Science Advances

advances.sciencemag.org/cgi/content/full/6/46/eabc6871/DC1

Supplementary Materials for

HSF1 physically neutralizes amyloid oligomers to empower overgrowth and bestow neuroprotection

Zijian Tang, Kuo-Hui Su, Meng Xu, Chengkai Dai*

*Corresponding author. Email: chengkai.dai@nih.gov

Published 11 November 2020, *Sci. Adv.* **6**, eabc6871 (2020) DOI: 10.1126/sciadv.abc6871

This PDF file includes:

Figs. S1 to S8 Tables S1 to S3

SUPPLEMENTAL MATERIALS AND METHODS

Cell lines

HEK293T cells were purchased from GE Dharmacon, and HeLa and A2058 cells were purchased from ATCC. They were all authenticated by ATCC. Immortalized *Rosa26-CreER^{T2}*; *Hsf1*^{fl/fl} MEFs (male) were described previously (*21*). Primary mouse astrocytes were prepared from the brains of P1 newborn mice as described previously (*58*) with a minor modification, wherein trypsin was replaced with Accumax Cell Dissociation Solution. All cell cultures were maintained in DMEM supplemented with 10% HyClone[™] bovine growth serum. These cell lines have been routinely tested for mycoplasma contamination using MycoAlert[™] Mycoplasm Detection kits.

Primary human neurons were cultured in complete neuronal medium. For the PLA, human neurons were plated on 8-well NuncTM Lab-TekTM II CC2TM Chamber Slides coated with both 20µg/ml laminin and 50µg/ml poly-L-Lysine. Half of the culture medium was changed every four days. After 12 days in culture, neurons were transduced with lentiviral particles overnight in the absence of polybrene and cultured for another four days, followed by transfection with A β_{1-42} peptides overnight.

Dual HSF1 reporter assay

Plasmids were co-transfected with the dual reporter system, comprising the heat shock element (HSE)secreted embryonic alkaline phosphatase (SEAP) and CMV-Gaussia luciferase (GLuc) reporter plasmids, into HEK293T cells using TurboFect[™] transfection reagents. After 48 hr, SEAP and luciferase activities in culture supernatants were quantitated using a NovaBright[™] Phospha-Light[™] EXP Assay Kit for SEAP and a Pierce[™] Gaussia Luciferase Glow Assay Kit, respectively. Luminescence signals were measured by a CLARIOstar microplate reader (BMG LABTECH), and SEAP activities were normalized against GLuc activities.

In vitro kinase assays

The AKT kinase assays were performed in 30µl kinase buffer comprising 25mM MOPS pH 7.2, 12.5mM β -glycerol-phosphate, 25mM MgCl2, 5mM EGTA, 2mM EDTA, 0.25mM dithiothreitol, 250µM ATP. Reactions were incubated at 30°C for 30 min with 1,200 rpm mixing in an Eppendorf Thermomixer® C (Eppendorf North America). Reactions were stopped by adding 30µl of 2x SDS-PAGE sample buffer with 3% 2-mercaptoethanol.

Real-time quantitative RT-PCR

The extraction of total RNAs and qRT-PCR were described previously (21). Signals were detected by an Agilent Mx3000P qPCR System (Agilent Genomics). ACTB was used as the internal control. The sequences of individual primers for each gene are listed in Table S3.

Chromatin immunoprecipitation (ChIP)

ChIP experiments were performed according to the procedures described previously (5). Rabbit anti-HSF1 Abs H-311 or rabbit monoclonal anti-DYKDDDDK Tag Abs (D6W5B) were used for ChIP. Normal rabbit IgG served as the negative control. The sequences of individual primers for each gene are listed in Table S3.

Cytosolic and nuclear fractionation

Cytosolic and nuclear fractions were separated using a NE-PER[™] Nuclear and Cytoplasmic Extraction Kit. Equal amounts of the same fractions were loaded for SDS-PAGE.

Measurement of cell size and quantitation of nuclei and DNA content

The sizes of cultured astrocytes were measured by a ScepterTM 2.0 Handheld Automated Cell Counter (Millipore) equipped with 60 µm sensors. Nuclei and DNAs were extracted from 30mg pulverized frozen mouse brain tissues. Nuclei were extracted using a Detergent-free Nuclei Isolation Kit and counted using the ScepterTM 2.0 Cell Counter. DNAs were extracted using a NucleoSpin[®] TriPrep Kit and quantitated by a NanoDropTM 2000 Microvolume Spectrophotometer (Thermo Fisher Scientific).

Measurement of global protein translation rateCultured astrocytes were labeled with 50nM 6-FAM-dc-puromycin *in vitro* for 30 min and analyzed by flow cytometry.

Congo red staining

Following deparaffinization or air drying, paraffin-embedded brain or frozen liver sections were stained with 0.5% CR dissolved in PBS at RT for 20 min followed by differentiation in alkaline solutions (0.01% NaOH in 50% alcohol). Nuclei were counterstained with hematoxylin.

Peptide and antibody transfection

 $A\beta_{42-1}$ or $A\beta_{1-42}$ peptides and A11 or OC antibodies were transfected into primary mouse astrocytes, immortalized MEFs, or primary human neurons using the XfectTM Protein Transfection Reagent.

Mitochondria fractionation

 1×10^{6} astrocytes were used to isolate the cytoplasmic and mitochondrial fractions using a Mitochondrial Isolation Kit according to the manufacturer's instructions. Equal amounts of the same fractions were loaded for SDS-PAGE.

