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Materials and Methods

S.1 Data

COVID-19 deaths

We obtained COVID-19 death counts for each county in the United States from Johns

Hopkins University, Center for Systems Science and Engineering Coronavirus Resource Cen-

ter (28). This source provides the most comprehensive county-level COVID-19 data to date

reported by the US Centers for Disease Control and Prevention (CDC) and state health de-

partments, including the number of new and cumulative deaths and confirmed cases reported

in each county across the United States, updated daily. We collected the cumulative number

of deaths for each county up to and including June 18, 2020. County-level COVID-19 mor-

tality rates were defined for our analyses as the ratio of COVID-19 deaths to county-level

population size. While individual-level data would have allowed a more rigorous statistical

analyses, individual-level data on COVID-19 death is currently not available. As of May

11, 2020, the CDC reports that COVID-19 testing is being conducted at 97 public health

laboratories across the US and territories. The CDC website states that COVID-19 deaths

are identified using the International Statistical Classification of Diseases and Related Health

Problems (ICD) codes for cause of death recorded on death certificates. The ICD-10 code

indicating a COVID-19 related death is U07.1. The CDC notes that deaths reported with

this code “can include cases with or without laboratory confirmation.” They also note that

the data may be a↵ected by delays in reporting and by di↵erential reporting practices across

states. Also, there are numbers of excess deaths associated with COVID-19 especially during

the early stage of the pandemic.



Exposure to air pollution

We calculated county-level long-term exposure to PM2.5 (averaged from 2000 to 2016)

from an established exposure prediction model (9). The PM2.5 exposure levels were estimated

monthly at 0.01° × 0.01° grid resolution across the entire continental United States by fusing

PM2.5 measures from three di↵erent sources: ground-based monitors, GEOS-Chem chemical

transport models (CTM), and satellite observations. In short, CTM and satellite data are

combined to estimate a high-resolution PM2.5 surface across the whole United States, then

this surface is bias-corrected for ground-monitor PM2.5 observations using a geographically-

weighted regression. These estimates have been extensively cross-validated and the cross-

validated R2 for these models in the United States was reported to be 0.61, although the

accuracy varies across regions (9). We aggregated these levels spatially by averaging the

values for all grid points within a zip code and then averaging across zip codes within a

county. We obtained temporally averaged PM2.5 values (2000–2016) at the county level by

averaging estimated PM2.5 values within a given county. We computed the average 2016

PM2.5 exposure analogously for each county to use in sensitivity analyses.

To assess the sensitivity of our results to the specific PM2.5 prediction model used to

generate exposure estimates, we also collect the estimated daily PM2.5 modeled exposure

at a high spatio-temporal resolution of 1 km ⇥ 1 km grid network across the whole United

States using another well-validated ensemble-based prediction model (29). This model used

ensemble learning approaches to combine three machine learning models; a random forest

regression, a gradient boosting machine, and an artificial neural network. These machine

learning algorithms used more than 100 predictor variables from satellite data, land-use

information, weather variables, and output from chemical transport model simulations. We

use the same area-aggregation approach to aggregate the gridded data to the county-level

and then were averaged across the years 2000-2016.



Potential confounders

To adjust for confounding bias in the nationwide observational study, we use county-level

variables from numerous public sources. In the main analysis, we considered the following

19 county-level variables and one state-level variable as potential confounders (see also Ta-

ble S2): days since first COVID-19 case reported (a proxy for epidemic stage), population

density, percent of population �65 years of age, percent of the population 45-64 years of

age, percent of the population 15-44 years of age, percent of the population living in poverty,

median household income, percent of Black residents, percent of Hispanic residents, percent

of the adult population with less than high school education, median house value, percent of

owner-occupied housing, percent of the population with obesity, percent of current smokers,

number of hospital beds per unit population, and average daily temperature and relative hu-

midity for summer (June to September) and winter (December to February) for each county,

and days since issuance of stay-at-home order for each state. Note that publicly available

daily COVID-19 case counts at the county-level were only available starting March 22, 2020,

so that the measure of days since first COVID-19 case reported was truncated by this date.

Multiple socioeconomic and demographic variables were collected from the 2000 and 2010

Census, the 2005–2016 American Community Surveys and the 2009–2016 CDC Compressed

Mortality File. Specifically, we collect and calculate the following 11 county-level socioe-

conomic and demographic variables: proportion of residents older than 65 years of age,

proportion of residents 45-64 years of age, proportion of residents 15-44 years of age, propor-

tion of Hispanic residents, proportion of Black residents, median household income, median

home value, proportion of residents living in poverty, proportion of the adult residents with

less than high school education, population density, and proportion of residents that own

their house. The American Community Survey data were extracted for each zip code and

then averaging across zip codes within a county. We also collect two county-level health risk

factors: proportion of residents with obesity and proportion of residents that are current

smokers from the Robert Wood Johnson Foundation’s 2020 County Health Rankings.



Certain features of the counties’ COVID-19 outbreaks and response and the accessibility

of health care may also confound the relationship between PM2.5 and COVID-19 mortality.

One particularly important feature is the county’s point on the epidemic curve at the time

of analysis. Although this feature is di�cult to accurately measure, we approximate it

using time since first reported COVID-19 case. This information is also extracted from the

JHU-CSSE database (the same source used for the COVID-19 death counts). States also

issued “stay-at-home/shelter-in-place” orders in response to the outbreak at di↵erent times,

which likely a↵ected infection rates and could also be associated with PM2.5. Thus, we also

adjust our models for state-level time since implementation of stay-at-home/shelter-in-place

order, obtained from COVID-19 US state policy database. During the course of COVID-

19 outbreak, the availability of adequate hospital resources and of testing resources likely

influence COVID-19 outcomes and these may also be more widely available in urban areas

where PM2.5 is also higher. We collect county-level information on number of hospital beds

available in 2019 from Homeland Infrastructure Foundation-Level Data (HIFLD) and state-

level information on number of COVID-19 tests performed up to June 18, 2020 from the

COVID tracking project.

