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Supplementary Test
4-(1-Hydroxypropyl)phenol (1a):
OH

OH

4-Hydroxybenzaldehyde (1.2 g, 10 mmol) was added into the solution of grignard reagent
that was freshly prepared from bromoethane (3.3 g, 30 mmol) and magnesium turnings (0.7 g, 30
mmol) in anhydrous THF (20 mL) at 0 °C. The reaction mixture was stirred at room temperature
for 1 h. After the reaction, the mixture was quenched with cold water (1 mL) and acidified with
saturated NH4Cl solution (20 mL). Ethyl acetate (50 mL) was added into the stirred organic layer
at room temperature. The organic layer was then successively washed with deionized water (50
mLx3) and saturated brine (50 mL), dried by anhydrous MgSO4. After the concentration in
vacuum rotavap, 0.5 g of 1a was obtained finally. 'H NMR (400 MHz, DMSO-d6): § 9.18 (s, 1H),
7.09~7.07 (d, 2H), 6.69~6.67 (d, 2H), 4.90~4.89 (d, 1H), 4.34~4.28 (q, 1H), 1.64~1.47 (m, 2H),
0.80~0.76 (t, 3H). *C NMR (101 MHz, DMSO-d6): & 156.46, 136.87, 127.41, 115.06, 73.91,
32.51, 10.69.

1-(4-Methoxyphenyl)-1-propanol (2a):
~o

OH

Sodium borohydride (3.8 g, 100 mmol) was added into the solution of 4'-
methoxypropiophenone (16.4 g, 100 mmol) in THF/H>0 (100 mL/30 mL) at 0 °C. The reaction
mixture was stirred at room temperature for 24 h. After the reaction, the mixture was sat for 10
min, and then the organic layer was separated. Ethyl acetate (50 mL) was added into the stirred
organic layer at room temperature. The organic layer was then successively washed with deionized
water (50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSQ4. After the concentration
in vacuum rotavap, 15.1 g of 2a was obtained finally. '"H NMR (400 MHz, DMSO-d6): § 7.24~7.22
(d, 2H), 6.88~6.86 (d, 2H), 5.03~5.02 (d, 1H), 4.42~4.37 (q, 1H), 3.72 (s, 3H), 1.68~1.52 (m, 2H),
0.83~0.79 (t, 3H). *C NMR (101 MHz, DMSO-d6): & 158.51, 138.62, 127.43, 113.70, 73.80,
55.38,32.57, 10.58.

2-(2-Methoxyphenoxy)-1-(4-methoxyphenyl) propane-1, 3-diol (3a):



OH
o OH

o
o

Bromine (33.6 g, 210 mmol) was added dropwise into the solution of 4'-
methoxyacetophenone (30.1 g, 200 mmol) and AICl; (667 mg, 5 mmol) in diethyl
ether/tetrahydrofuran (50 mL/150 mL) at 0 °C~5 °C. The reaction mixture was then stirred at room
temperature for lh. After the reaction, the mixture was poured into ice water (1000 mL) and
extracted by ethyl acetate (200 mLx2). The organic layer was then successively washed with
deionized water (200 mLx3) and saturated brine (100 mL), dried by anhydrous MgSO4 and
concentrated in vacuum. Finally, 31.1 g of 2-bromo-1-(4-methoxyphenyl) ethanone was obtained
by recrystallization process.

2-Methoxyphenol (16.4 g, 132 mmol) and K>CO3 (33.1 g, 240 mmol) were added into the
solution of 2-bromo-1-(4-methoxyphenyl) ethanone (27.5 g, 120 mmol) in acetone (200 mL) at
room temperature. The reaction mixture was stirred at room temperature for 24 h. After the
reaction, the mixture was poured into 500 mL ice water and extracted by ethyl acetate (100 mLXx2).
The organic layer was then successively washed with deionized water (100 mLx3) and saturated
brine (100 mL), dried by anhydrous MgSO4 and concentrated in vacuum. Finally, 27.1 g of 2-(2-
methoxyphenoxy)-1-(4-methoxyphenyl) ethanone was obtained by recrystallization process.

Formaldehyde solution (37%, 8.1 g, 99 mmol) and anhydrous K>CO3 (12.4 g, 90 mmol) were
added into a solution of 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)-ethanone (24.5 g, 90 mmol)
in acetone (200 mL) at room temperature. The reaction mixture was then stirred at room
temperature for 1 h. After the reaction, the mixture was poured into 500 mL ice water and extracted
by ethyl acetate (100 mLx2). The organic layer was then successively washed with deionized water
(100 mLx3) and saturated brine (100 mL), dried by anhydrous MgSO4 and concentrated in vacuum.
Finally, 23.6 g of 3-hydroxy-2-(2-methoxyphenoxy)-1-(4-methoxyphenyl) propan-1-one was
obtained by recrystallization process.

Sodium borohydride (2.3 g, 60 mmol) was added into the solution of 3-hydroxy-2-(2-
methoxyphenoxy)-1-(4-methoxyphenyl) propan-1-one (18.1 g, 60 mmol) in THF/H>O (100 mL/30
mL) at 0 °C. The reaction mixture was stirred at room temperature for 24 h. After the reaction, the
mixture was sat for 10 min, and then the organic layer was separated. Ethyl acetate (50 mL) was
added into the stirred organic layer at room temperature. The organic layer was then successively
washed with deionized water (50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSOa.
After the concentration in vacuum rotavap, 17.3 g of 3a was obtained finally. "H NMR (400 MHz,
DMSO-d6): & 7.38~7.36 (m, 2H), 7.08~6.82 (m, 6H), 5.43~5.35 (q, 4H), 4.86~4.82 (m, 1H),
4.71~4.63 (m, 1H), 4.34~4.29 (m, 1H), 3.79~3.73 (m, 6H), 3.32~3.26 (m, 2H). '*C NMR (101
MHz, DMSO-d6): 6 158.80, 158.78, 150.48, 150.41, 148.96, 148.57, 134.88, 134.52, 128.72,
128.39, 121.80, 121.75, 121.23, 121.19, 117.01, 116.89, 113.57, 113.50, 113.28, 113.20, 85.30,
84.65, 71.88, 71.38, 60.59, 60.49, 56.15, 55.43.



4-(1-Hydroxypropyl)-2-methoxyphenol (4a):
OH |
O

OH

4-Hydroxy-3-methoxybenzaldehyde (1.5 g, 10 mmol) was added into the solution of grignard
reagent that was freshly prepared from bromoethane (3.3 g, 30 mmol) and magnesium turnings
(0.7 g, 30 mmol) in anhydrous THF (20 mL) at 0 °C. The reaction mixture was stirred at room
temperature for 1 h. After the reaction, the mixture was quenched with cold water (1 mL) and
acidified with saturated NH4Cl solution (20 mL). Ethyl acetate (50 mL) was added into the stirred
organic layer at room temperature. The organic layer was then successively washed with deionized
water (50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSO4. After the concentration
in vacuum rotavap, 0.9 g of 4a was obtained finally. 'H NMR (400 MHz, DMSO-d6): & 8.69 (s,
1H), 6.90 (s, 1H), 6.72 (s, 2H), 4.95 (d, 1H), 4.36~4.35 (q, 1H), 3.77 (s, 3H), 1.67~1.55 (m, 2H),
0.85~0.81 (t, 3H). *C NMR (101 MHz, DMSO-d6): & 147.72, 145.65, 137.71, 118.77, 115.36,
110.63, 74.18, 56.04, 32.55, 10.70.