Quantitation of mitochondrial mass

After detaching cells with trypsin from culture plates, live cells were incubated with the culture medium containing 100nM MitoViewTM Green dyes, which are not dependent on the mitochondrial membrane potential, for 15 min at 37°C. After washing once with PBS, stained cells were analyzed by a BD FACSCaluburTM flow cytometer (BD Biosciences) using the FL1 channel. The data were analyzed using the FlowJoTM v10 software (FlowJo LLC.).

siRNA and shRNA knockdown

siRNAs were transfected at 10nM final concentration using Mission® siRNA transfection reagent or jetPRIME® transfection reagent. HEK293T cells stably expressing lentiviral *HSF1*-targeting (hA6) shRNAs were described previously (21). The target sequences of siRNAs and shRNAs are listed in Table S3.

Separation of detergent-soluble and -insoluble cell/tissue fractions

All centrifugation was performed in Eppendorf Benchtop 5424 Microcentrifuges at 4°C. First, 1x10⁶ cells or 1mg pulverized snap-frozen tissues were incubated with the whole-cell lysis buffer (100 mM NaCl, 30 mM Tris-HCl pH 7.6, 1% Triton X-100, 1 mM EDTA, 1x HaltTM phosphatase inhibitor cocktail, and 1x HaltTM protease inhibitor cocktail) on ice for 20 min. Following a brief centrifugation at 500xg for 5 min at 4°C, the lysates were separated into pellets (P1) and supernatants (S1). The P1, which contains nuclei, membrane debris, and large aggregates, was then treated with 50µl DNA digestion buffer (three units DNase I in 40 mM Tris-HCl, pH 8.0, 10 mM NaCl, 6 mM MgCl₂, 10 mM CaCl₂ and 1% Triton X-100) at RT for 20 min to digest genomic DNAs, followed by membrane resolubilization with 2% SDS for 30 min at RT. The re-solubilized P1 was centrifugated at 16,813xg for 10 min at 4°C to obtain pellets (P2), which contain large aggregates and some SDS-resistant materials that cannot be resolubilized, and supernatants (S2), which mainly contain resolubilized membrane-

associated proteins and are therefore designated as the membrane-associated fractions. The combined S1 and P2 were further centrifuged at 16,813xg for 10 min at 4^oC to obtain pellets (P3) and supernatants (S3). The P3, which contains both large aggregates from the P2 and small aggregates pelleted from the S1, is thus designated as the detergent-insoluble fractions. By contrast, the S3, which now contains all soluble proteins, is designated as the detergent-soluble fractions. For downstream SDS-PAGE and ELISA, the detergent-insoluble fractions were further re-solubilized by sonication for 10 min in PBS containing 2% SDS at high intensity using a Bioruptor® Sonication System (Diagenode Inc.) or a Q125 sonicator (Qsonica, LLC).

Apoptosis detection

Four independent approaches were applied to detect apoptosis in cultured cells and frozen tissues, including quantitation of caspase 3 activity using either a Caspase-3 Colorimetric Assay Kit or a Caspase 3 DEVD-R110 Fluorometric and Colorimetric Assay Kit, immunostaining with rabbit monoclonal anti-cleaved Caspase-3 (Asp175) (5A1E) Abs, detection of DNA fragmentation (TUNEL) in frozen sections using a NeuroTACSTM II In Situ Apoptosis Detection Kit, and measurement of mitochondrial membrane potential changes by FACS using a JC-1 Mitochondrial Membrane Potential Detection Kit. For the JC-1 staining, both floating and adherent cells were collected for analyses.

Immunoblotting and Immunoprecipitation

Whole cell lysates were extracted in lysis buffer, which comprises 100 mM NaCl, 30 mM Tris-HCl pH 7.6, 1% Triton X-100, 1 mM EDTA, 1x HaltTM phosphatase inhibitor cocktail, and 1x HaltTM protease inhibitor cocktail. Following incubation on ice for 20 min, lysates were centrifuged at 15,000 rpm for 10 min in an Eppendorf Benchtop 5424 Microcentrifuge at 4°C.

For immunoblotting, nitrocellulose membranes were incubated with primary antibodies (1:1,000 dilution in the blocking buffer) overnight at 4°C, followed by incubation with peroxidase-conjugated secondary antibodies (1: 2,500 dilution in the blocking buffer) at RT for 1 hr. Signals were generated using SuperSignal West Pico PLUS or Femto chemiluminescent substrates and captured by either X-ray films or an iBright[™] FL1000 imaging system (Life Technologies Corporation). Uncropped blot images are provided as Fig. S8.

For IP, either 1mg whole cell and mouse tissue lysates or 500µg human AD brain lysates were incubated at 4°C overnight with primary antibodies, including: 10µl rabbit monoclonal anti-AKT (pan) (C67E7) Abs, 2µg rabbit polyclonal anti-amyloid oligomers (A11) or anti-amyloid fibrils (OC) Abs, 2µg mouse monoclonal anti-A β_{17-24} (4G8) Abs, and 2µg rabbit anti-HSF1 (H-311) Abs or 2µg mouse monoclonal anti-HSP60 Abs clone LK1. Either normal rabbit or mouse IgG or rabbit anti-PI3K p110 α (C73F8) were used as the negative controls. Protein G MagBeads were used to precipitate primary Abs. After washing with the lysis buffer three times, beads were boiled in 1x sample loading buffer for 5 min before loading on SDS-PAGE.

To minimize the cross-reactivity between secondary Abs and reduced, denatured IP Abs during immunoblotting, EasyBlot[®] anti-Rabbit or anti-Mouse IgG Kits, which also include EasyBlocker to reduce the background caused by Protein G, were applied.