Meteorological variables are commonly adjusted for when studying the health impacts of

air pollution. We obtain meteorological variables on maximum daily temperature and relative

humidity data on 4 km ⇥ 4 km gridded rasters from gridMET via Google Earth Engine. We

average daily temperature and relative humidity for the summer (June to September) and

winter (December to February) period respectively across the period 2000-2016 and average

across grid rasters in each county. We adjust for all four of these weather variables in our

main models. The data used for this study are publicly available and sources are listed in

Table S1.



S.2 Statistical Methods

We fit a negative binomial mixed model (30-32) using COVID-19 deaths as the outcome

and PM2.5 as the exposure of interest to estimate the association between COVID-19 mor-

tality rate and long-term PM2.5 exposure, adjusted by covariates. The model included a

population size o↵set and was adjusted for all the potential confounders listed above. We

also included a random intercept by state to account for potential correlation in counties

within the same state, due to similar socio-cultural, behavioral, and healthcare system fea-

tures and similar COVID-19 response and testing policies. We report mortality rate ratios

(MRR), i.e., exponentiated parameter estimates from the negative binomial model, and 95%

confidence interval (CI). The MRR for PM2.5 can be interpreted as the relative increase in

the COVID-19 mortality rate associated with a 1 µg/m3 increase in long-term average PM2.5

exposure. We carried out all analyses in R statistical software and performed model fitting

using the lme4 package (33) For our main and secondary analyses, we fit Negative Binomial

regression models with a state-specific random intercept. All potential confounders are cen-

tered and scaled prior to analysis. Letting E [·] denote an expected value, the main model

takes the form

log[E(COVID-19 deaths)] = �0 + �1 PM2.5 + �2 population density + �3 percent

of the population � 65 + �4 percent of the population 45-64 + �5 percent of the

population 15-44 + �6 percent living in poverty + �7 median household income +

�8 percent black + �9 percent hispanic + �10 percent of adults with less than a

high school education + �11 median house value + �12 percent of owner-occupied

housing + �13 percent obese + �14 percent smokers + �15 days since first case +

�16 days since stay at home order + �17 number of hospital beds + �18 average

summer temperature + �19 average summer relative humidity + �20 average winter

temperature + �21 average winter relative humidity + o↵set[log(population size)]

+ random intercept(State)

We report the mortality rate ratios (MRR) and 95% CIs for PM2.5, corresponding to the



exponentiated parameter estimate (e�̂1). The MRR can be interpreted as the multiplicative

increase in the COVID-19 death rate associated with a 1 µg/m3 increase in long-term average

PM2.5 exposure. The statistical code in R is publicly available.

Model Assumption Diagnostics

Poisson regression models are a common choice for modeling count data, but the Poisson

distribution is restrictive in that it assumes that the mean is equal to the variance. In our

setting, because most counties have experienced few or no COVID-19 deaths thus far, the

mean of our outcome data is small (µ = 37.79); however the variance is large due to the

large death counts in several outbreak epicenters (�2 = 186934.90). Among the counties

with non-zero deaths, the mean of our outcome data is still relative small (µ = 63.28);

however the variance is large (�2 = 311431.70). The dispersion parameter for the quasi-

Poisson family is estimated to be 29.01, which indicates substantial over-dispersion. Thus,

the Poisson distributional assumption is likely to be inappropriate. The negative binomial

distribution provides more flexibility by introducing an additional parameter that allows the

count outcome variable with variance larger than mean. This flexibility also better accounts

for the large number of zeros in our outcome, without requiring the use of zero-inflated

models, which are more complex and less interpretable.

To assess the model fit of the standard Negative Binomial regression model comparing to

a zero-inflated Negative Binomial regression model, we conduct an Vuong closeness test for

the goodness-of-fit (34). We found no statistically significant improvement of model fit for a

zero-inflated Negative Binomial regression model (P-Value = 0.84). The AIC of the standard

Negative Binomial regression model is even slightly lower (AIC= 15012.8 vs. 15014.9), which

suggests a better model fit.



Quantifying Unmeasured Confounding Bias

Because this study is observational and the contributing factors to COVID-19 spread and

severity remain largely unknown at this early stage of the pandemic, unmeasured confound-

ing is a concern in our analyses. The E-value is a commonly used metric to evaluate the

potential impact of unmeasured confounding on results from an observational study (35).

For a pre-specified exposure variable of interest (long-term exposure to PM2.5), the E-value

quantifies the minimum strength of association that an unmeasured confounder must have,

with both the outcome (COVID-19 mortality rate) and exposure (long-term exposure to

PM2.5) conditional on all of the potential confounders included in the regression model, to

explain away the estimated exposure-outcome relationship. We report the E-value for the

MRR estimate for PM2.5 under the main model with 20 potential confounders. We calcu-

lated the E-values for our reported MRRs per 1 µg/m3 increase of long-term exposure to

PM2.5. The calculation of E-values can be implemented through the E-value calculator by

Mathur et al. (36), available at https://www.evalue-calculator.com/.