1-(3, 4-Dimethoxyphenyl)propan-1-ol (5a):
\0 |
(0]

OH

3, 4-Dimethoxybenzaldehyde (1.7 g, 10 mmol) was added into the solution of grignard
reagent, freshly prepared from bromoethane (1.6 g, 15 mmol) and magnesium turnings (0.4 g, 15
mmol) in anhydrous THF (20 mL) at 0 °C. The reaction mixture was stirred at room temperature
for 1 h. After the reaction, the mixture was quenched with cold water (1 mL) and acidified with
saturated NH4Cl solution (20 mL). Ethyl acetate (50 mL) was added into the stirred organic layer
at room temperature. The organic layer was then successively washed with deionized water (50
mLx3) and saturated brine (50 mL), dried by anhydrous MgSO4. After the concentration in
vacuum rotavap, 1.7 g of 5a was obtained finally. '"H NMR (400 MHz, DMSO-d6): § 6.91 (s, 1H),
6.88~6.86 (d, 1H), 6.81~6.79 (d, 1H), 4.99~4.98 (d, 1H), 4.39~4.34 (q, 1H), 3.74 (s, 3H), 3.72 (s,
3H), 1.65~1.53 (m, 2H), 0.83~0.79 (t, 3H). 3*C NMR (101 MHz, DMSO-d6): § 148.99, 148.03,
139.31, 118.36, 111.96, 110.30, 73.96, 55.89, 32.53, 10.64.

1-(3,4-dimethoxyphenyl)-2-phenoxypropane-1,3-diol (6a):



OH
o OH

Bromine (33.6 g, 210 mmol) was added dropwise into the solution of 3', 4'-
dimethoxyacetophenone (36.4 g, 200 mmol) and AICl3 (667 mg, 5 mmol) in diethyl
ether/tetrahydrofuran (50 mL/150 mL) at 0 °C~5 °C. The reaction mixture was then stirred at room
temperature for 1 h. After the reaction, the mixture was poured into ice water (1000 mL) and
extracted by ethyl acetate (200 mLx2). The organic layer was then successively washed with
deionized water (200 mLx3) and saturated brine (100 mL), dried by anhydrous MgSO4 and
concentrated in vacuum. Finally, 34.2 g of 2-bromo-1-(3, 4-dimethoxyphenyl)ethanone was
obtained by recrystallization process.

Phenol (12.4 g, 132 mmol) and K>COs (33.1 g, 240 mmol) were added into the solution of 2-
bromo-1-(3, 4-dimethoxyphenyl)ethanone (31.1 g, 120 mmol) in acetone (200 mL) at room
temperature. The reaction mixture was stirred at room temperature for 24 h. After the reaction, the
mixture was poured into 500 mL ice water and extracted by ethyl acetate (100 mLx2). The organic
layer was then successively washed with deionized water (100 mLx3) and saturated brine (100
mL), dried by anhydrous MgSO4 and concentrated in vacuum. Finally, 27.7 g of 1-(3,4-
dimethoxyphenyl)-2-phenoxyethanone was obtained by recrystallization process.

Formaldehyde solution (37%, 8.9 g, 110 mmol) and anhydrous K>CO;3 (13.8 g, 100 mmol)
were added into a solution of 1-(3, 4-dimethoxyphenyl)-2-phenoxyethanone (27.2 g, 100 mol) in
acetone (200 mL) at room temperature. The reaction mixture was then stirred at room temperature
for 1 h. After the reaction, mixture was poured into 500 mL ice water and extracted by ethyl acetate
(50 mLx2). The organic layer was then successively washed with deionized water (100 mLx3)
and saturated brine (100 mL), dried by anhydrous MgSO4 and concentrated in vacuum. Finally,
28.1 g of 1-(3, 4-dimethoxyphenyl)-3-hydroxy-2-phenoxypropan-1-one was obtained by
recrystallization process.

Sodium borohydride (3.0 g, 80 mmol) was added into the solution of 1-(3, 4-
dimethoxyphenyl)-3-hydroxy-2-phenoxypropan-1-one (24.2 g, 80 mmol) in THF/H>O (100
mL/30 mL) at 0 °C. The reaction mixture was stirred at room temperature for 24 h. After the
reaction, the mixture was sat for 10 min, and then the organic layer was separated. Ethyl acetate
(50 mL) was added into the stirred organic layer at room temperature. The organic layer was then
successively washed with deionized water (50 mLx3) and saturated brine (50 mL), dried by
anhydrous MgSOj4. After the concentration in vacuum rotavap, 22.3 g of 6a was obtained finally.
"H NMR (400 MHz, DMSO-d6): § 7.28~7.20 (m, 2H), 7.01~6.85 (m, 6H), 5.51~5.46 (q, 1H),
4.83~4.77 (m, 2H), 4.43~ 4.37 (m, 1H), 3.73 (m, 6H), 3.71~3.33 (m, 2H). 1*C NMR (101 MHz,
DMSO-d6): 6 159.53, 159.25, 148.74, 148.71, 148.34, 148.31, 135.31, 129.76, 129.68, 120.85,
119.68, 119.23,116.56, 116.38, 111.72, 111.68, 111.47, 111.11, 83.38, 71.95, 71.44, 60.55, 55.96,
55.94, 55.87, 55.85.



4-(1-Hydroxypropyl)-2, 6-dimethoxyphenol (7a):

| OH |
(0] (0]
OH

4'-Hydroxy-3', 5'-dimethoxybenzaldehyde (1.8 g, 10 mmol) was added into the solution of
grignard reagent that was freshly prepared from bromoethane (3.3 g, 30 mmol) and magnesium
turnings (0.7 g, 30 mmol) in anhydrous THF (20 mL) at 0 °C. The reaction mixture was stirred at
room temperature for 1 h. After the reaction, the mixture was quenched with cold water (1 mL)
and acidified with saturated NH4Cl solution (20 mL). Ethyl acetate (50 mL) was added into the
stirred organic layer at room temperature. The organic layer was then successively washed with
deionized water (50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSQOs. After the
concentration in vacuum rotavap, 1.3 g of 7a was obtained finally. '"H NMR (400 MHz, DMSO-
d6) 6 8.06 (s, 1H), 6.57 (s, 2H), 4.96 (d, 1H), 4.36~4.32 (q, 1H), 3.76 (s, 6H), 1.63~1.56 (m, 2H),
0.85~0.81 (t, 3H). '>*C NMR (101 MHz, DMSO-d6) 6 148.14, 136.91, 134.67, 103.91, 74.38, 56.42,
32.60, 10.71.

