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Supplementary Figure 1: Guide trees used in the guide-tree influence analysis.
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Supplementary Figure 2: Species-by-species breakdown of similarity between the alignments with guide-
trees based on Jarvis and Prum. Similarity for every cell of the matrix is based on F1 score for pairs of
aligned bases found to be shared or unshared between the two alignments.
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Supplementary Figure 3: Comparison between Jarvis (left) and Prum (right) topologies (branch lengths
not to scale), with branches above clades not shared between the two topologies highlighted in red.
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Supplementary Figure 4: Fraction of aligned pairs found only in the alignment of high-quality assemblies,
only in the alignment of low-quality assemblies, or in both. Only human, mouse, rat, and dog pairs are
shown since these are the only species represented by the same assemblies in both alignments.
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Supplementary Figure 5: Comparison of aligned pairs between human-dog and human-mouse aligned
pairs within the alignments of high- and low-quality assemblies, as well as the 600-way, to those using the
respective chains and nets. The Cactus alignments are filtered using the mafDuplicateFilter tool, which
chooses the single closest matching sequence from each species in each alignment block to the consensus
sequence of the block. This allows a fair comparison against chains and nets, which are single-copy (and
therefore have no duplicates). The first alignment mentioned is referred to as A, the second is referred to as

B.
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Supplementary Figure 6: Number of L1PA6 elements within ancestral genomes.
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Supplementary Figure 7: Comparison of aligned pairs between the induced human/mouse/rat/dog
subsets of the high-quality assemblies alignment and the 600-way. The first alignment mentioned is referred
to as A, the second is referred to as B.
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Supplementary Figure 8: Aligned pairs shared within specific regions (defined on the human reference)
between several pairs of alignments. For Cactus alignments, duplicates have been removed for better
comparison against the single-copy net alignments.
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Supplementary Figure 9: Comparison of ancestors at the same position in the tree in a large (242-species
Zoonomia alignment, labeled as "200M") and small (11-species, labeled as "High-quality assemblies")
alignment of mammalian genomes. The smaller alignment used for comparison is the alignment of high-
quality assemblies mentioned in earlier sections. A: The fraction of various types of human regions mappable
to each ancestor within each alignment. B: The total size of each ancestral assembly within each alignment.
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Supplementary Figure 10: Comparison of ancestors at the same position in the tree in a large (363-
species, labeled as "363-way") and smaller (48-species, labeled as "48-way") alignment of bird genomes. A:
The fraction of various types of chicken regions mappable to each ancestor within each alignment. B: The
total size of each ancestral assembly within each alignment.
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Supplementary Figure 11: Distribution of Jaccard similarities between each pair of aligners for the
mRNA and coding regions of each human transcript mapped to the chicken genome (see Methods). Where
one or both aligners produces multiple mappings per transcript we pick the pair of mappings (one from each
mapper) with highest overlap. If one or both methods method didn’t produce an alignment, a Jaccard index

of 0.0 is assigned.
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Supplementary Figure 12: Distribution of Jaccard similarities between each pair of aligners for the
mRNA and coding regions of each human of each human gene mapped to the chicken genome (see Methods).
Where one or both aligners produces multiple mappings per gene we pick the pair of mappings (one from
each mapper) with highest overlap. If one or both methods didn’t produce an alignment, a Jaccard index of
0.0 is assigned. Here gene coordinates are defined by the longest single mRNA or CDS per gene.
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Supplementary Figure 13: Sequence and cactus graph example. (A) A biedged sequence graph con-
structed from the strings ‘ab d e f’, ‘acd e f’ and ‘a b d {f’, where here homology is indicated by common
alphabet characters. In Progressive Cactus the sequence edges (black lines) represent alignment blocks.
The adjacency edges (grey lines) indicate the sequence relationships. (B) Each input string is encoded as a
restricted form of walk in the sequence graph; the path for the string ‘a ¢ d f’ is highlighted by dotted edges.
(c) The cactus graph constructed from the sequence graph using the Cactus construction procedure (see [1]
for details). The subsequence ‘a d f> common to all the input strings is represented by a simple cycle, termed
a chain. The remaining substrings ‘b’, ‘c’, and ‘e’ are each in trivial chains represented using self loops.
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Supplementary Figure 14: Iteratively building a sequence graph by progressive glueing operations. (A)
Two sequence edges labeled with their respective strings. (B) A local alignment glues together the ‘a’ copies.
(C) The glueing of ‘d’. (D) The glueing of ‘f” creates the final set of alignment blocks.
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Supplementary Figure 15: A visualization of the best-hit filtering method. Here, each node of the
directed graph indicates a single base, and edges represent pairwise alignment relationships (the color of the
node indicates the species the base belongs to, and higher thickness of edges represents higher scores of the
pairwise alignments). Since Progressive Cactus’s alignment columns represent the transitive closure of the
input pairwise alignment relationships, the final alignment relationships will be represented by connected
components within this graph. Taking the single best hit (so that this graph contains at most one outgoing
edge per base) results in the correct separation between copies if orthologous copies have higher score, but
some lineage-specific duplications require secondary, non-best-hit alignments to bring together orthologs
from different species.
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Supplementary Figure 16: Coverage of the human genome from alignments with and without removing
recoverable chains after the CAF process. While the coverage is increased overall across all genomes when
removing recoverable chains, the increase is relatively larger in more distant species.
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Aligner