Secondary Analyses

In addition to the main analysis, we conducted seven secondary analyses to assess the

robustness of our results to the confounder set used, outliers, and the model specifications.

First, because the New York metropolitan area has experienced the most severe COVID-

19 outbreak in the United States to date, we anticipated that it would strongly influence our

analysis. As a result, we repeated the analysis excluding the counties comprising the New

York metropolitan area, as defined by the Census Bureau.

Second, although in our main analysis we adjusted for days since first COVID-19 case

reported to capture the size of an outbreak in a given county, this measure is imprecise.

To further investigate the potential for residual confounding bias (i.e., if counties with high

PM2.5 exposure also tend to have large outbreaks relative to the population size, then their

death rates per unit population could appear di↵erentially elevated, inducing a spurious



correlation with PM2.5), we also conducted analyses excluding counties with fewer than 10

confirmed COVID-19 cases.

Third, we omitted an anticipated strong confounder, days since first COVID-19 case

reported, from the model. Fourth, we additionally adjusted our models for the number of

tests performed at the state level to evaluate how state-level di↵erences in testing policies

might a↵ect our results. Fifth, we additionally adjusted our models for county-level estimated

percentage of people with COVID-19 symptoms to evaluate how the size of the outbreak

in each county might a↵ect our results. Sixth, we additionally adjusted our models for

the longitude and latitude of the centroid of each county to evaluate how potential spatial

residual confounding might a↵ect our results. Seventh, we introduced PM2.5 into our models

as a categorical variable, categorized at the empirical quintiles, to assess the sensitivity of

our results to the assumption of a linear e↵ect of PM2.5 on COVID-19 mortality rates.

Sensitivity Analyses

We conducted more than 80 sensitivity analyses to assess the robustness of our results

to data and modeling choices. First, we repeated all the analyses using alternative methods

to estimate exposure to PM2.5 (29). Second, we fit the models, modifying the adjustment

for confounders, such as using a log transformation or categorized versions of some of the

covariates. Third, because our study relies on observational data, our results could be

sensitive to modeling choices (e.g., distributional assumptions or assumptions of linearity).

We evaluated the sensitivity to such choices by considering alternative model specifications

and by fitting models stratified by county urban-rural status. Fourth, we repeat our analysis

daily from April 18, 2020 to June 18, 2020 to evaluate the sensitivity to the temporal changes

during the COVID-19 pandemic.



S.3 Analysis Results

Table S1 summarizes our data sources and their provenance, including links where the

raw data can be extracted directly. Table S2 describes the data used in our analyses.

In Figure S1-S2, we report the MRR and 95% CI for PM2.5 from all secondary analyses.

In these analyses, we separately (a) omitted New York metropolitan area; (b) excluded

counties with fewer than 10 confirmed COVID-19 cases; (c) omitted time since first reported

COVID-19 case from the model; (d) additionally adjusted the model for number of tests

performed; (e) additionally adjusted the model for estimated percentage of people with

COVID-19 symptoms; (f) additionally adjusted the model for the longitude and latitude;

and (g) treated PM2.5 as a categorical variable. The results of these analyses were consistent

with the main analysis. For the analysis of the PM2.5 categorized into quintiles, the MRR for

the k-th quintile can be interpreted as the increase in COVID-19 mortality rate associated

with a change from the first quintile to the k-th quintile in long-term PM2.5 exposure. The

MRR estimates from this model monotonically increased as PM2.5 increased, supporting the

assumption of a linear relationship between PM2.5 and COVID-19 mortality rates.

For our main analysis, we found that the E-value for the estimated MRR for PM2.5 was

1.46. That is, for an unmeasured confounder U to fully account for the estimated e↵ects

of the long-term PM2.5 exposure (E) on the COVID-19 mortality (Y ), it would have to

be associated with both long-term PM2.5 exposure and with mortality by a risk ratio of at

least 1.46-fold each, through pathways independent of all covariates already included in the

model. In other words, if we were to adjust for this U in our model, the estimated MRR

for PM2.5 would be reduced to 1 (the null value). A 1.46 risk ratio means that U would

need to meet the following two criteria: 1) a 1-unit increase in U would need to lead to a

46% increase in the risk of mortality (Y ); and 2) a 1-unit increase in U would need to be

associated with a 46% increase in PM2.5 exposure levels. To get a sense of the magnitude of

the required confounding e↵ect, we also computed the E-value for some of our key measured

confounders for comparison. The E-values for days since first COVID-19 case reported (1.15),



the weather variables (1.08), number of hospital beds (1.00), the behavioral risk factors (1.01)

and the longitude/latitude (1.10) were significantly smaller than the reported E-values for

the required unmeasured confounder. This suggests that any unmeasured confounder would

need to have a confounding e↵ect substantially larger than any of our observed confounders

in order to explain away the relationship between PM2.5 and COVID-19 mortality rate.

Alternative PM2.5 Estimates

To evaluate the sensitivity of our results to the approach used to calculate long-term pol-

lution exposure measure, we repeat our analyses using four relevant sets of exposure data.

