmol). The mixture was allowed to vigorously stir at 60 °C for 12 h. When alkene was almost fully consumed (monitored by GC-MS), the mixture was directly subjected to flash silica gel column chromatography to afford **9ak** and **9n** (mixture, 84% yield, 1:4 **9ak**: **9n**).

¹**H** NMR (300 MHz, CDCl₃) δ 9.86 (s, 1.25H), 8.75 (dd, J = 5.7, 3.3 Hz, 1.25H), 8.03 (d, J = 8.3 Hz, 1.25H), 7.46 (dd, J = 8.1, 5.6 Hz, 2.5H), 7.31 (d, J = 8.4 Hz, 1.25H), 5.84 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.04 (dq, J = 17.1, 1.7 Hz, 1H), 4.96 (ddd, J = 10.1, 2.2, 1.1 Hz, 1H), 2.75 (s, 3.75H), 2.59 (dd, J = 14.1, 6.0 Hz, 1.25H), 2.36 (dd, J = 14.3, 8.0 Hz, 1.25H), 2.29 – 2.06 (m, 3.75H), 1.67 – 1.32 (m, 6H), 1.07 (d, J = 6.6 Hz, 3H). HRMS (ESI): Calcd. 305.1624 for C₁₈H₂₂N₂NaO (M+Na)⁺, found 305.1624.

Complete stereochemical erosion with an enantioenriched alkyl halide

In a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added alkene substrate **7a** (23 mg, 0.1 mmol), Ni(PPh₃)₂Cl₂ (10 mg, 0.015 mmol) or NiI₂ (4.8 mg, 0.015 mmol) and Mn powder (0.15 mmol). The mixture was then dissolved in dry NMP (0.3 mL) or dry DMF (0.3 mL). The vial was tightly capped and removed out of the glovebox followed by the addition of **23** (44 mg, 0.2 mmol). The mixture was allowed to vigorously stir at 40 °C for 16 h. When alkene was almost fully consumed (monitored by GC-MS), the mixture was directly subjected to flash silica gel column chromatography to afford **9al** (51% yield with NiCl₂(PPh₃)₂ and 73% yield with NiI₂). The enantiomeric ratios were determined by chiral HPLC analysis.

(R)-(3-bromobutyl)benzene (23):

the title compound was synthesized according to a literature

procedure.⁸ ¹**H** NMR (500 MHz, CDCl₃) δ 7.31 – 7.28 (m, 2H), 7.22 – 7.19 (m, 3H), 4.08 (dqd, J = 8.9, 6.7, 4.5 Hz, 1H), 2.87 (ddd, J = 14.1, 9.0, 5.3 Hz, 1H), 2.75 (ddd, J = 13.8, 8.8, 7.3 Hz, 1H), 2.14 (dtd, J = 14.2, 8.9, 5.3 Hz, 1H), 2.08 – 2.01 (m, 1H), 1.73 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.9, 128.5, 128.5, 126.1, 50.9, 42.7, 33.9, 26.5 ppm. Enantiomeric ratio was determined by HPLC analysis (OJ-H column, hexane/*i*PrOH 96/4, 0.50 mL/min, 190 nm): t₁ = 9.8 min (major), t₂ = 10.3 min (minor). 98:2 e.r.

HPLC spectra for 23 Racemic compound:

3,4-Dimethyl-*N*-(2-methylquinolin-8-yl)-6-phenylhexanamide (9al):

^he ¹H NMR (500 MHz, CDCl₃) δ 9.87 (s, 1H), 8.76 (dd, J = 6.6, 2.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.48 – 7.44 (m, 2H), 7.32 (d, J = 8.4 Hz, 1H), 7.27 – 7.24 (m, 2H), 7.21 – 7.19 (m, 2H), 7.17 – 7.14 (m, 1H), 2.77 – 2.75 (m, 3H), 2.74 – 2.68 (m, 1H), 2.64 – 2.56 (m, 2H), 2.40 – 2.27 (m, 2H), 1.81 – 1.74 (m, 1H), 1.73 – 1.64 (m, 1H), 1.56 – 1.48 (m, 1H), 1.04 – 0.97 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 171.4, 157.1, 142.8, 142.8, 137.7, 136.4, 133.9, 128.3, 128.3, 126.3, 126.0, 125.6, 125.6, 122.3, 121.1, 116.4, 116.3, 43.7, 42.1, 37.0, 36.8, 36.4, 35.2, 35.2, 34.5, 33.9, 29.7, 25.3, 16.7, 16.4, 14.7, 14.6 ppm. HRMS (ESI): Calcd. 383.2094 for C_{24H28}N₂NaO⁺ (M+Na)⁺, found 383.2099.