Alignathon entry name

Precision ‘ Recall ‘ F1

Progressive Cactus (this manuscript)
Cactus (Alignathon version)
VISTA-LAGAN [2]

EPO (3]

Mercator/Pecan [4, 5]
PSAR-Align [6]

AutoMZ [7]

TBA [7]

Mugsy [8]

Robusta [9]

GenomeMatch
GenomeMatch
GenomeMatch

MULTIZ [7]

cactus
brudno
ebi.epo
ebi.mp
kimMa
minmei.automz
minmei.tba
mugsy
robusta
softberry.vl
softberry.v2
softberry.v3
ucsc

0.730
0.706
0.619
0.224
0.368
0.614
0.606
0.640
0.065
0.357
0.104
0.104
0.105
0.616

0.873
0.885
0.791
0.893
0.878
0.826
0.694
0.769
0.931
0.744
0.980
0.974
0.968
0.818

0.795
0.785
0.694
0.359
0.519
0.703
0.647
0.699
0.122
0.482
0.188
0.187
0.189
0.703

Supplementary Table 1: Precision, recall, and F1 scores for the simulated mammals dataset from the
Alignathon [10]. All alignments except for Progressive Cactus are as submitted for the Alignathon.

Aligner ‘ Alignathon entry name | Precision | Recall | F1

Progressive Cactus (this manuscript) | — 0.986 0.991 | 0.989
Cactus (Alignathon version) cactus 0.984 0.983 | 0.983
VISTA-LAGAN [2] brudno 0.978 0.983 | 0.980
Mercator /Pecan [4, 5] compara 0.940 0.996 | 0.967
PSAR-Align [6] kimMa 0.980 0.995 | 0.988
AutoMZ [7] minmei.automz 0.980 0.992 | 0.986
TBA [7] minmei.tba 0.981 0.992 | 0.986
Mugsy [8] mugsy 0.978 0.996 | 0.987
progressiveMauve [11] pmauve 0.971 0.997 | 0.984
Robusta [9] robusta 0.941 0.986 | 0.963
GenomeMatch softberry.vl 0.898 0.997 | 0.945
GenomeMatch softberry.v2 0.898 0.972 | 0.934
GenomeMatch softberry.v3 0.905 0.261 | 0.405
MULTIZ [7] ucsc 0.980 0.992 | 0.986

Supplementary Table 2: Precision, recall, and F1 scores for the simulated primates dataset from the
Alignathon [10].

Alignment | URL

Jarvis https://s3.amazonaws.com/alignment-output/cactus48BIRDS_jarvisi4.hal
Prum https://s3.amazonaws.com/alignment-output/cactus48BIRDS_pruml5.hal
Consensus | https://s3.amazonaws.com/alignment-output/cactus48BIRDS_consensus.hal
Permuted | https://s3.amazonaws.com/alignment-output/cactus48BIRDS_permute.hal

Supplementary Table 3: Alignments used in the guide-tree analysis.
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Low-quality assembly alignment

High-quality assembly alignment

Species

P ‘ Assembly ‘ Scaffold N50 ‘ Contig N50 ‘ Assembly ‘ Scaffold N50 ‘ Contig N50
Gorilla gorGor3 913,958 11,691 | Susie3 20,634,945 9,406,846
Mouse lemur micMurl 140,884 3,511 | Mmur_ 3.0 108,171,978 210,702
Chinese hamster | criGril 1,558,295 27,129 | criGriCHOV?2 62,039,716 97,133
Pig susScr3 576,008 69,503 | susScrll 88,231,837 | 48,231,277
Horse equCab2 46,749,900 112,381 | equCab3 87,230,776 1,502,753
Rhesus rheMac8 4,193,270 107,172 | rheMacl0 82,346,004 | 46,608,966
Camel ASM164081v1 31,503 31,503 | CamDro3 70,369,702 236,391

Supplementary Table 4: Assembly versions used in the alignments of low-quality and high-quality

assemblies.

assemblies in both: human (GRCh38), mouse (mm10), rat (rn6), and dog (canFam3).