Using the modeled exposure estimates of van Donkelaar et al. (9), we test the 17-year aver-

age concentrations (2000-2016), i.e., the primary analysis results, and the one-year average

concentrations using the most recent available year (2016), and we refer to the analyses

using these exposures as P-1 and P-2, respectively. Using the modeled exposure estimates

of Di et al. (29), we test the 17-year average concentrations (2000-2016) and the one-year

average concentrations using the most recent available year (2016), refered to as P-3 and

P-4 respectively. In each analysis, we adjust for the set of potential confounders described

in Section S.1. The finding that long-term exposure to PM2.5 is positively associated with

increased COVID-19 mortality holds regardless of which pollution data are used. When ad-

justed for the full confounder set, analyses using 17-year average concentrations (2000-2016)

(P-1 and P-3) give consistent point estimates for PM2.5 and attain statistical significance

using di↵erent pollution data sources. We note the analysis results using P-2 and P-4 are

less agreed with each other, i.e., P-2 is notably lower, yet P-4 is notably higher, though both

still attain statistical significance. Because the focus of our study is to assess the cumulative

chronic e↵ect of long-term exposure to PM2.5, we use 17-year mean exposure data in our

main report.



Di↵ering Confounder Sets

For each of these pollution data sources, we evaluate the model sensitivity to the set of

confounders adjusted for by individually omitting each of the following from the confounder

set: 1) days since first reported COVID-19 case; 2) number of hospital beds in the county; 3)

behavioral risk factors, i.e., population obesity rate and percent of population who are current

smokers; and 4) meteorological (weather) variables, i.e., summer and winter temperature and

relative humidity. We also conduct analyses adjusting for the following additional variables

(separately): 1) the total number of COVID-19 tests performed up to June 18, 2020 in each

state; 2) the estimated percentage of people with COVID-19 symptoms in each county; and

3) the longitude and latitude of each county. E↵ect estimates are presented as mortality rate

ratio (MRR) per 1 µg/m3 increase in annual PM2.5.

We find consistent positive associations between long-term exposure to PM2.5 and in-

creased mortality for COVID-19 in these analyses, with MRR between 1.09�1.13 across P-1

models that adjust for di↵erent potential confounders (similar results for P-2, P-3, and P-4).

The removal of days since first reported COVID-19 case from the confounder set consistently

elevates the PM2.5 point estimates. This suggests that days since first reported COVID-19

case is a strong confounder, as it captures the di↵erent stages on the epidemic curve of each

county.

Assessing the Impact of Outbreak Size

To evaluate the possible impact of confounding bias due to epidemic outbreak sizes, which

are not accurately captured by current data, we conduct analyses 1) excluding counties in

New York metropolitan area where the major outbreak is happening 2) excluding counties

with less than 10 confirmed COVID-19 cases. In the analysis that excludes counties in

New York metropolitan area, we still find a statistically significant association between long-

term exposure to PM2.5 and increased mortality for COVID-19 with MRR 1.11 and 95%

CI (1.05, 1.17) for P-1. In the analysis that excludes counties with less than 10 confirmed



COVID-19 cases, we also find a similar statistically significant association with increased

mortality of COVID-19 with magnitude of MRR 1.11 and 95% CI (1.05, 1.17) for P-1.

Di↵ering Model Specifications

To evaluate the sensitivity to modeling choices (e.g., distributional assumptions or as-

sumptions of linearity), we conduct sensitivity analyses by 1) treating PM2.5 as a categorical

variable (categorized at empirical quintiles), 2) adjusting for population density under a log-

arithm transformation rather than a categorical variable, 3) using a zero-inflated negative

binomial mixed model, 4) using a fixed e↵ect negative binomial model, 5) adjusting for pop-

ulation size as a covariate, rather than as an o↵set. We also conducted stratified analyses

based on county urban/rural status. Counties’ classifications are obtained from the National

Center for Health Statistics Urban-Rural Classification Scheme for Counties (37), which as-

signs each US county to one of six urban-rural categories: Large central metro, Large fringe

metro, Medium metro, Small metro, Micropolitan, and Non-core. Based on this, we create

a two-level urban/rural variable, with Micropolitan and Non-core defined as rural, and all

other types defined as urban. We then conduct the analysis separately for urban counties

and rural counties.

In the analysis that treats PM2.5 as a categorical variable, we found the magnitude of the

MRRs increases dramatically and monotonically as the quintile of PM2.5 exposures increases

for P-1. Similar results are found when using P-2, P-3, and P-4. Such findings suggest that

the assumption of a linear e↵ect of PM2.5 on COVID-19 mortality rate is reasonable and that

there is no threshold for the e↵ect of long-term exposure to PM2.5 on COVID-19 mortality.

In the analysis that adjusts for population density under a logarithm transformation, we

again find a consistent statistically significant positive association with increased COVID-19

mortality. In the analysis that uses a negative binomial model accounting for zero-inflation,

we find identical results as of our main analyses. In the analysis that uses a fixed e↵ect

negative binomial model, we find a very similar e↵ect size compared to our main analyses.



In the analysis that adjusts for population size directly, rather than as an o↵set, we find

long-term exposure to PM2.5 is still significantly positively associated with the number of

COVID-19 deaths, although here the MRR refers to the increase in the mortality count ratio

of COVID-19 per unit increase of PM2.5, rather than the increase in the mortality rate ratio.

The results of the urban/rural stratified analyses suggest an interesting pattern– the

positive association between PM2.5 and COVID-19 mortality appears to be approximately

the same in rural counties [MRR 1.07, 95% CI (0.98, 1.16)] and in urban counties [MRR

1.09, 95% CI (1.02, 1.16)] for P-1. This confirms that our results are not dominated only by

large urban areas where the most severe outbreaks have been reported (and often tend to

be highly polluted). While the results from the rural stratified analyses are not statistically

significant, likely due to smaller sample sizes and lower power, the magnitude of the e↵ect

sizes is large.