Dot blotting of Aβ₁₋₄₂

 $1\mu M A\beta_{1-42}$ was mixed with GST or HSF1 proteins at different molar ratios in 100µl PBS and incubated at RT for 4 hr. After centrifugation at 15,000 rpm for 10 min at 4°C in an Eppendorf

Benchtop 5424 microcentrifuge, 50µl of supernatants were loaded on a 96-well Bio-Dot[®] Microfiltration Apparatus with Immobilon[®] PVDF membranes (0.45µm pore size) pre-soaked in PBS. A vacuum was used to drain the samples. Following blocking with 5% non-fat dry milk in PBS, the membranes were incubated with 4G8, ab2539, or D54D2 Abs (1:1000) at 4°C overnight, followed by incubation with secondary Abs-HRP conjugates (1:2500) at RT for 1 hr.

Immunofluorescence

Following fixation with 4% formaldehyde in 1xPBS for 15 minutes at RT, cells were blocked with 5% normal goat serum in PBS containing 0.3% Triton X-100 for 1 hr at RT. Primary antibodies 1:100 diluted in 5% normal goat serum were incubated at 4°C overnight, followed by incubation with donkey anti-rabbit or anti-mouse IgG (H+L) CF®594 or CF®488A conjugates (1:200) at RT for 1 hr. For immunofluorescence staining of HSP60 in mouse brains, frozen sections were first incubated with mouse monoclonal anti-HSP60 Abs clone LK1 (1:100) at 4°C overnight, followed by incubation with anti-mouse IgG (H+L) CF®594 conjugates (1:200) at RT for 1 hr. To co-stain neurons, sections were further incubated with mouse anti- β III Tubulin Abs clone 2G10-TB3 Alexa Fluor[®] 488 conjugates (1:100) at RT for 4 hr. A set of brain sections incubated only with conjugated secondary Abs served as the negative controls. Nuclei were counterstained with Hoechst 33342, and fluorescent signals were documented by a Zeiss LSM780 confocal microscope.

Nissl staining

Following deparaffinization, brain sections were stained with 0.1% Cresyl violet solution (NovaUltraTM Nissl Stain Kit) for 5 min, followed by differentiation in 95% alcohol for 1 min.

Lentiviral production and transduction

Lentiviral particles were produced in HEK293T cells by co-transfection of pLKO vectors, pCMVdR8.2 dvpr, and pCMV-VSV-G using the TurboFectTM Transfection Reagent. Culture supernatants containing lentiviral particles were collected and filtered through sterile 0.45µm syringe filters. Lentiviral titers were determined using the Lenti-XTM GoStixTM Plus. To transduce target cells, different amounts of viral supernatants, based on the MOIs, were diluted in the culture medium containing 10µg/ml polybrene and incubated with target cells overnight.

Figure S1

SUPPLEMENTARY FIGURE LEGENDS

Figure S1: AKT directly activates HSF1.

(A) Following heat shock at 43°C for 30 min, HEK293T cells were fixed and stained with phospho-AKT Thr308 and Ser473 antibodies. The fluorescence intensities were quantitated by flow cytometry (mean±SD, n=3 experiments, two-tailed Student's t test). NHS: no heat shock. (B) Following pretreatment with 20µM inhibitors for 3 hr, NIH3T3 cells were heat shocked at 43°C for 30 min and recovered at 37°C for 8 hr. The mRNAs of Hsp72 and Hsp25 were quantitated by qRT-PCR (mean±SD, n=3 experiments, One-way ANOVA). (C) Following pre-treatment with 20µM PI3K or AKT inhibitors for 3 hr, NIH3T3 cells were heat shocked at 43°C for 30 min and recovered at 37°C for 8 hr. HSP induction was detected by immunoblotting (images of a single experiment). (D) Following treatment with 20µM AKT inhibitors for 3 hr, the binding of HSF1 to the HSP72 promoter in HEK293T cells in the absence of heat shock was quantitated by chromatin immunoprecipitation (ChIP)-qPCR (mean±SD, n=3 experiments, One-way ANOVA). (E) and (F) Following transfection of HEK293T cells with LacZ or AKT1^{Myr} plasmids for 48 hr, the binding of endogenous HSF1 to the HSP72 and HSP27 promoters were quantitated by ChIP-qPCR (E) and the transcripts of HSPs were quantitated by qRT-PCR (F) (mean±SD, n=3 experiments, One-way ANOVA). (G) Following cotransfection of plasmids encoding individual AKT isoforms along with the dual HSF1 reporter system in HEK293T cells for 48 hr, the reporter activities in culture media were measured, and SEAP activities were normalized against GLuc activities (mean±SD, n=3 experiments, One-way ANOVA). (H) HEK293T cells, stably expressing either scramble or *PTEN*-targeting shRNAs, were transfected with the dual HSF1 reporter system comprising the heat shock element (HSE)-secreted embryonic alkaline phosphatase (SEAP) and the CMV-Gaussia luciferase (GLuc) reporter plasmids. After 16 hr, transfected cells were treated with 20µM AKT inhibitors for 48 hr. The reporter activities in culture media were measured, and SEAP activities were normalized against GLuc activities (mean±SD, n=3 experiments, One-way ANOVA). (I) In HEK293T cells stably expressing either scramble or PTENtargeting shRNAs, the binding of HSF1 to the HSP72 promoter was quantitated by ChIP-qPCR with and without 20µM MK2206 treatment overnight (mean±SD, n=3 experiments, One-way ANOVA). (J) Following heat shock at 43°C for 30 min, the endogenous AKT-HSF1 interactions were detected by co-IP with the EasyBlot[®] reagents in HEK293T cells (representative images of three experiments). Rabbit monoclonal anti-PI3K p110a Abs served as the negative control. HC: heavy chain. WCL: whole cell lysate. (K) Following transfection of control or combined Akt1/2/3-targeting siRNAs for four days, immortalized Rosa26-CreER^{T2}; Hsf1^{fl/fl} MEFs without 4-OHT treatment were stained with rabbit monoclonal anti-pan AKT (C67E7) Abs (images of a single experiment). Following treatment with and without 1uM 4-OHT for seven days to delete *Hsf1*, these MEFs were stained with mouse monoclonal anti-HSF1 (E-4) Abs (images of a single experiment). The endogenous AKT-HSF1 interactions (green) were visualized by PLA using the anti-HSF1 (E-4) Ab and the anti-pan AKT (C67E7) Ab in these MEFs (representative images of three experiments performed by two individuals). Actin filaments and nuclei were labeled with phalloidin-Alexa Fluor® 594 conjugates (red) and Hoechst 33342 (blue), respectively. Scale bars: 10µm. (L) The consensus AKT phosphorylation sequence and corresponding Ser230 site on both human and mouse HSF1 proteins. (M) In vitro His-HSF1 Ser230 phosphorylation by recombinant active AKT isoforms (representative images of three experiments). Following co-incubation of 100ng recombinant His-HSF1 proteins with 100ng GST or AKT isoforms at 30°C for 30 min with and without 20µM AKT inhibitors, HSF1 Ser230 phosphorylation was detected by immunoblotting. (N) In vitro phosphorylation of His-HSF1 by recombinant active MEK1 and AKT1 proteins independently (representative images of three experiments). Phosphorylation was detected by immunoblotting. (O) Following heat shock at 43°C for