Enantiomeric excess was determined by HPLC (IB column, hexane/*i*PrOH 97/3, 0.30 mL/min, 220 nm): $t_1 = 42.6 \text{ min}$, $t_2 = 44.5 \text{ min}$, $t_3 = 64.0 \text{ min}$, $t_4 = 72.1 \text{ min}$.

<u>HPLC spectra for 9al</u>

Reaction with racemic 23:

Reaction with enantioenriched 23 using NiI₂:

ype : Unknown by : System Administrato d by : System Administrato
2

<Chromatogram> mAU

<Peak Table>

PDA C	h1 220nm			
Peak#	Ret. Time	Area	Area%	Height
1	42.647	10364630	35.111	200120
2	44.495	4277307	14.490	80056
3	64.027	4381708	14.843	57087
4	72.097	10496072	35.556	121900
Total		29519718	100.000	459163

Reaction with enantioenriched 23 using NiCl₂(PPh₃)₂:

LabSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename Batch Filename	: yt-5-78-7chiral : 001 : yt-5-78-7-1chiral-2_892020_001.lcd : IB-0.3 mL-min 97-3 190-300nm 70 i : yt 5-78 7_1chiral 2.lch	l min.lcm	
Vial #	: ye-3-76-7-10111ai-2.100 : 1-13	Sample Type	: Unknown
Date Acquired Date Processed	: 9/8/2020 4:39:51 PM : 9/8/2020 6:51:53 PM	Acquired by Processed by	System Administrator System Administrator

<Chromatogram>

PDA C	h1 220nm			
Peak#	Ret. Time	Area	Area%	Height
1	42.651	11620954	33.713	223203
2	44.500	5618995	16.301	103873
3	63.992	5508350	15.980	77755
4	72.211	11722085	34.006	134430
Total		34470384	100.000	539261

2.6 Attempted Hydroalkylation in the Presence of Hydrosilane/Base

According to a literature procedure9, in a N2-filled glovebox, to an oven-dried 5 mL

vial equipped with a magnetic stir bar were added alkene substrate **7a** (23 mg, 0.1 mmol), Ni(PPh₃)₂Cl₂ (10 mg, 0.015 mmol), Na₂CO₃ (21 mg, 0.2 mmol), and dry NMP (0.3 mL) sequentially. The vial was tightly capped and removed from the glovebox followed by addition of DEMS (27 mg, 0.2 mmol) and 1-iodobutane **8** (37 mg, 0.2 mmol) by micro-syringe. The mixture was allowed to vigorously stir at ambient temperature for 12 h. After that, 20 mg *n*-tridecane was added as an internal standard. 3 μ L of the reaction mixture was taken out and subjected to GC analysis.

According to a literature procedure¹⁰, in a N₂-filled glovebox, to an oven-dried 5 mL vial equipped with a magnetic stir bar were added alkene substrate **7a** (23 mg, 0.1 mmol), Ni(PPh₃)₂Cl₂ (10 mg, 0.015 mmol), KF (11 mg, 0.2 mmol), and dry NMP (0.3 mL) sequentially. The vial was tightly capped and removed from the glovebox followed by addition of (EtO)₃SiH (33 mg, 0.2 mmol) and 1-iodobutane **8** (37 mg, 0.2 mmol) by micro-syringe. The mixture was allowed to vigorously stir at ambient temperature for 12 h. After that, 20 mg *n*-tridecane was added as an internal standard. 3 μ L of the reaction mixture was taken out and subjected to GC analysis.