Coverage on the human genome

In addition to these 7 genomes, 4 others were included in each alignment with the same

Genome

‘ Alignment of high-quality assemblies | Alignment of low-quality assemblies
Human 1.00 1.00
Gorilla 0.90 0.85
Rhesus 0.83 0.82
Mouse lemur 0.54 0.43
Horse 0.51 0.50
Dog 0.47 0.47
Pig 0.46 0.42
Camel 0.46 0.46
Chinese hamster 0.34 0.33
Mouse 0.33 0.32
Rat 0.33 0.32

Supplementary Table 5: Coverage on the human genome in the high-quality vs. low-quality assembly

alignments.
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Human to chicken

Category ‘ BLATX ‘ TBLASTX ‘ LASTZ ‘ Cactus
Source transcripts 84,001 84,001 84,001 | 84,001
Mapped 58,574 67,197 56,335 | 61,925
Rate mapped 0.70 0.80 0.67 0.74
Multi-mapped 9,605 34,573 1,037 1,634
Rate multi-mapped 0.16 0.51 0.02 0.03
Mean base mapping rate 0.33 0.33 0.44 0.42
Median base mapping rate 0.32 0.33 0.48 0.43
Mean CDS base mapping rate 0.50 0.48 0.60 0.60
Median CDS base mapping rate 0.60 0.56 0.85 0.79

Supplementary Table 6: Comparison of mapping protein-coding transcripts from human to chicken using
four alignment and mapping methods (see Methods). Human source transcripts are from GENCODE V34.
The multi-mapped rate is computed for those source transcripts that have any mappings. The base mapping
rates are computed for the single best mapping of each mapped transcript. The best mapping is defined as
the mapping with the highest average of the number of bases mapped across (i) the entire transcript and (ii)
just the CDS portion.

Method source | mRNAs align | mean | median mean | median

mRNAs | aligned count | ident ident | aligned | aligned
BLATX 84,001 58,574 | 71,691 | 0.77 0.76 0.45 0.42
TBLASTX 84,001 67,197 | 137,270 | 0.66 0.65 0.34 0.31
LASTZ 84,001 56,335 | 57,496 | 0.74 0.74 0.66 0.68
Cactus 84,001 61,925 | 63,607 | 0.75 0.76 0.56 0.56

Supplementary Table 7: Transcript alignment statistics mapping from human to chicken (see Methods).
For each alignment method, this shows the number of mRNAs that were aligned (mRNAs aligned) and the
total number of alignments of those mRNA (align count), along with the mean and median of the nucleotide
identity and of the fraction of the mRNAs nucleotides that aligned.

Method source | mRNAs align | mean | median mean | median

mRNAs | aligned | count | ident ident | aligned | aligned
BLATX 19,695 12,102 | 15,619 | 0.74 0.75 0.36 0.32
TBLASTX 19,695 13,968 | 29,011 | 0.63 0.62 0.30 0.27
LASTZ 19,695 11,935 | 12,317 | 0.72 0.72 0.56 0.55
Cactus 19,695 12,971 | 13,227 | 0.74 0.74 0.46 0.43

Supplementary Table 8: Gene alignment statistics mapping from human to chicken (see Methods). Here
gene coordinates are defined by the longest single transcript per gene. For each method, this shows the
number of mRNAs that were aligned (mRNAs aligned) and the total number of alignments of those mRNA
(align count), along with the mean and median of the nucleotide identity and of the fraction of the mRNAs
nucleotides that aligned.

18



Gene Counts ‘ CDS Base Counts

Category LASTZ Cactus LASTZ Cactus
count ‘ rate | count ‘ rate count ‘ rate count ‘ rate
source 19,695 | 1.00 | 19,695 | 1.00 | 34,356,456 | 1.00 | 34,356,456 | 1.00
missing 3485 | 0.18 | 3,429 | 0.17 | 4,141,477 | 0.12 | 3,967,426 | 0.12
unmapped 4,110 | 0.21 2,991 | 0.15 | 6,052,342 | 0.18 | 4,083,397 | 0.12
mapped hit 10,832 | 0.55 | 11,758 | 0.60 | 15,696,629 | 0.46 | 15,732,865 | 0.46
mapped miss 194 | 0.01 387 | 0.02 | 7,499,854 | 0.22 | 9,661,280 | 0.28
mapped only | 1,074 | 0.05 | 1,130 | 0.06 966,154 | 0.03 911,488 | 0.03