30 min, HSF1 and AKT phosphorylation in HEK293T cells pre-treated with 20µM PI3K or AKT inhibitors for 3 hr was detected by immunoblotting (images of a single experiment). (P) HSF1 and AKT phosphorylation in HEK293T cells stably expressing either scramble or *PTEN*-targeting shRNAs was detected by immunoblotting (images of a single experiment). (**Q**) In HEK293T cells stably expressing a shRNA (A6) that targets the 3' UTR of HSF1, indicated plasmids were co-transfected along with the dual HSF1 reporter system. After 48 hr, the reporter activities in culture media were measured, and SEAP activities were normalized against GLuc activities (mean±SD, n=3 experiments, One-way ANOVA). The expression of HSF1^{WT} and HSF1^{S230A} was detected by immunoblotting. (**R**) HEK293T cells stably expressing HSF1-targeting shRNAs (A6) were co-transfected with indicated plasmids along with the dual reporter plasmids. After 16 hr, transfected cells were pre-treated with 20µM MK2206 for 3 hr, followed by heat shock at 43°C for 30 min. Forty-eight hours after heat shock, the reporter activities in culture media were measured, and SEAP activities were normalized against GLuc activities (mean±SD, n=3 experiments, One-way ANOVA). (S) Following transfection with FLAG-HSF1^{WT} or -HSF1^{S230A} plasmids and heat shock at 43°C for 30 min, the cytosolic and nuclear fractions of HEK293T cells were prepared, and FLAG-HSF1 was detected by immunoblotting (representative images of three experiments). LDH and Lamin A/C were used as the cytosolic and nuclear markers, respectively. C: cytosolic; N: nuclear. (T) HEK293T cells stably expressing HSF1targeting shRNAs (A6) were transfected with either FLAG-HSF1^{WT} or -HSF1^{S230A} plasmids. After 48 hr, the binding of HSF1 to the HSP72 and HSP27 promoters was quantitated by ChIP-qPCR (mean±SD, n=3 experiments, One-way ANOVA). (U) Both heat stress and oncogenic stimuli converge on the AKT-mediated HSF1 activation, which manages to sustain the proteomic stability. (C), (O), and (P) were done once; all the others were repeated thrice.

Figure S2: HSF1 is required for megalencephaly driven by constitutively active PI3K.