1-(3, 4, 5-Trimethoxyphenyl) propan-1-ol (8a):
L O
(o) (0)

OH

3, 4, 5-Trimethoxybenzaldehyde (2.0 g, 10 mmol) was added into the solution of grignard
reagent that was freshly prepared from bromoethane (1.6 g, 15 mmol) and magnesium turnings
(0.4 g, 15 mmol) in anhydrous THF (20 mL) at 0 °C. The reaction mixture was stirred at room
temperature for 1 h. After the reaction, the mixture was quenched with cold water (1 mL) and
acidified with saturated NH4Cl solution (20 mL). Ethyl acetate (50 mL) was added into the stirred
organic layer at room temperature. The organic layer was then successively washed with deionized
water (50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSQ4. After the concentration
in vacuum rotavap, 2.0 g of 8a was obtained finally. 'H NMR (400 MHz, DMSO-d6): & 6.62 (s,
2H), 5.07 (d, 1H), 4.39~4.36 (q, 1H), 3.76 (s, 6H), 3.63 (s, 3H), 1.63~1.56 (m, 2H), 0.86~0.83 (t,
3H). 13C NMR (101 MHz, DMSO-D6): § 153.01, 142.52, 136.59, 103.52, 74.24, 60.40, 56.24,
32.52,10.69.

2-(2-Methoxyphenoxy)-1-(3, 4, 5-trimethoxyphenyl) propane-1, 3-diol (9a):



Bromine (33.6 g, 210 mmol) was added dropwise into the solution of 3', 4', 5'-
trimethoxyacetophenone (42.0 g, 200 mmol) and AICl; (667 mg, 5 mmol) in diethyl
ether/tetrahydrofuran (50 mL/150 mL) at 0 °C~5 °C. The reaction mixture was then stirred at room
temperature for 1h. After the reaction, the mixture was poured into ice water (1000 mL) and
extracted by ethyl acetate (200 mLx2). The organic layer was then successively washed with
deionized water (200 mLx3) and saturated brine (100 mL), dried by anhydrous MgSO4 and
concentrated in vacuum. Finally, 41.6 g of 2-bromo-1-(3, 4, 5-trimethoxyphenyl) ethanone was
obtained by recrystallization process.

2-Methoxyphenol (16.4 g, 132 mmol) and K>CO;3 (33.1 g, 240 mmol) were added into the
solution of 2-bromo-1-(3, 4, 5-trimethoxyphenyl) ethanone (34.7 g, 120 mmol) in acetone (200
mL) at room temperature. The reaction mixture was stirred at room temperature for 24 h. After the
reaction, the mixture was poured into 500 mL ice water and extracted by ethyl acetate (100 mLx2).
The organic layer was then successively washed with deionized water (100 mLx3) and saturated
brine (100 mL), dried by anhydrous MgSO4 and concentrated in vacuum. Finally, 32.6 g of 2-(2-
methoxy-phenoxy)-1-(3, 4, 5-trimethoxyphenyl) ethanone was obtained by recrystallization
process.

Formaldehyde solution (37%, 7.1 g, 88 mmol) and anhydrous K>CO3 (12.1 g, 88 mmol) were
added into a solution of 2-(2-methoxyphenoxy)-1-(3, 4, 5-trimethoxy-phenyl) ethanone (29.0 g,
80mol) in acetone (200 mL) at room temperature. The reaction mixture was then stirred at room
temperature for 1 h. After the reaction, the mixture was poured into 500 mL ice water and extracted
by ethyl acetate (100 mLx2). The organic layer was then successively washed with deionized water
(100 mLx3) and saturated brine (100 mL), dried by anhydrous MgSO4 and concentrated under
vacuum. Finally, 24.1 g of 3-hydroxy-2-(2-methoxyphenoxy)-1-(3, 4, 5-trimethoxyphenyl) pro-
pan-1-one was obtained by recrystallization process.

Sodium borohydride (1.9 g, 50 mmol) was added into the solution of 3-hydroxy-2-(2-
methoxyphenoxy)-1-(3, 4, 5-trimethoxyphenyl) propan-1-one (18.1 g, 50 mmol) in THF/H20 (100
mL/30 mL) at 0 °C. The reaction mixture was stirred at room temperature for 24 h. After the
reaction, the mixture was sat for 10 min, and then the organic layer was separated. Ethyl acetate
(50 mL) was added into the stirred organic layer at room temperature. The organic layer was then
successively washed with deionized water (50 mLx3) and saturated brine (50 mL), dried by
anhydrous MgSOs. After the concentration in vacuum rotavap, 17.3 g of 9a was obtained finally.
'H NMR (400 MHz, DMSO-d6): § 7.05~6.79 (m, 4H), 6.74~6.72 (d, 2H), 5.46~5.42 (q, 1H),
4.81~4.76 (m, 1H), 4.75~4.63 (m, 1H), 4.37~4.33 (m, 1H), 3.76~3.27 (m, 14H). '3C NMR (101
MHz, DMSO-d6): & 152.78, 152.72, 150.16, 148.65, 148.48, 138.47, 138.14, 136.92, 136.84,



121.58, 121.44, 121.14, 121.06, 116.27, 116.14, 113.02, 112.98, 105.04, 104.42, 84.28, 83.80,
72.40, 71.38, 60.66, 60.53, 60.42, 60.39, 56.16, 56.13, 56.01, 55.98.

1-(4-Methoxyphenyl)ethanol (10a):

o

OH

Sodium borohydride (0.4 g, 10 mmol) was added into the solution of 4'-
methoxyacetophenone (1.5 g, 10 mmol) in THF/H2O (10 mL/3 mL) at 0 °C. The reaction mixture
was stirred at room temperature for 24 h. After the reaction, the mixture was sat for 10 min, and
then the organic layer was separated. Ethyl acetate (50 mL) was added into the stirred organic
layer at room temperature. The organic layer was then successively washed with deionized water
(50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSO4. After the concentration in
vacuum rotavap, 1.4 g of 10a was obtained finally. 'H NMR (400 MHz, DMSO-d6): § 7.28~7.26
(d, 2H), 6.88~6.86 (d, 2H), 5.08~5.07 (d, 1H), 4.71~4.69 (q, 1H), 3.72 (s, 3H), 1.33~1.32 (t, 3H).
3C NMR (101 MHz, DMSO-d6): § 158.51, 139.91, 126.92, 113.79, 68.24, 55.39, 26.39.