Di↵ering Study Time

To evaluate the sensitivity to the temporal changes in many aspects during the COVID-

19 pandemic, we repeat our analysis using daily cumulative COVID-19 death counts from

April 18, 2020 to June 18, 2020. We found a very consistent association between long-term

exposure to PM2.5 and COVID-19 mortality throughout the time period (See Figure S3).

In particular, these findings suggest that a) the di↵erent epidemic stages vary spatially and

temporally, b) the sparse super-spreading events take place randomly, and c) the excess

deaths in the early stage of the pandemic may not be able to cause strong confounding

biases that can explain away this robust association between historical long-term exposure

to PM2.5 and COVID-19 mortality. Note there is a slightly upward trend of the MRR

estimates starting since May 20, 2020. We hypothesis this may be due to a) the early excess

deaths occurs more often in areas with both higher COVID-19 mortality and higher air

pollution, e.g., New York metropolitan area (23), and thus leads to downward bias in the

MRR estimates in earlier days; b) the lift of social distancing measures (e.g., stay-at-home-



order) in certain areas may confound the results in later days. Future investigation is needed

to provide reasons behind this upward trend, yet here we conclude that the association is

consistent and remains statistically significant throughout the whole time period from April

18, 2020 to June 18, 2020.

S.4 Analysis Discussion

This is the first nationwide study in the United States to estimate the relationship be-

tween long-term exposure to PM2.5 and COVID-19 death rates. We found statistically signif-

icant evidence that an increase of 1 µg/m3 in long-term PM2.5 exposure is associated with an

11% (95% CI, 6 to 17%) increase in the county’s COVID-19 mortality rate. Our results were

adjusted for a large set of socioeconomic, demographic, weather, behavioral, epidemic stage,

social isolation measures, and healthcare-related confounders and demonstrated robustness

across a wide range of sensitivity analyses.

In our previous study of 60 million Americans older than 65 years of age, we found that

a 1 µg/m3 in long-term PM2.5 exposure is associated with a 0.73% increase in the rate of

all-cause mortality (25). Therefore, the same small increase in long-term exposure to PM2.5

led to an increase in the COVID-19 death rate of a magnitude 15 times that estimated for all-

cause mortality. Although the epidemiology of COVID-19 is evolving, there is a large overlap

between causes of death in COVID-19 patients and the conditions caused and/or exacerbated

by long-term exposure to fine particulate matter (PM2.5). The Global Burden of Disease

Study identified air pollution as a risk factor for total and cardiovascular disease mortality,

and it is believed to have contributed to nearly 5 million premature deaths worldwide in

2017 alone (38). The association between PM2.5 and health, including both infectious and

chronic respiratory diseases, cardiovascular diseases, neurocognitive disease, and pregnancy

outcomes in the United States and worldwide is well established (16, 25, 39-43). A recent

study by our group also documented a statistically significant association between long-term



exposures to PM2.5 and ozone and risk of ARDS among older adults in the United States

(44).

Our results are consistent with previous findings that air pollution exposure increases

severe outcomes during infectious disease outbreaks. Ciencewicki and Jaspers (16) provide

a review of the epidemiologic and experimental literature linking air pollution to infectious

disease. During the 2003 outbreak of Severe Acute Respiratory Syndrome (SARS), a type

of coronavirus closely related to COVID-19, Cui et al. (45) reported that locations in China

with a moderate or high long-term air pollution index (API) had SARS case fatality rates

126% and 71% higher, respectively, than locations with low API under an ecological study.

Long-term particulate matter exposure has been associated with hospitalizations for pneu-

monia in the well-controlled quasi-experimental conditions provided by the closing of the

Utah Valley Steel Mill (46), and a link between long-term PM2.5 exposure and pneumonia

and influenza deaths were reported in a well-validated cohort study (4). Several studies

have reported associations between short-term PM2.5 exposure and poor infectious disease

outcomes (47, 48), including higher hospitalization rates or increased medical encounters for

influenza, pneumonia, and acute lower respiratory infections. In these studies, and in the lit-

erature on the association between air pollution and chronic disease outcomes, relationships

with long-term pollution exposure tend to be stronger than relationships with short-term

exposure (25, 49, 50), and the large e↵ect estimate in our study is consistent with this trend.

Relationships have also been detected between pollution exposures and severe outcomes in

the context of past pandemics. Studies found particulate matter exposure to be associated

with the mortality during the H1N1 influenza pandemic in 2009 (51, 52). Recent studies

have even used historic data to show a relationship between air pollution from coal burning

and mortality in the 1918 Spanish influenza pandemic (53).

With regards to the potential biological mechanisms that may explain the relationship

between air pollution and viral outcomes, PM2.5 exposure is known to be associated with

many of the cardiovascular and respiratory comorbidities that dramatically increase the risk



of death in COVID-19 patients. We hypothesize that the e↵ects captured here are largely

mediated by these comorbidities and pre-existing PM-related inflammation and cellular dam-

age (50, 54), as suggested by a recent commentary (7). Experimental studies (16, 55-57)

also suggest that exposure to pollution can suppress early immune responses to the infection,

leading to later increases in inflammation and worse prognosis, which may also explain our

findings. Some studies (58, 59) have suggested that air pollution can also proliferate the

transmission of infectious disease. If COVID-19 spread is indeed impacted by air pollution

levels, which is not yet known, some of the e↵ects detected in our study could be mediated

by this factor as well.

Our analysis provides a timely characterization of the county-level relationship between

historical exposure to air pollution and COVID-19 deaths in the United States. The analysis

relies on up-to-date county-level COVID-19 data and well-validated air pollution exposure

measures. The inability to accurately quantify the number of COVID-19 cases due to limited

testing capacity prevent us from calculating accurate case fatality rates. We instead used

total population size as the denominator for our mortality rates, and we additionally adjusted

our models for numerous anticipated proxies of outbreak size, including time since first

reported COVID-19 case, time since stay-at-home order was issued, and population density.