(A) Measurement of global protein translation rate in cultured astrocytes by puromycin labeling. The labeling fluorescence intensity (FL1-H) was quantitated by FACS and represented as geometric means (mean±SD, n=3 lines of astrocytes each genotype, One-way ANOVA). The histogram represents a single line. (B) Quantitation of DNA content in frozen mouse brain tissues (mean±SD, n=5 mice per group, One-way ANOVA). (C) Immunoblotting of neuronal, astrocytic, and microglial markers in the lysates of whole mouse brains (three mice per group). (**D**) Microglial activation and neuronophagia, indicated by the arrows, in P^*H^- brains (representative images of three brains each genotype). Scale bars: 20µm. (E) Flowchart of the fractionation procedures and validation of the fractionation method by immunoblotting using mouse brains. Three individual $p110^*$ -expressing $Hsfl^{+/+}$ brains were tested. β-Actin served as the marker for detergent-soluble fractions, E-cadherin and TOM20 served as the markers for membrane-associated fractions, and β-amyloid served as the marker for detergentinsoluble fractions. For the soluble and insoluble fractions, 40µg proteins were loaded, and only 20µg proteins were loaded for the membrane-associated fractions. Of note, some Histone remained insoluble. Detergent-insoluble fractions were re-solubilized by sonication before loading for SDS-PAGE. (F) Quantitation of PAOs in the membrane-associated fractions of brain lysates by ELISA (mean±SD, n=5 mice per group, One-way ANOVA). (G) Representative images of frozen brain sections stained with anti-A β_{1-42} oligomer Abs or TUNEL assays (from three brains of each genotype and the TUNEL staining was performed by two individuals). Scale bars: 100µm for main images; 10µm for insets. (H) Quantitation of endogenous mouse $A\beta_{1-42}$ in the insoluble fractions of mouse brain lysates (mean±SD, n=5 mice per group, One-way ANOVA). (I) Validation of the specificity of anti-A β (ab2539) antibodies. Upper panel: immortalized *Rosa26-CreER^{T2}*; *Hsfl*^{*fl/fl*} MEFs, treated with 4-OHT to delete *Hsf1*, were transfected with either 10µM control A β_{42-1} or 10µM mouse A β_{1-42} overnight, followed by staining with anti-A β (ab2539) Abs (representative images of three experiments). Scale bars: 10µm. Lower panel: the paraffin sections of P^*H^- brains were stained with the mixture of ab2539 and the control A β_{42-1} or mouse A β_{1-42} peptides at a 1:20 molar ratio (representative images of three brains). Sale bars: 100µm. (J) Representative images of intracellular A β accumulation, plaque-like A β deposits, and amyloid angiopathy in P^*H^- brains (from three brains). Arrowheads denote amyloid angiopathy. Scale bars: 20µm for main images and 10µm for insets. (K) Neurodevelopmental defects and neuronal loss in *p110**-expressing brains revealed by H&E and Nissl staining, respectively (images of a single experiment). Scale bars: 100µm. (L) and (M) Quantitation of soluble A11⁺ PAOs and caspase 3 activities in cultured astrocytes (mean±SD, n=3 lines of astrocytes each genotype, One-way ANOVA). The caspase 3 activities were measured using a SensoLyte[®] Homogeneous Rh110 Caspase-3/7 Assay Kit. (N) and (O) Quantitation of free soluble PAOs and insoluble AFs in *p110**-expressing astrocytes treated with and without 10µM CR for two days, as described in Fig. 2A (mean±SD, n=3 lines of astrocytes each genotype, One-way ANOVA). (P) Measurement of the cell size of *Pten*-deficient astrocytes with and without *Hsfl* deletion (mean±SD, n=3 lines of astrocytes each genotype, two-tailed Student's t test). (**Q**) Measurement of the translation rate of *Pten*-deficient astrocytes with and without *Hsf1* deletion by puromycin labeling (mean±SD, n=3) lines of astrocytes each genotype, two-tailed Student's t test).

(B), (C), (H), and (K) were done once; (F) was repeated twice; and all the others were repeated thrice with different sets of astrocytes or brains.

Figure S3: HSF1 suppresses amyloidogenesis in livers with constitutively active PI3K or PTEN deficiency.

(A) Quantitation of PAOs in the membrane-associated fractions of livers expressing $p110^*$ by ELISA (mean±SD, n=5 mice per group, One-way ANOVA). (B) Quantitation of endogenous A β_{1-42} levels in the soluble fractions of mouse liver lysates expressing $p110^*$ by ELISA (mean±SD, n=5 mice per group, One-way ANOVA). (C) Quantitation of PAOs in the membrane-associated fractions of livers deficient in *Pten* by ELISA (mean±SD, n=5 mice per group, One-way ANOVA). (D) Representative images of frozen mouse liver sections stained with anti-A β_{1-42} oligomer Ab, Congo red (CR), or anticleaved caspase 3 Abs (from three livers of each genotype). Scale bars: 50µm for main images; 10µm for insets.

(B) was done once; (A) and (C) were repeated twice; and (D) was repeated thrice with different sets of livers.

Figure S4

Figure S4: Loss of HSP60 function leads to mitochondrial damage, mitophagy, and apoptosis. (A) Measurement of global protein translation rate by puromycin labeling in $p110^*$ -expressing astrocytes treated with and without 50µM 4EGI-1 or 20µM LY2584702 overnight. The histogram represents a single experiment. (B) Quantitation of amyloid levels in *Pten*-deficient astrocytes with Hsfl deletion treated with and without 50µM 4EGI-1 or 20µM LY2584702 overnight (mean±SD, n=3 lines of astrocytes of each genotype, One-way ANOVA). (C) Measurement of the mitochondrial membrane potentials of Pten-deficient astrocytes with Hsfl deletion treated with and without 50µM 4EGI-1 or 20µM LY2584702 for four days (mean±SD, n=3 lines of astrocytes of each genotype, Oneway ANOVA). (D) Detection of HSP60 aggregates in whole brain lysates by filter-trap assays (three mice per group). (E) Quantitation of mitochondrial mass in astrocytes treated with and without 10µM CR or 20µM CQ for six days by FACS using MitoView[™] Green. The histogram depicts a single experiment, and three independent experiments are summarized in Fig. 5A. (F) JC-1 Red/Green (FL2-H/FL1-H) fluorescence ratios of $p110^*$ -expressing astrocytes transduced with lentiviral LacZ or HSP60 at a MOI=10 for six days (mean±SD, n=3 lines of astrocytes of each genotype, two-tailed Student's t test). (G) JC-1 Red/Green fluorescence ratios of Pten-deficient astrocytes with Hsfl deletion transduced with lentiviral LacZ or HSP60 at a MOI=10 for six days (mean±SD, n=3 lines of astrocytes of each genotype, two-tailed Student's t test). (H) Measurement of the mitochondrial membrane potentials in hGFAP- Cre^+ ; $Hsf1^{+/+}$ astrocytes transfected with control or Hsp60-targeting siRNAs for four days (representative contour plot of three lines of astrocytes). (I) Detection of HSP60 and TOM20 in the detergent-soluble and detergent-insoluble fractions of Pten-deficient livers by immunoblotting (three mice of each genotype). (J) Detection of HSP60 aggregates in *Pten*-deficient livers by filter-trap assays (three mice of each genotype).

(A), (D), (I), and (J) were done once; the others were repeated thrice with different sets of astrocytes. (G) was repeated by two individuals.