2.7 Attempted Hydroalkylation Using Substrates Without C_β-H Bonds

General procedure for condition optimization: In a N₂-filled glovebox, to an ovendried 5 mL vial equipped with a magnetic stir bar were added alkene substrate 7a (22.6 mg, 0.1 mmol), NiX₂(0.015 mmol), Mn powder (11 mg, 0.2 mmol) and dry solvent (0.3 mL) sequentially. The vial was tightly capped and removed out of the glovebox followed by the addition of neopentyl bromide and isopropyl bromide via a microsyringe. The mixture was allowed to vigorously stir at 30 °C for 16 h. After that, 20 mg *n*-tridecane was added as an internal standard. 3 μ L of the reaction mixture was taken out and subjected to GC analysis to determine the conversion of alkene 7a as well as the calibrated GC yields of products 9x, 9w and 9w'.

	+ Hr NiX2	(15% mol) / Mn (2.0 e Br (1.5 eq), Solvent,	$\stackrel{q)}{\rightarrow}$ \bigvee_{N}^{P}	Me Me +			o t-Bu
Ме 1.0 eq	1.5 eq	30 °C, 16 h	Me 93	κ ∥ Me	9w	 Me	9w'
entry	NiX ₂	additive ^c	Solvent	Con. Of	Yield	Yield	Yield
				alkene	(9x)	(9w)	(9w')
1	NiCl ₂ (PPh ₃) ₂		NMP	>95%	47%	26%	trace
2	Nil ₂		NMP	>95%	46%	31%	6%
3	NiCl ₂ ·dme		NMP	>95%	43%	30%	9%
4	NiCl ₂ (PPh ₃) ₂		DMF	>95%	48%	27%	3%
5	Nil ₂		DMF	>95%	42%	26%	10%
6	NiCl ₂ ·dme		DMF	>95%	39%	27%	13%
7	NiCl ₂ (PPh ₃) ₂		DMA	>95%	51%	24%	trace
8	Nil ₂		DMA	>95%	47%	18%	4%
9	NiCl ₂ ·dme		DMA	>95%	42%	23%	12%
10	NiCl ₂ (PPh ₃) ₂		DMPU	38%	20%	8%	3%
11	Nil ₂		DMPU	89%	43%	12%	trace
------------------------	--	-------------------	------	------	-----	-------	-------
12	NiCl₂ [.] dme		DMPU	88%	42%	21%	3%
13	NiCl ₂ (PPh ₃) ₂		NMP	>95%	46%	18%	trace
14	Nil ₂		NMP	>95%	39%	21%	11%
15	NiCl₂ [.] dme	NMP 91%		8%	6%	51%	
16	NiBr ₂ ·diglyme		NMP	>95%	27%	17%	30%
17	NiCl ₂ (PPh ₃) ₂	Nal	NMP	80%	52%	trace	trace
18	Nil ₂	Nal	NMP	>95%	44%	23%	6%
19	NiCl₂ [.] dme	Nal	NMP	82%	42%	20%	5%
20	Nil ₂	LiCl	NMP	65%	27%	17%	3%
21	Nil ₂	LiBr	NMP	74%	31%	19%	2%
22	Nil ₂	MgCl ₂	NMP	>95%	14%	11%	50%
23	Nil ₂	MgBr ₂	NMP	89%	30%	17%	19%
24	Nil ₂	ZnBr ₂	NMP	35%	21%	3%	trace
25 ^{<i>a</i>}	NiCl ₂ (PPh ₃) ₂		NMP	>95%	35%	31%	3%
26 ^{<i>a</i>}	Nil ₂		NMP	>95%	26%	32%	15%
27 ^b	Nil ₂		NMP	85%		trace	51%

^{*a*}3.0 equiv of neopentyl bromide and 1.2 equiv of isopropyl bromide were used, yields reported are for isolated yields. ^{*b*}1.5 equiv of neopentyl bromide was used without isopropyl bromide. ^{*c*}1.0 equiv of additive was used.