1-(4-Methoxyphenyl)butan-1-ol (11a):

o

n-C3H7 OH

Sodium borohydride (0.4 g, 10 mmol) was added into the solution of 4'-
methoxybutyrophenone (1.8 g, 10 mmol) in THF/H>O (10 mL/3 mL) at 0 °C. The reaction mixture
was stirred at room temperature for 24 h. After the reaction, the mixture was sat for 10 min, and
then the organic layer was separated. Ethyl acetate (50 mL) was added into the stirred organic
layer at room temperature. The organic layer was then successively washed with deionized water
(50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSO4. After the concentration in
vacuum rotavap, 1.4 g of 11a was obtained finally. '"H NMR (400 MHz, DMSO-d6): § 7.24~7.22
(d, 2H), 6.87~6.85 (d, 2H), 4.99~4.97 (d, 1H), 4.97~4.45 (q, 1H), 3.72 (s, 3H), 1.66~1.46 (m, 2H),



1.40~1.16 (m, 2H), 0.88~0.84 (t, 3H). *C NMR (101 MHz, DMSO-d6): 6 158.50, 138.97, 127.36,
113.73, 72.16, 55.40, 42.09, 19.06, 14.35.

1-(4-Methoxyphenyl)heptan-1-ol (12a):

n-CGH13 OH

4'-Methoxybenzaldehyde (1.4 g, 10 mmol) was added into the solution of grignard reagent
that was freshly prepared from 1-bromohexane (3.3 g, 20 mmol) and magnesium turnings (0.5 g,
20 mmol) in anhydrous THF (20 mL) at 0 °C. The reaction mixture was stirred at room temperature
for 1 h. After the reaction, the mixture was quenched with cold water (1 mL) and acidified with
saturated NH4Cl solution (20 mL). Ethyl acetate (50 mL) was added into the stirred organic layer
at room temperature. The organic layer was then successively washed with deionized water (50
mLx3) and saturated brine (50 mL), dried by anhydrous MgSO4. After the concentration in
vacuum rotavap, 1.8 g of 12a was obtained finally. "H NMR (400 MHz, DMSO-d6): § 7.23~7.21
(d, 2H), 6.87~6.85 (d, 2H), 4.98~4.97 (d, 1H), 4.47~4.45 (q, 1H), 3.72 (s, 3H), 1.63~1.53 (m, 2H),
1.40~1.04 (m, 8H), 0.85~0.82 (t, 3H). *C NMR (101 MHz, DMSO-d6): § 158.50, 138.97, 127.33,
113.69, 72.47, 39.90, 31.85, 29.24, 25.85, 22.57, 14.32.

1-(4-Methoxyphenyl)tridecan-1-ol (13a):

o

n-C12H25 OH

4'-Methoxybenzaldehyde (1.4 g, 10 mmol) was added into the solution of grignard reagent
that was freshly prepared from 1-bromododecane (5.0 g, 20 mmol) and magnesium turnings (0.5
g, 20 mmol) in anhydrous THF (20 mL) at 0 °C. The reaction mixture was stirred at room
temperature for 1 h. After the reaction, the mixture was quenched with cold water (1 mL) and
acidified with saturated NH4Cl solution (20 mL). Ethyl acetate (50 mL) was added into the stirred
organic layer at room temperature. The organic layer was then successively washed with deionized



water (50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSO4. After the concentration
in vacuum rotavap, 2.4 g of 13a was obtained finally. "H NMR (400 MHz, DMSO-d6): § 7.22~7.20
(d, 2H), 6.85~6.83 (d, 2H), 4.98~4.97 (d, 1H), 4.46~4.42 (q, 1H), 3.72 (s, 3H), 1.66~1.51 (t, 2H),
1.43~0.96 (m, 22H), 0.86~0.83 (t, 3H). *C NMR (101 MHz, DMSO-d6): § 158.46, 138.93, 127.34,
113.72, 72.38, 55.43, 31.77, 29.52, 29.49, 29.47, 29.18, 25.80, 22.56, 14.38.

1-(4-Methoxy-phenyl)-3-phenylpropan-1-ol (14a):

o

Ph OH

4'-Methoxybenzaldehyde (1.4 g, 10 mmol) was added into the solution of grignard reagent
that was freshly prepared from 1-bromo-2-phenylethane (3.7 g, 20 mmol) and magnesium turnings
(0.5 g, 20 mmol) in anhydrous THF (20 mL) at 0 °C. The reaction mixture was stirred at room
temperature for 1 h. After the reaction, the mixture was quenched with cold water (1 mL) and
acidified with saturated NH4Cl solution (20 mL). Ethyl acetate (50 mL) was added into the stirred
organic layer at room temperature. The organic layer was then successively washed with deionized
water (50 mlx3) and saturated brine (50 mL), dried by anhydrous MgSOys. After the concentration
in vacuum rotavap, 1.9 g of 14a was obtained finally. "TH NMR (400 MHz, DMSO-d6): § 7.29~7.25
(m, 4H), 7.19~7.15 (m, 3H), 6.91~6.89 (d, 2H), 5.21~5.20 (d, 1H), 4.52~4.51 (d, 1H), 3.74 (s, 3H),
2.67~2.54 (m, 2H), 1.95~1.87 (m, 2H). *C NMR (101 MHz, DMSO-d6): § 158.55, 142.63, 138.58,
128.72, 128.69, 127.42, 126.04, 113.85, 71.75, 55.47, 41.52, 32.08.

1-(4-Methoxyphenyl)-4-phenylbutan-1-ol (15a):

o

Bzl OH

4'-Methoxybenzaldehyde (1.4 g, 10 mmol) was added into the solution of grignard reagent
that was freshly prepared from 1-bromo-3-phenylpropane (4.0 g, 20 mmol) and magnesium
turnings (0.5 g, 20 mmol) in anhydrous THF (20 mL) at 0 °C. The reaction mixture was stirred at



room temperature for 1 h. After the reaction, the mixture was quenched with cold water (1 mL)
and acidified with saturated NH4Cl solution (20 ml). Ethyl acetate (50 mL) was added into the
stirred organic layer at room temperature. The organic layer was then successively washed with
deionized water (50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSQOa. After the
concentration in vacuum rotavap, 1.7 g of 15a was obtained finally. "H NMR (400 MHz, DMSO-
d6): 8 7.28~7.23 (m, 4H), 7.16~7.14 (m, 3H), 6.89~6.87 (d, 2H), 5.10~5.09 (d, 1H), 4.53~4.52 (d,
1H), 3.73 (s, 3H), 2.57~2.55 (t, 2H), 1.71~1.47 (m, 2H). '*C NMR (101 MHz, DMSO-d6): &
158.49, 142.76, 138.83, 128.71, 128.66, 127.35, 126.04, 113.78, 72.19, 55.46, 35.55, 27.90.

2-(4-Methoxyphenyl)propan-2-ol (16a):

o

OH

Methylmagnesium chloride solution (3.0 M in THF, 10 mL) was added into the solution of
4'-methoxyacetophenone (1.4 g, 10 mmol) in THF (20 mL) at 0 °C. The reaction mixture was
stirred at room temperature for 1 h. After the reaction, the mixture was quenched with cold water
(1 mL) and acidified with saturated NH4Cl solution (20 mL). Ethyl acetate (50 mL) was added
into the stirred organic layer at room temperature. The organic layer was then successively washed
with deionized water (50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSO4. After
the concentration in vacuum rotavap, 1.5 g of 16a was obtained finally. '"H NMR (400 MHz,
DMSO-d6): § 7.39~7.36 (d, 2H), 6.86~6.84 (d, 2H), 4.93 (s, 1H), 3.72 (s, 6H), 1.41 (s, 3H). 1°C
NMR (101 MHz, DMSO-d6): 6 157.92, 143.12, 126.07, 113.45, 70.75, 55.41, 32.53.