Figure S5: HSF1 protects HSP60 from AO attack.

(A) Detection of PAOs of A β and Tau by IP with the EasyBlot[®] reagents in *p110**-expressing mouse brains (representative images of two sets of brains). (B) and (C) Detection of physical Aβ-HSP60 and Aβ-HSF1 interactions in *p110**-expressing mouse brains by co-IP with the EasyBlot[®] reagents (representative images of three sets of brains). (**D**) Detection of $A\beta_{1-42}$ co-incubated with and without recombinant HSF1 proteins at increased molar ratios by dot blotting (representative images of three experiments). (E) and (F) Detection of physical AO-HSF1 and AO-HSP60 interactions in Ptendeficient livers by co-IP with the EasyBlot[®] reagents (representative images of three sets of livers). (G) Validation of the mouse monoclonal anti-HSP60 antibody (LK1) used for PLA by immunofluorescence in *hGFAP-Cre*⁺; *Hsf1*^{+/+} astrocytes transfected with control or *Hsp60*-targeting siRNAs for four days (images of a single experiment). Scale bars: 10µm. (H) Visualization of PAO-HSP60 interactions in cultured astrocytes by PLA using rabbit anti-PAOs (A11) Abs and mouse monoclonal anti-HSP60 (LK1) Abs (representative images of two lines of astrocytes of each genotype). Scale bars: 10µm. A similar result was also observed in Pten-deficient astrocytes following *Hsf1* deletion. (I) Detection of HSP60 and HSF1 aggregation due to $A\beta_{1-42}$ interactions *in vitro*, as described in Fig. 6C, by filter-trap assays (representative images of three experiments). (J) Detection of the insolubility of HSPs in the presence of $A\beta_{1-42}$ in vitro. Recombinant HSP60, HSP90 β , HSP72, HSP27, and HSP10 proteins were incubated with either AB42-1 or AB1-42 at a 1:1 molar ratio at RT for 4 hr (representative images of three experiments). (K) Quantitation of the absolute levels of HSF1, $A\beta_{42}$, and HSP60 in 10µg of mouse brain lysates by commercial ELISA kits (mean±SD, n=5 mice per genotypic group, One-way ANOVA). (L) Quantitation of soluble AOs in $P^{*}H^{-}$ mouse brain lysates before and after IP with AB (D54D2) Abs (n=5 mice, two-tailed paired Student's t test). Normal rabbit IgG served as the control. (M) Measurement of the mitochondrial membrane potentials of Ptendeficient astrocytes with *Hsf1* deletion transduced with lentiviral HSF1 at a MOI=10 for six days by JC-1 staining (mean±SD, n=3 lines of astrocytes of each genotype, One-way ANOVA). (N) Detection of physical PAO-HSF1 and PAO-HSP60 interactions by co-IP with the EasyBlot[®] reagents in astrocytes transduced with lentiviral LacZ, HSF1¹⁻⁵²⁹, HSF1¹⁻³²³, or HSF1³²⁴⁻⁵²⁹ at a MOI=10 for six days (images of a single experiment).

(G), (L), and (N) were done once; (A) and (H) were repeated twice with different sets of brains or astrocytes; (K) was repeated twice; (B), (C), (E), (F), and (M) were repeated thrice with different sets of tissues or astrocytes; and (D), (I), and (J) were repeated thrice with the same reagents.

Figure S6

Hours

Figure S6: HSF1 impairs amyloidogenesis through physical interactions.

(A) Measurements of the fibrillation of $2\mu M A\beta_{1-42}$ incubated with recombinant GST or HSF1 proteins in vitro at a 1:1 molar ratio (mean±SD, n=3 experiments, Two-way ANOVA). Non-amyloidogenic A β_{42-1} peptides served as the negative control. The curves are fitted with the Boltzmann sigmoid equation. (B) and (C) Quantitation of PAOs and AFs formed by $2\mu M A\beta_{1-42}$ described in (A) by ELISA (mean±SD, n=3 experiments, One-way ANOVA). (**D**) Measurements of the fibrillation of 0.8μM Aβ₁₋₄₂ incubated with OC Abs *in vitro* at increasing molar ratios (mean±SD, n=3 experiments, Two-way ANOVA). Normal rabbit IgG served as the control. The curves are fitted with the Boltzmann sigmoid equation. (E) Detection of protein aggregates in the experiments described in Fig. 8B by filtertrap assays (representative images of three experiments). The yellow color is due to ThT. Photo credit: Zijian Tang, NCI. (F) Dynamic measurements of the nephelometric turbidities of $0.2\mu M A\beta_{1.42}$ incubated with GST or HSF1 at a 1:32 molar ratio for 48 hr (mean±SD, n=2 experiments, Two-way ANOVA). (G) Measurements of the nephelometric turbidities of detergent-soluble brain lysates prior to incubation at 37°C (mean±SD, n=5 mice per group, One-way ANOVA). (H) In vitro fibrillation of Aβ₁₋₄₂ incubated with either recombinant GST or HSP60 proteins at a 1:1 molar ratio (mean±SD, n=3 experiments, Two-way ANOVA). Non-amyloidogenic AB₄₂₋₁ peptides served as the negative control. The curves are fitted with the Boltzmann sigmoid equation. (I) and (J) Quantitation of PAOs and AFs formed in (H) by ELISA (mean±SD, n=3 experiments, One-way ANOVA). (K) In vitro fibrillation of $A\beta_{1-42}$ incubated with either recombinant GST or various HSP proteins at a 1:1 molar ratio (mean±SD, n=3 experiments, Two-way ANOVA). The curves are fitted with the Boltzmann sigmoid equation. (G) was done once; (F) was repeated twice; and all the others were repeated thrice with the same reagents.