Supplementary Table 9: Comparison of each of the LASTZ and Cactus alignments to the union of the
BLATX and TBLASTX translated alignments. This analysis implicitly uses the union of the translated
alignments as a proxy to a truth set to compare the non-translated methods. Human coding sequences
from GENCODE V34 are used, picking the coding sequence from the longest transcript per gene to define
a minimally overlapping set. To account for human bases which map to multiple bases in chicken (which
occurs frequently for the translated alignment methods that include very distant, fragmented, paralogous
alignments, but much less often for the non-translated methods), when per CDS there is either or both
multiple translated alignments or multiple non-translated alignments, we pick the pair of mappings (one
translated, one from the non-translated method) with highest pairwise Jaccard similarity. Base level counts
are then reported for this pairing of the CDS. We report numbers in terms of genes and individual human
coding bases. The source row is the total number of human genes/coding bases. The missing counts are the
number of human genes/coding bases that were not mapped by either the untranslated method (Cactus
or LASTZ) or the one of the translated alignment methods. The unmapped are cases where there are
translated alignments and no untranslated alignment. The mapped hit are cases where the untranslated
alignment is the same as a translated alignment. With mapped miss, the untranslated alignments do not
overlap any of the translated alignments. The mapped only are counts of genes/bases that are only aligned
by the untranslated aligner.

Transcripts Genes
to chicken to chicken
Methods mRNA ‘ CDS ‘ mRNA ‘ CDS
BLATX TBLASTX 0.41 | 0.42 0.34 | 0.37
BLATX LASTZ 0.39 | 0.45 0.30 | 0.38
BLATX Cactus 0.43 | 0.46 0.34 | 0.40
TBLASTX | LASTZ 0.33 | 0.37 0.26 | 0.32
TBLASTX | Cactus 0.37 | 0.39 0.30 | 0.34
LASTZ Cactus 0.50 | 0.54 0.41 | 0.47

Supplementary Table 10: Similarity of mapping protein-coding transcripts and genes between human
and chicken using the four alignment and mapping methods (see Methods). The metric is the mean Jaccard
index computed at the base-level of individual transcripts. Where one or both aligners produces multiple
mappings per transcript we pick the pair of mappings (one from each mapper) with highest overlap. If one
or both methods method didn’t produce an alignment, a Jaccard index of 0.0 is assigned.
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Transcripts ‘ Genes

Method | mRNA | CDS | mRNA | CDS
BLATX 0.34 | 0.47 0.57 | 0.42
TBLASTX 0.24 | 0.32 0.41 | 0.31
LASTZ 0.43 | 0.58 0.63 | 0.56
Cactus 0.38 | 0.53 0.64 | 0.51

Supplementary Table 11: The Jaccard index similarity metric of human protein-coding transcript and
gene mappings to the native chicken transcript annotations for the four alignment methods For each source
that was mapped, we pick the target native annotation with the highest base-level Jaccard index to any
of the source transcript’s mappings as the candidate ortholog. This table reports the mean Jaccard index
for each mapped source transcript and the chosen target transcript. The preliminary state of the chicken
annotation as compared to human limits the value of making absolute interpretations of the mappings’
correctness. In particular, this analysis doesn’t account for alignment to paralogous genes. However, it
provides a useful, if limited, relative comparison. Due to this asymmetry in the sets (chicken has just 13,391
transcripts) and not using independent ortholog assignment, we only consider those alignments that actually
overlap, not the non-overlapping or non-mapping annotations. This type of in depth ortholog comparison
would be of great value, however it is beyond the scope of this paper.

Alignment ‘ URL

With improved filtering https://alignment-output.s3.amazonaws.com/10plusway-mapq.hal
Without improved filtering | https://alignment-output.s3.amazonaws.com/10plusway-master.hal

Supplementary Table 12: Alignments compared in the paralogy-filtering evaluation.

Genome ‘ UCSC assembly version
Tree shrew tupChil
Kangaroo rat | dipOrdl1
Human hg38
Chimp panTro6
Rhesus rheMac8
Mouse mm10
Rat rn6

Dog canFam3
Cat felCat8
Pig susScrll
Cow bosTau8
Horse equCab3
Elephant loxAfr3

Supplementary Table 13: Assemblies used in the paralogy-filtering evaluation.

Coding genes missing from final set ~ Coding transcripts missing from final set

Genome

Outgroup filtering Best-hit filtering Outgroup filtering Best-hit filtering
Chimpanzee 1716 1612 6244 5872
Gorilla 1829 1647 6469 6100

Supplementary Table 14: Number of human genes / transcripts that have no assigned ortholog in the
“consensus” CAT gene set across the different alignments.
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Transcript projections filtered during initial pass

Genome

Chimpanzee Gorilla
Outgroup filtering 43709 31678
Best-hit filtering 13567 15765

Supplementary Table 15: Number of transcripts filtered out in the initial ps1CDnaFilter step of CAT,
which attempts to remove paralogs and processed pseudogenes.
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