1-(4-Methoxyphenyl)propan-2-ol (18a):



OH

Sodium borohydride (0.4 g, 10 mmol) was added into the solution of 4'-
methoxybutyrophenone (1.6 g, 10 mmol) in THF/H>O (10 mL/3 mL) at 0 °C. The reaction mixture
was stirred at room temperature for 24 h. After the reaction, the mixture was sat for 10 min, and
then the organic layer was separated. Ethyl acetate (50 mL) was added into the stirred organic
layer at room temperature. The organic layer was then successively washed with deionized water
(50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSQO4. After the concentration in
vacuum rotavap, 1.6 g of 18a was obtained finally. 'H NMR (400 MHz, DMSO-d6): § 7.15~7.13
(d, 2H), 6.86~6.84 (d, 2H), 4.58~4.57 (d, 1H), 3.88~3.79 (q, 1H), 3.73 (s, 3H), 2.73~2.51 (m, 2H),
1.09~1.07 (t, 3H). 3C NMR (100MHz, DMSO-d6): § 158.00, 131.92, 130.66, 113.87, 67.98, 55.29,
45.04, 23.38.

1-(1-Chloropropyl)-4-methoxybenzene (19a):

~o

Cl

Thionyl chloride (4.2 g, 35 mmol) was added into the solution of 1-(4-methoxyphenyl)
propan-1-ol (2a) (1.7 g, 10 mmol) in ethyl ether (50 mL) at 0 °C. The reaction mixture was stirred
at 0 °C for 30 min. After the reaction, the mixture were then successively washed with ice water
(50 mLx3) and saturated brine (50 mL), dried by anhydrous MgSQOs. Finally, 0.9 g of 19a was
obtained by silica gel column chromatography. 'H NMR (400 MHz, DMSO-d6): § 7.37~ 7.35 (d,
2H), 6.94~6.92 (d, 2H), 5.03~4.99 (t, 1H), 3.76 (s, 3H), 2.13~1.96 (m, 2H), 0.93~0.90 (t, 3H). *C
NMR (101 MHz, DMSO-d6): & 159.54, 134.01, 128.76, 114.29, 65.95, 55.53, 32.93, 12.03.

1-(1-Bromopropyl)-4-methoxybenzene (20a):



Br

Phosphorus tribromide (9.5 g, 35 mmol) was added into the solution of 1-(4-methoxyphenyl)
propan-1-ol (2a) (1.7 g, 10 mmol) in ethyl ether (50 mL) at 0 °C. The reaction mixture was stirred
at 0 °C for 30 min. After the reaction, the mixture was successively washed with ice water (50
mLx3) and saturated brine (50 mL), dried by anhydrous MgSOs. Finally, 0.9 g of 20a was obtained
by silica gel column chromatography. 'H NMR (400 MHz, DMSO-d6): & 7.37~7.35 (d, 2H),
6.94~6.92 (d, 2H), 5.02~4.99 (t, 3H), 3.76 (s, 3H), 2.15~1.96 (m, 2H), 0.93~0.90 (t, 3H). '*C NMR
(101 MHz, DMSO-d6): & 159.54, 134.01, 128.75, 114.28, 65.94, 55.52, 32.94, 12.01.

1-(4-Methoxyphenyl)propyl acetate (21a):

o

OAc

Triethylamine (1.5 g, 15 mmol) was added into the solution of 1-(4-methoxyphenyl) propan-
1-o0l (2a) (1.7 g, 10 mmol) and acetic anhydride (1.5 g, 15 mmol) in ethyl acetate (20 mL) at 0 °C.
The reaction mixture was stirred at room temperature for 2 h. After the reaction, the mixture was
poured into 100 mL ice water and extracted by ethyl acetate (20 mLx2). The organic layer was
then successively washed with deionized water (20 mLx3) and saturated brine (20 mL), dried by
anhydrous MgSOs. Finally, 1.9 g of 21a was obtained by silica gel column chromatography. 'H
NMR (400 MHz, DMSO-d6): 8 7.28~7.25 (q, 2H), 6.92~6.90 (m, 1H), 5.57~5.54 (t, 1H), 3.75 (s,
3H), 2.02 (s, 3H) 1.90~1.69 (m, 2H), 0.83~0.79 (t, 3H). 1*C NMR (100MHz, DMSO-d6): 6 170.15,
159.27,132.91, 128.17, 114.14, 76.71, 55.47, 29.09, 21.32, 10.23.

1-(4-Methoxyphenyl)propyl benzoate (22a):



OBz

Benzoyl chloride (2.1 g, 15 mmol) was added into the solution of 1-(4-methoxyphenyl)
propan-1-ol (2a) (1.7 g, 10 mmol) in pyridine (10 mL) at 0 °C. The reaction mixture was stirred at
room temperature for 2 h. After the reaction, the mixture was poured into 100 mL ice water and
extracted by ethyl acetate (20 mLx2). The organic layer was then successively washed with
deionized water (20 mLx3) and saturated brine (20 mL), dried by anhydrous MgSOs. Finally, 2.5
g of 22a was obtained by silica gel column chromatography. 'H NMR (400 MHz, DMSO-d6): &
8.05~8.03 (d, 2H), 7.63~7.59 (t, 1H), 7.52~7.48 (t, 2H), 7.38~7.36 (d, 2H), 6.94~6.92 (d, 2H),
5.87~5.83 (t, 1H), 3.72 (s, 3H), 2.03~1.81 (m, 2H), 0.88~0.85 (t, 3H). '3*C NMR (101 MHz,
DMSO-d6): & 165.51, 159.38, 133.62, 132.85, 130.52, 129.58, 129.10, 128.15, 114.20, 77.59,
55.40, 29.35, 10.22.
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Fig. S1. Sustainable routes for phenol production. (A) Proposed integrated biorefinery process
for phenol production from wood via sequential hydrogenolysis C-O bond and catalytic cracking
of C-C bond (Ref. 12). (B) Production of phenol from lignin via multiple oxidation cleavage of C-
C bond and hydrogenolysis C-O bond (Ref. 13).
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TABLE i
FUNCTIONAL GROUP CONTENT OF EAL AND MWL AS DETERMINED BY QUANTITATIVE 3'/P-NMR(2}
Functional Integrated Chemical Poplar Black Spruce
Group Shift Range
{ppm) EAL MWL EAL MWL
Aliphatic -OH 149.2-146.0 3.91 453 492 413
Guaiacyl -OH 140.0-138.8 0.33 0.37 0.72 0.67
p-Hydroxyl -OH 138.2-137.4 0.14 0.17 0.06 0.08
Syringyl -OH 143.1-142.38 0.23 0.24
Lgaﬁo of G:H:S®) 1.44:0.61:1 1.54:0.71:1
atio of H:G©! 0.43 048 009 0.13
Total Uncondensed
Phenolic ~-OH 0.70 072 0.78 0.76
Condensed ~OH 144.5-1431 0.29 0.22 0.30 0.44
142.38-141.5
Total phenolic —Oi { 1.00 1.00 1.09 1.20
(0.21/Cg) (0.21/Co) (0.21/Cg) (0.23/Cq}
Total ~OH 4.90 5.56 6.00 5.33
Carboxylic acids 135.5-134.5 0.11 0.14 0.09 0.11

(@) In mmol/g; error 0.02.
(b) Refers to units bearing free phenolic OH; standardized by expressing the syringyl phenolics as unity.