Figure S7

Figure S7: Human AD brains display elevated AOs and apoptosis but diminished HSF1 and HSP60 proteins.

(A) Validations of the mouse anti-biotin and rabbit anti-HSP60 Abs in HeLa cells by immunofluorescence (images of a single experiment). Following transfection of 1µM non-biotinylated (NB) or biotinylated A β_{1-42} overnight, cells were stained with mouse monoclonal anti-biotin (BTN.4) Abs. Following transfection of 10nM HSP60-targetting siRNAs for four days, HeLa cells were stained with rabbit anti-HSP60 (D6F1) Abs. Scale bars: 10µm. (B) and (C) AD and normal control brain sections on tissue arrays were stained with A11 (B) and OC (C) Abs, respectively (images of a single experiment). Scale bars: 100µm for main images; 10µm for insets. (**D**) AD and normal control brains were stained with rabbit anti-cleaved caspase 3 (Asp175) (representative images of two experiments). Scale bars: 50µm for main images; 10µm for insets. (E) Validations of the mouse monoclonal anti-HSP60 (LK1) Ab in HeLa cells, transfected with 10nM HSP60-targetting siRNAs for four days, by immunofluorescence (images of a single experiment). Scale bars: 10µm. (F) AD and normal control brain sections on tissue arrays were stained with mouse monoclonal anti-AB₁₇₋₂₄ (4G8) Abs (images of a single experiment). A similar result was observed for anti-A β_{1-14} (ab2539) Abs. The 4G8 antibody detected numerous amyloid plaques in AD QC control slides. Scale bars: 100µm. (G) Visualization of HSP60-FAOs interactions (brown) in AD patients' brains by brightfield PLA using a mouse monoclonal anti-HSP60 Ab (LK1) and the rabbit polyclonal anti-FAOs (OC) Ab (representative images of two experiments). Scale bars: 20um for low magnification: 10um for high magnification. (H) AD and normal control brains on tissue arrays were stained with rabbit monoclonal anti-HSF1 (EP1710Y) Abs (representative images of three experiments). Scale bars: 100µm. (I) AD and normal control brains on tissue arrays were stained with anti-HSP60 (D6F1) Abs (representative images of four experiments). Scale bars: 100µm.

(A)–(C), (E), and (F) were done once; (D) and (G) were repeated twice; and (H) and (I) were repeated three and four times, respectively.

Fig. 2B

p-S6K T389

K48 PolyUb

lgG HC

IPed HSP60

Fig. 4H

IgG HC

Supernatant HSP60

Pellet HSF1

Pellet HSP60

Fig. 6D

Supernatant IgG HC

Pellet Aβ

Pellet HSP60

Supernatant HSP60

Fig. 11A

Fig. 11B

Fig. 11C

Whole brain

IPed HSP60

lgG HSF1 Ab

Fig. 11C

Hippocampus

Fig. S1C

HSP72

βActin

Fig. S1M

Fig. S1N

Fig. S10

p-AKT T308

Fig. S1P

Fig. S1Q

Fig. S1S

Soluble

Insoluble

Membrane

TOM20

E-Cadherin

Fig. S5A

Fig. S5B

Fig. S5C

IgG HC 80KD _____ 58KD _____ 46KD ____ Hc . B1- + H+ H+ H+ H- H-Dgl P+ P+ P- P- P+ Wer A11 1 1 I de l

Fig. S5F

lgG HC

IPed HSP60

Supernatant HSP10

Fig. S5N

Figure S8: Uncropped immunoblot images.

Images highlighted in red fonts were captured by an iBright[™] FL1000 imaging system. Photo credit: Zijian Tang, NCI.1.

Tissue Types	Disease State	Sex	Age
			(years)
Brain (paraffin sections)	Alzheimer's	М	73
Brain (paraffin sections)	Alzheimer's	М	72
Brain (paraffin sections)	Alzheimer's	М	88
Brain (paraffin sections, positive control for amyloid plaques)	Alzheimer's	N/A	N/A
Brain (total lysates)	Alzheimer's	М	65
Brain (Hippocampus lysates)	Alzheimer's	F	93
Brain (paraffin sections)	Normal aged control	М	54
Brain (paraffin sections)	Normal aged control	F	54
Brain (paraffin sections)	Normal aged control	М	73
Brain (total lysates)	Normal aged control	М	82
Brain (Hippocampus lysates)	Normal aged control	М	71

Table S1: Information of human tissues used in this study.

 Table S2: Detailed information of all experimental materials.