Throughout the analysis, we focus on the strengths and limitations of the ecological

regression study design and highlight challenges due to data quality, confounding bias, ex-

posure and outcome misclassification. Although results were robust to sensitivity analyses,

the inherent limitations of the ecological study design prevent us from making statements

about individual-level associations and about causality.

S.5 Code

We provide code for all analyses reported in the paper. The code can be found on

https://github.com/wxwx1993/PM COVID.

https://github.com/wxwx1993/PM_COVID
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Figure S1: COVID-19 mortality rate ratios (MRR) per 1 µg/m3 increase in PM2.5 and
95% CI. The main analyses were adjusted for 20 socioeconomic, demographic, behavioral,
meteorological, and healthcare confounders. We fit models excluding counties from NY
metropolitan area, and excluding counties with < 10 confirmed cases. We conduct analyses
omitting the following variables from the adjustment set: days since first COVID-19 case
(day since 1st case), smoking rate and obesity rate (BRFSS), seasonal temperature and hu-
midity (weather), and number of hospital beds. We conduct analyses adjusting for additional
variables: the total number of COVID-19 tests performed up to June 18, 2020, the estimated
percent of people with COVID-19 symptoms and the longitude/latitude of each county. We
repeat our analyses using four relevant sets of exposure data (P-1, P-2, P-3 and P-4).
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Figure S2: COVID-19 mortality rate ratios (MRR) per empirical quintile increase in PM2.5

and 95% CI. The MRR can be interpreted as the percentage increase in the COVID-19 death
rate associated with each empirical quintile increase of long-term average PM2.5 compared
to the baseline quintile (Q1). We repeat our analyses using four relevant sets of exposure
data (P-1, P-2, P-3 and P-4).
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Figure S3: Daily COVID-19 mortality rate ratios (MRR) per 1 µg/m3 increase in PM2.5 and
95% CI. We conduct our main analysis using daily cumulative COVID-19 death counts from
April 18, 2020 to June 18, 2020.



Table S1: Publicly available data sources used in the analyses.
Source Data

Outcome: COVID-19
Deaths

Johns Hopkins University the
Center for Systems Science
and Engineering (JHU-CSSE)
Coronavirus Resource Center
(https://coronavirus.jhu.edu/)

County-level COVID-19 death
count up to and including June 18,
2020

Exposure: PM2.5 con-
centrations

Atmospheric Composition Analysis
Group (https://sites.wustl.edu/
acag/)

0.01° × 0.01° grid resolution PM2.5

prediction, averaged across the pe-
riod 2000–2016 and averaged across
grid cells in each county

Confounders for main
analysis

US Census/American Community
Survey (https://www.census.gov/
programs-surveys/acs/data.html)

County-level socioeconomic and de-
mographic variables for 2012–2016

Robert Wood Johnson Foundation
County Health Rankings (https://
www.countyhealthrankings.org/)

County-level behavioral risk factor
variables for 2020

JHU-CSSE Coronavirus Resource
Center

Time since first reported COVID-19
case

Raifman et al., Boston Univer-
sity School of Public Health,
COVID-19 United States
state policy database (https:
//github.com/USCOVIDpolicy/

COVID-19-US-State-Policy-Database)

Time since issuance of stay-at-home
order

Homeland Infrastructure
Foundation-Level Data (HIFLD)
(https://hifld-geoplatform.
opendata.arcgis.com)

County-level number of hospital
beds in 2019

Gridmet via Google Earth en-
gine (http://www.climatologylab.
org/gridmet.html)

4 km × 4 km temperature and rel-
ative humidity predictions, summer
and winter averaged across the pe-
riod 2000–2016 and averaged across
grid cells in each county

Additional confounders
for secondary analyses

The COVID tracking project
(https://covidtracking.com/)

State level number of COVID-19
tests performed up to and including
June 18, 2020

Carnegie Mellon University Delphi
Research Center (https://github.
com/cmu-delphi/delphi-epidata)

Estimated percentage of people with
COVID-19 symptoms, based on sur-
vey data

https://coronavirus.jhu.edu/
https://sites.wustl.edu/acag/
https://sites.wustl.edu/acag/
https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html
https://www.countyhealthrankings.org/
https://www.countyhealthrankings.org/
https://github.com/USCOVIDpolicy/COVID-19-US-State-Policy-Database
https://github.com/USCOVIDpolicy/COVID-19-US-State-Policy-Database
https://github.com/USCOVIDpolicy/COVID-19-US-State-Policy-Database
https://hifld-geoplatform.opendata.arcgis.com
https://hifld-geoplatform.opendata.arcgis.com
http://www.climatologylab.org/gridmet.html
http://www.climatologylab.org/gridmet.html
https://covidtracking.com/
https://github.com/cmu-delphi/delphi-epidata
https://github.com/cmu-delphi/delphi-epidata


Table S2: Characteristics of the study cohort up to and including June 18, 2020, mean
(standard deviation).