Table 4 Molar ratio of syringaldehyde and p-hydroxybenzaldehyde to vanillin in the biomass samples studied as determined by alkaline nitrobenzene oxidation

Lignin
Family Sample number  Species (g kg ") WVanillin Syringaldehyde p-Hydroxybenzaldehyde
Cupressaceae (softwood) 1 Japanese cedar 331 1 0 0.05
Fagaceae (hardwood) 2 Japanese beech 240 1 2.00 0
Haloragaceae 3 Parrot feather 175 1 1.00 0.76
(aquatic plant)
Poaceae 4 Bamboo 206 1 1.28 0.45
(Gramineace) 5 Rice straw 202 1 0.67 0.52
6 Rice husk 241 1 0.15 0.23
7 Wheat straw 200 1 0.49 0.11
[ 8 Corn leaves 151 1 0.65 0.56 ]
9 Corn cob 180 1 0.64 0.77
10 Erianthus 254 1 0.66 0.13
11 Miscanthus 223 1 0.63 0.42
12 Bagasse 224 1 0.80 0.19
13 Sugarcane leaves 197 1 0.74 0.09
14 Common reed 202 1 1.03 0.14
15 Giant reed 249 1 1.09 0.23
Aracaceae 16 Oil palm trunk 282 1 3.50 0.00
(Palmae) 17 Nipa frond 196 1 1.20 0.03
18 Sugar palm frond 209 1 1.56 0.13
Pontederiaceae (aquatic plants) 19 Water Hyacinth 101 1 0.84 0.67
Potamogetonaceae (aquatic plants) 20 Sennin-mo 149 1 1.43 2.47
Hydrocharitaceae (aquatic plants) 21 Okanada-mo 71 1 1.15 2.01
22 Kuro-mo 79 1 1.26 1.76
23 Kokanada-mo 76 1 0.70 0.93
Sargassaceae (brown algae) 24 Akamoku 142 1 0.23 2.70
25 Sargassum 73 1 0.44 2.40
Ulvaceae (green algae) 26 Sea lettuce 33 1 1.36 0.11
27 Chladophora 0 0 0 0
[ Caulerpaceae (green algae) 28 Caulerpa 37 1 1.25 1.95 ]
29 Sea grape 26 1 1.13 1.78
Chlorellaceae (¢reen algae) 30 Chlorella 0 0 0 0
[ Solieraceae (red algae) 31 Eucheumia 18 1 1.24 0.90 |
Pseudanabaenaceae (blue-green algae) 32 Spirulina 0 0 0 1]

Fig. S2. H (p-hydroxyphenl) unit in lignin. (A) Representative lignin structure of poplar (Ref.
57). (B) Representative lignin structure of sugarcane bagasse (Ref. 58). (C) The proportion of H
unit in poplar lignin (Ref. 59). (D) The proportion of H unit in herbaceous plant lignin (Ref. 60).
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Fig. S3. Characterization of the HY3o zeolite. (A) X-ray diffraction. (B) Nitrogen adsorption—
desorption isotherm. (C) Pore size distribution curve. (D) 2°Si MAS NMR spectra, black solid
square (H) represents the observed intensities, red circle marks (O) is the total fitting curve, blue
regular triangle upward (A), green regular triangle downward (/) and cyan diamond ()
represent the fitting curves of Si(0Al), Si(1Al) and Si(2Al), respectively. (E) 2’Al MAS NMR
spectra, black solid square () represents the observed intensities, red circle marks (O) is the total
fitting curve, blue regular triangle upward (A\) and green regular triangle downward (/) represent
the fitting curves of tetrahedral Al and octahedral Al, respectively. (F) NH3-TPD curve. (G) Py-
FTIR spectrum (200 °C); (H) Py-FTIR spectrum (350 °C). (1) SEM image. (J) TEM image.
XRD patterns (Fig. S3A) showed that the HY 30 zeolite was highly crystalline and exhibited
typical characteristic peaks of faujasite structure. The nitrogen adsorption-desorption isotherms
(Fig. S3B) exhibited Type IV isotherm which is characteristic of mesoporous structure with H-IV
hysteresis loops in the HY30 zeolite with broad size distribution around 5-50 nm diameter. The
micro/mesopore surface areas and volumes of HY 15, HY30 and HY 40 zeolites are summarized in
Table S2.2°Si NMR spectrum (Fig. S3D) of the HY 39 zeolite showed the presence of respective Si
(0Al), Si (1Al), Si (2Al) species at -108, -103, -96 ppm, which was depending on the number of
aluminum atoms connected to the silicon atom. 2’ A1 NMR spectrum (Fig. S3E) of the HY 3¢ zeolite



shows the presence of octahedrally coordinated and tetrahedrally coordinated Al species at 0 ppm
and 59.7 ppm, respectively. The NH3-TPD profiles (Fig. S3F) of the HY30 zeolite is characteristic
of two distinct NH3 desorption peaks at lower (120 °C) and higher (310 °C) temperature,
suggesting the weak and strong acid sites in the zeolite. The Py-FTIR analyses (Fig. S3G and S3H)
were used to characterize the Bronsted and Lewis acid sites, which cannot be achieved by NHs-
TPD. The bands at 1540 cm™ and 1450 cm™! are assigned to the Bronsted and Lewis acid sites in
the zeolite, respectively. The quantities of the Bronsted and Lewis acid sites in the HY 15, HY 30 and
HY40 zeolites were evaluated and summarized in Table S2, according to the equations in the
literature 48. The SEM and TEM images are shown in Fig. S3T and S3J. The mesoporous structures
in the HY30 zeolite can be observed in the TEM image (Fig. S3J).
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Fig. S4. Optimization of reaction conditions and reusability of the catalyst. (A) Effect of
reaction temperature on the conversion of 1a and yield of phenol over the HY 3¢ catalyst. (B) Effect
of reaction time on the conversion of 1a and yield of phenol over the HY 3o catalyst. (C) Reusability
of the HY 30 catalyst.