3,5,5-Trimethyl-N-(2-methylquinolin-8-yl)hexanamide (9w):

^he ¹**H NMR** (400 MHz, CDCl₃) δ 9.86 (s, 1H), 8.74 (dd, J = 6.4, 2.6 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H), 2.59 (dd, J = 13.9, 5.5 Hz, 1H), 2.35 (dd, J = 13.9, 8.4 Hz, 1H), 2.30 – 2.23 (m, 1H), 1.40 (dd, J = 14.0, 4.0 Hz, 1H), 1.22 (dd, J = 14.0, 6.2 Hz, 1H),1.10 (d, J = 6.5 Hz, 3H), 0.96 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) δ 171.2, 157.1, 137.7, 136.4, 133.9, 126.4, 126.0, 122.3, 121.0, 116.3, 50.8, 48.1, 31.2, 30.0, 27.6, 25.2, 22.8 ppm. **HRMS (ESI)**: Calcd. 321.1937 for C₁₉H₂₆N₂NaO⁺ (M+Na)⁺, found 321.1931.

6,6-Dimethyl-N-(2-methylquinolin-8-yl)-3-neopentylheptanamide (9w'):

¹H NMR (500 MHz, CDCl₃) δ 9.87 (s, 1H), 8.74 (dd, J = 6.7, 1.7 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.31 (d, J = 8.5 Hz, 1H), 2.74 (s, 3H), 2.57 – 2.46 (m, 2H), 2.07 – 2.01 (m, 1H), 1.41 – 1.38 (m, 2H), 1.32 – 1.26 (m, 4H), 0.96 (s, 9H), 0.84 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 157.0, 137.7, 136.4, 134.0, 128.5, 126.4, 122.3, 121.0, 116.3, 47.9, 45.4, 40.9, 32.7, 31.2, 31.0, 30.1, 29.9, 29.4, 25.2 ppm. **HRMS (ESI)**: Calcd. 391.2720 for C₂₄H₃₆N₂NaO⁺ (M+Na)⁺, found 391.2726.

Supplementary Figure 3 ¹H NMR (500 MHz, CDCl₃) of 7b:

Supplementary Figure 5 ¹H NMR (400 MHz, CDCl₃) of 7c:

 $\begin{array}{c} 10.138\\ 8.739\\ 8.739\\ 8.739\\ 8.739\\ 7.4503\\ 7.4503\\ 7.4503\\ 7.4503\\ 7.7300\\ 7.7200\\ 7.7$

Supplementary Figure 6¹³C NMR (100 MHz, CDCl₃) of 7c:

Supplementary Figure 7 ¹H NMR (400 MHz, CDCl₃) of 7d:

-10.145 -10.145 -10.145 -10.145 -10.145 -1.478 -1.478 -1.478 -1.478 -1.478 -1.478 -1.478 -1.478 -1.478 -1.478 -1.478 -1.478 -1.7336 -1.7336 -1.7336 -1.7336 -1.7336 -1.7336 -1.7336 -1.7336 -1.72866 -1.72866 -1.72866 -1.72866 -1.7286 -1.72866 -1.72

Supplementary Figure 11 ¹H NMR (400 MHz, CDCl₃) of 1**7a:**

Supplementary Figure 13 ¹H NMR (500 MHz, CDCl₃) of 17b:

852	750 746 737 732	983 434 421 421 416 288 271 271	608 577 566 561 555 555 555 555 555 524 522	725 629 616 600 508 505 645 645
ര്	യ്യ്യ് യ്	- スプブブブブ	່ວ່ວວ່ວວ່ວ	
		1 Viller		

Supplementary Figure 17 ¹H NMR (500 MHz, CDCl₃) of 17d:

 $\begin{array}{c} 9.873\\ 8.776\\ 8.775\\ 8.772\\ 8.772\\ 8.772\\ 8.772\\ 8.772\\ 8.772\\ 8.772\\ 8.772\\ 8.772\\ 8.772\\ 1.441\\ 1.441\\ 1.442\\ 1.422\\ 1.$

Supplementary Figure 19¹H NMR (400 MHz, CDCl₃) of 17e:

9.861 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 7.4459 6.5013 7.4459 6.5013 6.5013 6.5013 6.5013 8.65013 6.5014 6.50146 6.501400000000000000000000

Supplementary Figure 23 ¹H NMR (400 MHz, CDCl₃) of **7h:**

Supplementary Figure 25 ¹H NMR (500 MHz, CDCl₃) of 9a:

Supplementary Figure 27 ¹H NMR (300 MHz, CDCl₃) of **9b**:

Supplementary Figure 29 ¹H NMR (500 MHz, CDCl₃) of 9c:

9.882 8.805 8.805 8.805 8.805 8.805 8.805 7.496 7.496 7.496 7.288 7.288 7.288 7.299 7.299 7.299 7.299 7.298 7.299 7.298 7.299 7.299 7.200 7.213 7.201 7.213 7.201 7.213 7.203 7.203 7.213 7.203 7.213 7.203 7.213 7.