Total PM2.5< 8 µg/m3 PM2.5� 8 µg/m3

(3,087 counties) (1,217 counties) (1,870 counties)

COVID-19 death rate (per 100,000) 15.5 (31.2) 7.0 (19.7) 21.0 (35.7)
Average PM2.5(µg/m3) 8.4 (2.5) 5.7 (1.4) 10.1 (1.2)
Rate of hospital beds (per 100,000) 300.8 (428.4) 338.8 (548.2) 276.1 (325.3)
Days since first case 76.9 (21.1) 68.2 (27.8) 82.6 (12.2)
Days since stay-at-home order 59.4 (38.1) 52.4 (41.6) 63.9 (34.9)
% Smokers 17.4 (3.5) 15.8 (3.1) 18.5 (3.4)
% Obese 32.9 (5.4) 31.2 (5.1) 34.0 (5.3)
% In poverty 10.5 (5.9) 9.6 (5.8) 11.0 (5.9)
% Less than high school education 21.3 (10.7) 16.6 (8.8) 24.4 (10.6)
% Owner-occupied housing 75.0 (8.3) 76.4 (7.6) 74.1 (8.6)
% Hispanic 7.5 (12.3) 9.6 (13.6) 6.1 (11.1)
% Black 8.0 (14.1) 1.0 (1.9) 12.6 (16.5)
% �65 years of age 16.0 (4.1) 17.4 (4.6) 15.0 (3.4)
% 45-64 years of age 26.4 (3.0) 26.9 (3.8) 26.1 (2.4)
% 15-44 years of age 37.6 (6.5) 35.2 (8.2) 39.2 (4.5)
Population density (person/km2) 149.5 (699.2) 46.1 (146.9) 216.9 (884.4)
Median household income ($1,000) 49.3 (13.4) 50.6 (11.1) 48.4 (14.6)
Median house value ($1,000) 135.7 (89.9) 140.4 (87.8) 132.7 (91.1)
Average summer temperature (°F) 86.0 (5.7) 83.7 (6.7) 87.4 (4.4)
Average winter temperature (°F) 45.1 (11.9) 39.4 (11.4) 48.7 (10.7)
Average summer relative humidity (%) 89 (9.6) 83.2 (11.5) 92.8 (5.5)
Average winter relative humidity (%) 87.5 (4.8) 88.0 (5.6) 87.2 (4.1)



Table S3: Main, secondary and sensitivity analysis results for exposure data P-1, i.e., PM2.5

exposure measured as the 17-year average concentration 2000-2016 by van Donekelaar et al.
(9). Point estimates, 95 % confidence intervals, and p-values for the mortality rate ratio
(MRR) for PM2.5 .

Analysis N Counties MRR (CI) P-Value

Main analysis 3089 1.11(1.06, 1.17) 0.00
Omit # beds 3089 1.11(1.06, 1.17) 0.00
Omit BRFSS 3089 1.11(1.06, 1.17) 0.00
Omit weather 3089 1.12(1.07, 1.17) 0.00
Omit outbreak time 3089 1.13(1.07, 1.19) 0.00
Exclude counties in New York Metropolitan 3062 1.11(1.05, 1.17) 0.00
Exclude counties with <10 confirmed cases 2436 1.11(1.05, 1.17) 0.00
Rural counties 1940 1.07(0.98, 1.16) 0.14
Urban counties 1149 1.09(1.02, 1.16) 0.01
Categorize PM into quintiles 3089
Q1 (0-5.79) 0
Q2 (5.79-8.05) 1.07(0.84, 1.37) 0.57
Q3 (8.05-9.53) 1.59(1.02, 2.10) 0.00
Q4 (9.53-10.74) 2.00(1.45, 2.76) 0.00
Q5 (10.74+) 2.02(1.43, 2.86) 0.00
Add # tested 3089 1.11(1.05, 1.17) 0.00
Add COVID-like symptons 1468 1.14(1.08, 1.21) 0.00
Add Longitude and Latitude 3089 1.10(1.03, 1.18) 0.00
Add Longitude only 3089 1.09(1.03, 1.16) 0.00
Add Latitude only 3089 1.13(1.07, 1.19) 0.00
Adjust log(population density) as covariate 3089 1.11(1.05, 1.17) 0.00
Adjust log(population) as covariate 3089 1.12(1.06, 1.18) 0.00
Adjust population as covariate 3089 1.16(1.09, 1.23) 0.00
Use zero inflated Negative Binomial model 3089 1.11(1.06, 1.17) 0.00
Use fixed e↵ects Negative Binomial model 3089 1.11(1.05, 1.17) 0.00

1. Five boroughs of New York City are considered as one county aligning with COVID-19 statistics.

2. ”Rural” represents ”Micropolitan” and ”Non-core” counties defined by 2013 NCHS Urban-Rural

Classification Scheme.



Table S4: Main, secondary and sensitivity analysis results for exposure data P-2, i.e., PM2.5

exposure measured as 2016 average by van Donekelaar et al. (9). Point estimates, 95 %
confidence intervals, and p-values for the mortality rate ratio (MRR) for PM2.5 .