Reaction conditions: (A) 1a (1 mmol), HY30 (0.3 g), H2O (4.0 mL), 1 h, 0.5 MPa Ar, 800 rpm; (B)
la (1 mmol), HY30 (0.3 g), H2O (4.0 mL), 180 °C, 0.5 MPa Ar, 800 rpm; (C) 1a (1 mmol), HY 3o
(0.3 g, original dosage), HO (4.0 mL), 180 °C, 1 h, 0.5 MPa Ar, 800 rpm.

The effect of temperature and reaction time on the catalytic reaction over the HY3¢ catalyst,
reusability of the HY30 catalyst are shown in fig. S4. As shown in Fig. S4A, HY3o catalyst could
promote the transformation of 1a even at lower temperatures ranging between 110 and 150 °C, but
only low yield of phenol was observed. With further increase of temperature, HY 30 catalyst gave
increased yield of phenol at full conversion of 1a, affording highest yield at 180 °C. The reaction
was subsequently performed at 180 °C to study the effect of reaction time on the conversion and
yield of the reaction (Fig. S4B). It can be found that the conversion of 1a increased with extending
the reaction time at beginning and became independent of reaction time when the time was longer
than 10 min. However, the yield of phenol increased more slowly, and became independent of
reaction time when the time was longer than 1 h. The conversion of 1a and yield to phenol did not
change notably after the HY30 catalyst was reused five times (Fig. S4C), which indicates the
excellent stability of the HY3o catalyst.
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Fig. S6. Distribution of liquid products generated from the transformation of poplar lignin.
(A) Time course of lignin depolymerization. (B) GC trace of the liquid products from lignin
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transformation over the HY3o catalyst. (E) GC trace of the liquid products from lignin
transformation without catalyst.

Reaction conditions: (A) lignin (0.4 g), HY30 (0.4 g), H2O (5.0 mL), 200 °C, 0.5 MPa Ar, 800 rpm.
(B) lignin (0.4 g), HY30 (0.4 g), H>O (5.0 mL), 200 °C, 30 min, 0.5 MPa Ar, 800 rpm. (C) and (D)
lignin (0.4 g), HY30 (0.4 g), H2O (5.0 mL), 200 °C, 3 h, 0.5 MPa Ar, 800 rpm. (E) lignin (0.4 g),
H>0 (5.0 mL), 200 °C, 3 h, 0.5 MPa Ar, 800 rpm.

Based on the time course (Fig. S6A) and GC results (Fig. S6B), the intermediates bearing the
benzylalcohol structure or alkyl side-chain were not detected, which confirmed that the phenol
product could be obtained directly from the lignin structure via the simultaneous deconstruction
of the Csp2-Csp3 bonds and hydrolysis of the aliphatic Cp-O bonds. As shown in Fig. S6C, phenol,
2-methoxyphenol and 2, 6-methoxyphenol were yielded from lignin, with selectivities of 91.8%,
3.4% and 2.8%, respectively (Fig. S6D). Besides, it is reasonable to deduce that 4-methylphenol,
with a selectivity of 2.1%, should be generated from the methylation of the yielded phenol, using
the methoxy group-derived methyl in lignin (32). For comparison, the reaction of the lignin was
also performed without the catalyst under the same conditions, which could not yield any low-
molecular weight products (Fig. S6E).
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Fig. S7. H/*3C 2D-HSQC NMR spectra of the poplar lignin. (A) The extracted poplar lignin
before the transformation. (B) the residual solid after the transformation.

(A) B-aryl ether (B-O-4); (B) resinol (B-B); (C) phenylcoumaran (B-5); (H) p-hydroxyphenl unit;
(G) guaiacyl unit; (S) syringyl unit; Cwme, the C atom in the methoxy group.

Reaction conditions: lignin (0.4 g), HY30 (0.4 g), H>O (5.0 mL), 200 °C, 3 h, 0.5 MPa Ar, 800 rpm.
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rpm. Photo Credit: Qinglei Meng, Institute of Chemistry, Chinese Academy of Sciences.
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Fig. S11. 3C NMR spectra of the model compounds in aliphatic region. (A) 4-(1-
hydroxypropyl)phenol (1a). (B) 2-(4-methoxyphenyl) propan-2-ol (16a). (C) 4-n-propylphenol.
Ca, Cp and C, represent the C atoms at the aliphatic a-C, B-C and y-C positions, respectively.
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Fig. S12 2D BC{*H} HETCOR and HSQC NMR spectra. (A) Solid-state 2D 3C {'H} HETCOR
NMR spectrum of the intermediates in the reaction of 4-(1-hydroxypropyl)phenol (1a). (B) 2D
HSQC NMR spectrum of 1a. (C) 2D HSQC NMR spectrum of 2-(4-methoxyphenyl)propan-2-ol
(16a). (D) 2D HSQC NMR spectrum of 4-n-propylphenol.

Reaction conditions: la (1 mmol), HY30 (0.3 g), H20 (4.0 ml), 180 °C, 10 min, 0.5 MPa Ar, 800
rpm.
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Fig. S13 Al NMR and FTIR spectra of HY3o zeolite. (A) 2?Al NMR spectrum of the boiled
HY 30 zeolite, black solid square () represents the observed intensities, red inverted triangle (V)
is the fitting curve of framework Al(IV). (B) FTIR spectra of the HY 39 zeolite, black line represents
the boiled HY30 zeolite, red line represents the HY 30 zeolite in the reaction.

Reaction conditions: (A) HY30 (0.3 g), H2O (4.0 ml), 180 °C, 10 min, 0.5 MPa Ar, 800 rpm. (B)
la (1 mmol), HY30 (0.3 g), H20 (4.0 ml), 180 °C, 10 min, 0.5 MPa Ar, 800 rpm.
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Fig. S15. 13C NMR spectra of the poplar powder and the extracted lignin. (A) Poplar powder.

(B) Quantitative '*C NMR spectra of the extracted poplar lignin. (C) Quantitative *C NMR spectra

of the residual solid after the transformation of the poplar lignin.

Reaction conditions: lignin (0.4 g), HY30 (0.4 g), H>O (5.0 mL), 200 °C, 3 h, 0.5 MPa Ar, 800 rpm.
As shown in Fig. S15A, the resonance signals in the solid state '*C NMR spectrum of poplar

powder demonstrated that H units are originally existed in the lignin component of the poplar

powder.



Supplementary Tables
Table S1 Results for the transformation of 1a over different catalysts.