Supplementary Figure 31 ¹H NMR (400 MHz, CDCl₃) of **9d:**

Supplementary Figure 33 ¹H NMR (500 MHz, CDCl₃) of 9e:

Supplementary Figure 34 ¹³C NMR (125 MHz, CDCl₃) of 9e:

Supplementary Figure 35 ¹H NMR (500 MHz, CDCl₃) of **9f:** ¹⁰⁰
¹

Supplementary Figure 39 ¹H NMR (300 MHz, CDCl₃) of 9h:

Supplementary Figure 41 ¹H NMR (500 MHz, CDCl₃) of 9i:

Supplementary Figure 43 ¹H NMR (500 MHz, CDCl₃) of 9j:

9.857 9.867 8.755 8.755 8.737 7.508 8.737 7.508 8.8737 7.508 8.8737 7.508 8.8737 7.508 8.8037 7.508 8.668 6.668 6.668 6.668 6.668 6.668 6.663 7.7330 8.665 6.663 7.7330 8.665 6.663 7.7330 8.665 6.663 8.663 8.663 8.663 8.665 8.663 8.665 8.663 8.665 8.665 8.665 8.665 8.665 8.665 8.653 8.555 8.653 8.555 8.653 8.5555 8.55

Supplementary Figure 45 ¹H NMR (400 MHz, CDCl₃) of **9k**:

Supplementary Figure 47 ¹H NMR (500 MHz, CDCl₃) of 91:

Supplementary Figure 49 ¹H NMR (400 MHz, CDCl₃) of 9m:

Supplementary Figure 51 ¹H NMR (400 MHz, CDCl₃) of **9n**:

Supplementary Figure 53 ¹H NMR (400 MHz, CDCl₃) of 90:

Supplementary Figure 59 ¹H NMR (400 MHz, DMSO-*d*₆) of 9r:

9.907 9.807 9.806 9.866 9.8666 9.8587 9.8584 9.8584 9.8584 9.8584 9.8584 9.8584 9.8584 9.8584 9.8584 9.5594 9.5756 9.5775 7.576 7.557 7.5576 7.5556 7.5556 7.55576 7.5556 7.555776 7.555777777777777777777777777777

Supplementary Figure 61 ¹H NMR (500 MHz, CDCl₃) of 9s:

Supplementary Figure 65 ¹H NMR (400 MHz, CDCl₃) of **9u**:

Supplementary Figure 67 ¹H NMR (400 MHz, CDCl₃) of 9v:

Supplementary Figure 69 ¹H NMR (500 MHz, CDCl₃) of 9x:

Supplementary Figure 70 ¹³C NMR (125 MHz, CDCl₃) of 9x:

Supplementary Figure 71 ¹H NMR (500 MHz, CDCl₃) of 9y:

Supplementary Figure 73 ¹H NMR (500 MHz, CDCl₃) of **9z:**

Supplementary Figure 74 ¹³C NMR (125 MHz, CDCl₃) of 9z:

Supplementary Figure 75 ¹H NMR (400 MHz, CDCl₃) of 9aa:

Supplementary Figure 76¹³C NMR (100 MHz, CDCl₃) of 9aa:

Supplementary Figure 77 ¹H NMR (300 MHz, CDCl₃) of 9ab:

Supplementary Figure 79 ¹H NMR (500 MHz, CDCl₃) of 9ac:

Supplementary Figure 80 ¹³C NMR (125 MHz, CDCl₃) of 9ac:

Supplementary Figure 81 ¹H NMR (500 MHz, CDCl₃) of 9ad:

Supplementary Figure 82 ¹³C NMR (125 MHz, CDCl₃) of 9ad:

Supplementary Figure 83 ¹H NMR (500 MHz, CDCl₃) of 9ae:

8.751 8.751 8.8751 8.8751 8.8751 8.8751 7.5502 7.7556 7.7284 7.7363 7.7284 7.7363 7.7284 7.7198 7.7198 7.7284 7.7198 7.71186 7.7

170 210 190 150 130 110 f1 (ppm) 0 -10 90 80 70 60 50 40 30 20 10

Supplementary Figure 85 ¹H NMR (400 MHz, CDCl₃) of 9af:

Supplementary Figure 87 ¹H NMR (500 MHz, CDCl₃) of 9ag:

Supplementary Figure 88 ¹³C NMR (125 MHz, CDCl₃) of 9ag:

Supplementary Figure 89 ¹H NMR (300 MHz, CDCl₃) of 9ah:

Supplementary Figure 90 ¹³C NMR (126 MHz, CDCl₃) of 9ah:

Supplementary Figure 91 ¹H NMR (400 MHz, CDCl₃) of 14:

Supplementary Figure 92 ¹³C NMR (126 MHz, CDCl₃) of 14:

Supplementary Figure 93 ¹H NMR (500 MHz, CDCl₃) of 9ai:

Supplementary Figure 95 ¹⁹F NMR (471 MHz, CDCl₃) of 9ai:

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210

Supplementary Figure 96 ¹H NMR (400 MHz, CDCl₃) of 15:

Supplementary Figure 97 ¹³C NMR (101 MHz, CDCl₃) of 15:

Supplementary Figure 98 ¹H NMR (500 MHz, CDCl₃) of 16:

Supplementary Figure 99 ¹³C NMR (125 MHz, CDCl₃) of 16:

Supplementary Figure 100 ¹⁹F NMR (471 MHz, CDCl₃) of 16:

Supplementary Figure 101 ¹H NMR (400 MHz, CDCl₃) of 18a:

Supplementary Figure 103 DEPT135(100 MHz, CDCl₃) of 18a:

Supplementary Figure 104 ¹H NMR (500 MHz, DMSO-*d*₆) of 18b:

Supplementary Figure 106 ¹H NMR (500 MHz, CDCl₃) of 18c:

9.878 8.7235 8.7239 8.7239 8.7239 8.7239 8.7239 8.7239 8.7239 7.4557 7.445 7.2455 7.2309 7.4557 7.2455 7.2309 7.2558 3.3395 3.3376 3.3395 3.3395 3.3395 3.3395 3.3395 3.3395 3.3395 1.556 1.15566 1.15566 1.15566 1.15566 1.15566 1.15566 1.15566 1.15566 1.15566 1.15566 1.

Supplementary Figure 108 ¹H NMR (500 MHz, CDCl₃) of 18d:

110 90 f1 (ppm) -10

Supplementary Figure 110 ¹H NMR (500 MHz, CDCl₃) of 18e:

Supplementary Figure 113 ¹H NMR (500 MHz, CDCl₃) of 18f:

Supplementary Figure 114 ¹³C NMR (100 MHz, CDCl₃) of 18f:

Supplementary Figure 115 ¹H NMR (400 MHz, CDCl₃) of 18g:

9.866 8745 88.7455 88.745 88.7458 88.7758 88.7758 88.7758 88.7758 88.7758 88.7758 88.7758 88.7758 88.77

Supplementary Figure 117 ¹H NMR (500 MHz, DMSO-*d*₆) of 11:

Supplementary Figure 119 ¹H NMR (500 MHz, CDCl₃) of *d*-20:

Supplementary Figure 120 ¹³C NMR (125 MHz, CDCl₃) of *d*-20:

Supplementary Figure 121²D NMR (77 MHz, CHCl₃) of *d*-20:

Supplementary Figure 122 ¹H NMR (500 MHz, CDCl₃) of *d*-21:

Supplementary Figure 123 ¹³C NMR (100 MHz, CDCl₃) of *d*-21:

Supplementary Figure 124 ¹H NMR (500 MHz, CDCl₃) of *d*-9aj:

Supplementary Figure 125 ¹³C NMR (100 MHz, CDCl₃) of *d*-9aj:

- 177.13 - 157.28 141.65 141.24 138.80 140.80 140.8	$\left\{\begin{array}{c}121.5\\116.52\\77.41\\77.16\\76.90\end{array}\right.$	× 45.95 × 38.65 × 30.80 × 25.39 × 19.95
---	---	---

Supplementary Figure 126 ²D NMR (77 MHz, CHCl₃) of *d*-9aj:

Supplementary Figure 127 ¹H NMR (500 MHz, CDCl₃) of 7a':

Supplementary Figure 129 ¹H NMR (500 MHz, CDCl₃) of 19:

Supplementary Figure 130 ¹³C NMR (100 MHz, CDCl₃) of 19:

Supplementary Figure 131 ¹H NMR (500 MHz, CDCl₃) of 23:

88.87 88.77 88.87 88.77 88.87 88.77 88.87 88.87 88.87 88.87 77.777

Supplementary Figure 135 ¹H NMR (400 MHz, CDCl₃) of 9w:

Supplementary Figure 136 ¹³C NMR (101 MHz, CDCl₃) of 9w:

Supplementary Figure 137 ¹H NMR (500 MHz, CDCl₃) of 9w':

Supplementary Figure 138 ¹³C NMR (126 MHz, CDCl₃) of 9w':

3. Supplementary References

1. Gurak, Jr. J. A., Jr.; Yang, K. S., Liu, Z. & Engle, K. M. Directed, regiocontrolled hydroamination of unactivated alkenes via protodepalladation. *J. Am. Chem. Soc.* **138**, 5805–5808 (2016).

2. Yang, K. S., Gurak, Jr. J. A., Liu, Z. & Engle, K. M. Catalytic, Regioselective hydrocarbofunctionalization of unactivated alkenes with diverse C–H nucleophiles. *J. Am. Chem. Soc.* **138**, 14705–14712 (2016).

3. Nimmagadda, S. K., Liu, M., Karunananda, M. K., Gao, D.-W., Apolinar, O., Chen, J. S., Liu, P. & Engle, K. M. Catalytic, enantioselective α-alkylation of azlactones with nonconjugated alkenes by directed nucleopalladation. *Angew. Chem. Int. Ed.* **58**, 3923–3927 (2019).

4. Verho, O., Maetani, M., Melillo, B., Zoller, J. & Schreiber, S. L. Stereospecific palladium-catalyzed C–H arylation of pyroglutamic acid derivatives at the C3 position enabled by 8-aminoquinoline as a directing Group. *Org. Lett.* **19**, 4424–4427 (2017).

5. Murai, M., Nishimuraa, K. & Takai, K. Palladium-catalyzed double-bond migration of unsaturated hydrocarbons accelerated by tantalum chloride. *Chem. Commun.* 55, 2769–2772 (2019).

6. Kerr, W. J., Morrison, A. J., Pazicky, M. & Weber, T. Modified Shapiro reactions with bismesitylmagnesium as an efficient base reagent. *Org. Lett.* 14, 2250–2253 (2012).

Cooper, P., Crisenza, G. E. M., Feron, L. J. & Bower, J. F. Iridium-catalyzed α-selective arylation of styrenes by dual C-H functionalization. *Angew. Chem. Int. Ed.* 57, 14198–14202 (2018).

8. Sargent, B. T. & Alexanian, E. J. Palladium-catalyzed alkoxycarbonylation of unactivated secondary alkyl bromides at low pressure. *J. Am. Chem. Soc.* **138**, 7520–7523 (2016).

9. Lu, X., Xiao, B., Zhang, Z., Gong, T., Su, W., Yi, J., Fu, Y. & Liu, L. Practical carboncarbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation. *Nat. Commun.* **7**, 11129 (2016).

10. Zhou, F., Zhu, J., Zhang, Y. & Zhu, S. NiH-catalyzed reductive relay hydroalkylation: a strategy for the remote $C(sp^3)$ –H alkylation of alkenes. *Angew*. *Chem. Int. Ed.* **57**, 4058–4062 (2018).