Analysis N counties MRR (CI) P-Value

Main analysis 3089 1.09(1.03, 1.16) 0.00
Omit # beds 3089 1.09(1.03, 1.16) 0.00
Omit BRFSS 3089 1.09(1.03, 1.16) 0.00
Omit weather 3089 1.11(1.05, 1.17) 0.00
Omit outbreak time 3089 1.11(1.05, 1.18) 0.00
Exclude counties in New York Metropolitan 3062 1.10(1.03, 1.16) 0.00
Exclude counties with <10 confirmed cases 2436 1.09(1.03, 1.16) 0.00
Rural counties 1940 1.02(0.93, 1.13) 0.68
Urban counties 1149 1.10(1.03, 1.18) 0.00
Categorize PM into quintiles 3089
Q1 (0-4.11) 0
Q2 (4.11-5.62) 1.09(0.86, 1.38) 0.49
Q3 (5.62-6.83) 1.40(1.07, 1.84) 0.02
Q4 (6.83-7.85) 1.47(1.09, 1.98) 0.01
Q5 (7.85+) 1.57(1.14, 2.17) 0.01
Add # tested 3089 1.09(1.03, 1.16) 0.00
Add COVID-like symptons 1468 1.15(1.08, 1.23) 0.00
Add Longitude and Latitude 3089 1.08(1.01, 1.15) 0.02
Add Longitude only 3089 1.07(1.01, 1.14) 0.03
Add Latitude only 3089 1.11(1.05, 1.17) 0.00
Adjust log(population density) as covariate 3089 1.08(1.01, 1.15) 0.02
Adjust log(population) as covariate 3089 1.09(1.03, 1.16) 0.00
Adjust population as covariate 3089 1.13(1.06, 1.21) 0.00
Use zero inflated Negative Binomial model 3089 1.09(1.03, 1.16) 0.00
Use fixed e↵ects Negative Binomial model 3089 1.09(1.02, 1.15) 0.01



Table S5: Main, secondary and sensitivity analysis results for exposure data P-3, i.e., PM2.5

exposure measured as the 17-year average concentrations 2000-2016 by Di et al. (29). Point
estimates, 95 % confidence intervals, and p-values for the mortality rate ratio (MRR) for
PM2.5 .

Analysis N counties MRR (CI) P-Value

Main analysis 3089 1.11(1.05, 1.17) 0.00
Omit # beds 3089 1.11(1.05, 1.17) 0.00
Omit BRFSS 3089 1.10(1.05, 1.16) 0.00
Omit weather 3115 1.11(1.06, 1.17) 0.00
Omit outbreak time 3089 1.14(1.08, 1.20) 0.00
Exclude counties in New York Metropolitan 3062 1.11(1.05, 1.17) 0.00
Exclude counties with <10 confirmed cases 2436 1.09(1.03, 1.15) 0.00
Rural counties 1940 1.09(1.00, 1.18) 0.04
Urban counties 1149 1.07(1.01, 1.14) 0.02
Categorize PM into quintiles 3089
Q1 (0-6.73) 0
Q2 (6.73-9.2) 1.59(1.22, 2.06) 0.00
Q3 (9.2-10.45) 1.88(1.40, 2.53) 0.00
Q4 (10.45-11.49) 2.24(1.63, 3.08) 0.00
Q5 (11.49+) 1.87(1.33, 2.61) 0.00
Add # tested 3089 1.11(1.05, 1.16) 0.00
Add COVID-like symptons 1468 1.14(1.07, 1.21) 0.00
Add Longitude and Latitude 3089 1.12(1.05, 1.19) 0.00
Add Longitude only 3089 1.12(1.06, 1.19) 0.00
Add Latitude only 3089 1.11(1.06, 1.17) 0.00
Adjust log(population density) as covariate 3089 1.10(1.05, 1.16) 0.00
Adjust log(population) as covariate 3089 1.11(1.05, 1.17) 0.00
Adjust population as covariate 3089 1.13(1.07, 1.20) 0.00
Use zero inflated Negative Binomial model 3089 1.11(1.05, 1.17) 0.00
Use fixed e↵ects Negative Binomial model 3089 1.10(1.05, 1.16) 0.00



Table S6: Main, secondary and sensitivity analysis results for exposure data P-4, i.e., PM2.5

exposure measured as 2016 average by Di et al. (29). Point estimates, 95 % confidence
intervals, and p-values for the mortality rate ratio (MRR) for PM2.5 .

Analysis N counties MRR (CI) P-Value

Main analysis 3089 1.15(1.07, 1.23) 0.00
Omit # beds 3089 1.15(1.07, 1.23) 0.00
Omit BRFSS 3089 1.14(1.07, 1.23) 0.00
Omit weather 3115 1.14(1.07, 1.21) 0.00
Omit outbreak time 3089 1.17(1.09, 1.26) 0.00
Exclude counties in New York Metropolitan 3062 1.15(1.08, 1.24) 0.00
Exclude counties with <10 confirmed cases 2436 1.14(1.06, 1.22) 0.00
Rural counties 1940 1.09(0.97, 1.22) 0.13
Urban counties 1149 1.14(1.05, 1.24) 0.00
Categorize PM into quintiles 3089
Q1 (0-4.9) 0
Q2 (4.9-6.5) 1.46(1.14, 1.87) 0.00
Q3 (6.5-7.41) 1.98(1.49, 2.64) 0.00
Q4 (7.41-8.09) 2.00(1.49, 2.70) 0.00
Q5 (8.09+) 2.00(1.46, 2.74) 0.00
Add # tested 3089 1.15(1.07, 1.23) 0.00
Add COVID-like symptons 1468 1.20(1.11, 1.30) 0.00
Add Longitude and Latitude 3089 1.14(1.05, 1.22) 0.00
Add Longitude only 3089 1.17(1.09, 1.25) 0.00
Add Latitude only 3089 1.17(1.09, 1.25) 0.00
Adjust log(population density) as covariate 3089 1.13(1.06, 1.22) 0.00
Adjust log(population) as covariate 3089 1.15(1.07, 1.23) 0.00
Adjust population as covariate 3089 1.19(1.11, 1.29) 0.00
Use zero inflated Negative Binomial model 3089 1.15(1.07, 1.23) 0.00
Use fixed e↵ects Negative Binomial model 3089 1.15(1.07, 1.23) 0.00
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