OH
Catalyst g
atalys o]
eyl SRR
N~
: Yield of
Entry” Catalyst Dosage (g) H20 (mL) e of Acetone

Phenol (%) (%)
1 HY3 0.3 4 0 0
2 HY 15 0.3 4 8.7 6.0
3 HY30 0.3 4 94.6 69.5
4 HY 40 0.3 4 51.9 37.8
5 ZSM-59 0.3 4 0 0
6 ZSM-530 0.3 4 0 0
7 ZSM-563 0.3 4 0 0
8 ZSM-5335 0.3 4 11.3 7.7
9 Mordenite;o 0.3 4 0 0
10 Mordenite;s 0.3 4 0 0
11 Beta; 0.3 4 0 0
12 Betasg 0.3 4 0 0
13 Betaso 0.3 4 0 0
14 MCM-41 0.3 4 0 0
15 Ru/SiO," 0.3 4 0 0
16 Ni/SiO," 0.3 4 0 0
17 W/Si0," 0.3 4 0 0
18 SO;/ZrOst 0.3 4 5.3 3.8
19 WO;3/Zr05* 0.3 4 0 0
20 WO3/ALOSS 0.3 4 0 0
21 Nb>0s/ALO5! 0.3 4 0 0
22 Silicotungstic acid 0.3 4 0 0
23 Phosphotungstic acid 0.3 4 0 0
24 Phosphomolybdic acid 0.3 4 0 0
25 Hydrochloric acid (37%) 0.039 4 0 0
26 Sulfuric acid (98%) 0.040 4 0 0
27 Phosphoric acid (85%) 0.046 4 0 0

*Reaction results are the averages of three experiments conducted in parallel. Reaction conditions:
la (1.0 mmol), 0.5 MPa Ar, 180 °C, 1 h, 800 rpm.

TRu/Si0; (5.0 wt% Ru), Ni/SiO2 (5.0 wt% Ni), W/Si0; (5.0 wt% W). The content of metal is
based on support and determined by ICP.

$S0;/Zr0x (7.0% wt% SO3).

§WO3/ZrO2 (20 wt% WO3), WO3/Al203 (20 wt% WO3).

IINb20s/ALO3 (30 wt% WO3).



Table S2 Textural and acid properties of HY zeolite

Textural and Acid Properties HY1s HY30 HY 40
Micropore Surface Area (m%g )" 491 355 293
) Mesopore Surface Area (m’g )T 321 431 482
Texture Properties ) 3 4
Micropore Volume (cm’g ") 0.191 0.143 0.110
Mesopore Volume (cm’g !)* 0.140 0.188 0.219
Brensted (umol-mg™) 175 97 82
Lewi I'mg’! 60 27 13
Total Acid ewis (jumo mgil )
B + L (umol-mg™)! 235 124 95
B/LY 2.92 3.59 6.31
Acid Brensted (umol-mg™') 107 74 65
“ . ) Lewis (umol-mg™) 35 13 9
Properties ~ Strong Acid 4
B + L (umol-mg™) 142 87 74
B/L 2.94 5.69 7.22
Ratio of Brensted (%) 61.1 76.3 79.3
Strong Acid Lewis (%) 58.3 48.1 69.2
/ Total Acid B+ L (%) 60.4 70.2 77.9

*The t-plot micropore surface area.

TThe t-plot mesopore surface area.

I The t-plot micropore volume.

§BJH mesopore volume.

||“B+L” represents the sum of the amounts of Bronsted acid and Lewis acid sites.
9“B/L” denotes the ratio of the amounts of Bronsted acid and Lewis acid sites.



Table S3 Optimization of reaction conditions for the phenol production from poplar lignin

Entry” Lignin (g) HY30 (g) H>O (mL) t (h) T (°C) Yield (wt%)"
1 0 0.4 5.0 3.0 200 0
2 0.4 0 5.0 3.0 200 0
3 0.4 0.1 5.0 3.0 200 1.1
4 0.4 0.2 5.0 3.0 200 53
5 0.4 0.3 5.0 3.0 200 8.9
6 0.4 0.4 5.0 3.0 200 10.9
7 0.4 0.5 5.0 3.0 200 10.9
8 0.4 0.4 5.0 0.5 200 33
9 0.4 0.4 5.0 1 200 5.8
10 0.4 0.4 5.0 1.5 200 7.7
11 0.4 0.4 5.0 2 200 8.9
12 0.4 0.4 5.0 2.5 200 10.1
13 0.4 0.4 5.0 3.0 200 10.9
14 0.4 0.4 5.0 4.0 200 10.9
15 0.4 0.4 5.0 5.0 200 10.9
16 0.4 0.4 5.0 3.0 150 0
17 0.4 0.4 5.0 3.0 160 3.2
18 0.4 0.4 5.0 3.0 170 6.2
19 0.4 0.4 5.0 3.0 180 8.3

20 0.4 0.4 5.0 3.0 190 10.1
21 0.4 0.4 5.0 3.0 210 10.9

*Reaction results are the averages of three experiments conducted in parallel. Reaction conditions:
0.5 MPa Ar, 800 rpm.
TThe yield of phenol was calculated as follows:

Yield= x100%

IMphenol

IMlignin



Table S4 3C NMR chemical shifts of the model compounds

Model compounds e Cpt C/ Cwme®
4-(1-hydroxypropyl)phenol (1a) 73.9 32.5 10.7 —

2-(4-methoxyphenyl)propan-2-ol (16a) 70.8 32.5 — 55.4
4-n-propylphenol 36.9 24.9 14.0 —

*Ca, the C atom at the aliphatic a-C position.
TCp, the C atom at the aliphatic B-C position.
1C,, the C atom at the aliphatic y-C position.
§Cwme, the C atom in the methoxy group.



Table S5 Solid-state 2D 3C{*H} HETCOR NMR chemical shifts of the intermediates in the
reaction of 4-(1-hydroxypropyl)phenol (1a)

Samples Co Cs’ Cp1! Cpa2! Cps™ C,'t Cwme*
4-(1-hydroxypropyl)phenol” 36.3{2.0} — 24.5{1.5} 21.0{1.9} 31.2{2.0} 12.7{0.7} —
4-(1-hydroxypropyl)phenol 73.8{4.3} 32.4{1.6} — — — 10.6{0.8} —

2-(4-methoxyphenyl)propan-2-ol —4 32.3{1.4} — — — — 55.2{3.7}
4-n-propylphenol’ 36.9{2.4} 24.6{1.5} — — — 13.9{0.9} —

*3C{'H} HETCOR NMR chemical shifts of the intermediates in the reaction of 4-(1-
hydroxypropyl)phenol (1a). Reaction conditions: 1a (1 mmol), HY30 (0.3 g), H2O (4.0 ml), 180
°C, 10 min, 0.5 MPa Ar, 800 rpm.

+13C/'H 2D HSQC NMR chemical shifts of the model compounds.

1Cq, the C atom at the aliphatic a-C position. No signal for the C atom without H atom at C,
position of 2-(4-methoxyphenyl)propan-2-ol (16a).

§Cs, the C atom at the aliphatic 3-C position of the model compounds.

||Cp1, the C atom at the aliphatic B1-C position of the intermediates in the reaction of 1a.

9Cp2, the C atom at the aliphatic 3-C position of the intermediates in the reaction of l1a.

**Cp3, the C atom at the aliphatic 3-C position of the intermediates in the reaction of la.

11C,, the C atom at the aliphatic y-C position.

11Cwme, the C atom in the methoxy group.
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