REAGENTS OR RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-phospho-AKT Thr380 (D25E6)	Cell Signaling Technology	Cat#: 13038
Anti-phospho-AKT Ser473 (D9E)	Cell Signaling Technology	Cat#: 4060
Anti-HSF1 (H-311)	Santa Cruz Biotechnology	Cat#: sc-9144
Anti-PI3K p110a (C73F8)	Cell Signaling Technology	Cat#: 4249
Anti-AKT (pan) (C67E7)	Cell Signaling Technology	Cat#: 4691
Anti-HSF1 (E-4)	Santa Cruz Biotechnology	Cat#: sc-17757
Anti-HSF1 (10H8)	Santa Cruz Biotechnology	Cat#: sc-13516
Anti-phospho-HSF1 Ser230	Santa Cruz Biotechnology	Cat#: sc-30443-R
Anti-βActin (GT5512)	GeneTex	Cat#: GTX629630
Anti-PTEN (D4.3)	Cell Signaling Technology	Cat#: 9188
Anti-DYKDDDDK Tag (FLAG)	Cell Signaling Technology	Cat#: 14793
(D6W5B)		
Anti-HSP72	Enzo Life Science	Cat#: ADI-SPA-812
Anti-HSP25	Enzo Life Science	Cat#: ADI-SPA-801
Anti-phospho-HSF1 Ser326 (EP1713Y)	Abcam	Cat#: ab76076
Anti-LDH (EP1563Y)	Abcam	Cat#: ab134187
Anti-Lamin A/C (4C11)	Cell Signaling Technology	Cat#: 4777
Anti-MCM2 (D7G11)	Cell Signaling Technology	Cat#: 3619
Anti-PCNA (PC10)	Cell Signaling Technology	Cat#: 2586
Anti-phospho-p70 S6K Thr389 (108D2)	Cell Signaling Technology	Cat#: 9234
Anti-p70 S6K (49D7)	Cell Signaling Technology	Cat#: 2708
Anti-β III tubulin (AA10)	STEMCELL Technologies	Cat#: 60100
Anti-AMPAR1/GluA1 (D4N9V)	Cell Signaling Technology	Cat#: 13185
Anti-NMDAR1/GluN1) (D65B7)	Cell Signaling Technology	Cat#: 5704
Anti-PSD95 (D27E11)	Cell Signaling Technology	Cat#: 3450
Anti-GFAP (E4L7M)	Cell Signaling Technology	Cat#: 80788
Anti-Synaptophysin (D8F6H)	Cell Signaling Technology	Cat#: 36406
Anti-Iba-1/AIF1	GeneTex	Cat#: GTX100042
Anti-amyloid oligomer (A11)	StressMarq Biosciences	Cat#: SPC-506D
Biotin-conjugated Anti-amyloid	StressMarq Biosciences	Cat# SPC-506D-BI
oligomer (A11)		
Anti-amyloid fibrils (OC)	StressMarq Biosciences	Cat#: SPC-507D
Biotin-conjugated Anti-amyloid fibrils (OC)	StressMarq Biosciences	Cat# SPC-507D-BI
Anti-cleaved caspase 3 (Asp175) (5A1E)	Cell Signaling Technology	Cat#: 9664
Anti-E-cadherin (24E10)	Cell Signaling Technology	Cat#: 3195
Anti-TOM20 (D8T4N)	Cell Signaling Technology	Cat#: 42406
Anti-Histone H3 (D1H2)	Cell Signaling Technology	Cat#: 4499
Anti-β-amyloid, 17-24 (4G8)	BioLegend	Cat#: 800701
Anti-β-amyloid, 1-14	Abcam	Cat#: ab2539

Anti-β-amyloid (D54D2)	Cell Signaling Technology	Cat#: 8243
Anti-A β_{1-42} , oligomer specific	GeneTex	Cat#: GTX134510
Anti-HSP60 (D6F1)	Cell Signaling Technology	Cat#: 12165
Anti-HSP60 (LK1)	EMD Millipore	Cat#: MAB3514
Anti-Tau (Tau46)	Cell Signaling Technology	Cat#: 4019
Anti-phospho-Tau (Ser404) (D2Z4G)	Cell Signaling Technology	Cat#: 35834
Anti-Lys48 polyubiquitin (Apu2)	EMD Millipore	Cat#: 05-1307
Anti-β III tubulin (2G10-TB3),	Thermo Fisher Scientific	Cat#: 53-4510-80
Alexa Fluor 488		
Anti-Parkin (Prk8)	Cell Signaling Technology	Cat#: 4211
Anti-Cytochrome C (7H8.2C12)	Thermo Fisher Scientific	Cat#: 33-8500
Anti-HSP90α/β	Enzo Life Science	Cat#: ADI-SPA-846-D
Anti-GST (91G1)	Cell Signaling Technology	Cat#: 2625
Anti-HSP27	Enzo Life Science	Cat#: ADI-SPA-803
Anti-HSP10	Enzo Life Science	Cat#: ADI-SPA-110-D
Anti-Biotin (BTN.4)	Thermo Fisher Scientific	Cat#: MA5-11251
Anti-DYKDDDDK Tag, DyLight 680	Thermo Fisher Scientific	Cat#: MA1-91878-D680
Anti-DYKDDDDK Tag, Alexa Fluro 488	Cell Signaling Technology	Cat#: 15008
Anti-HSF1 (EP1710Y)	Abcam	Cat#: ab52757
Anti-A β_{1-42} (mOC98)	Abcam	Cat#: ab201061
Normal mouse and rabbit IgG	Santa Cruz Biotechnology	Cat#: sc-2025 and sc-2027
Peroxidase AffiniPure Goat Anti-Rabbit	Jackson ImmunoResearch	Cat#: 111-035-144
IgG (H+L)		
Peroxidase AffiniPure Goat Anti-Mouse	Jackson ImmunoResearch	Cat#: 115-035-003
IgG (H+L)		
Peroxidase AffiniPure Goat Anti-Rat	Jackson ImmunoResearch	Cat#: 112-035-143
IgG (H+L)		
Duolink® In Situ PLA® anti-rabbit Plus	Sigma-Aldrich	Cat#: DUO92002
probes	_	
Duolink® In Situ PLA® anti-mouse	Sigma-Aldrich	Cat#: DUO92004
MINUS probes		
CF®594 Donkey anti-mouse IgG (H+L)	Biotium	Cat#: 20115
CF®594 Donkey anti-rabbit IgG (H+L)	Biotium	Cat#: 20152
CF®488A Donkey anti-mouse IgG	Biotium	Cat#: 20014
(H+L)		
CF®488A Donkey anti-rabbit IgG (H+L)	Biotium	Cat#: 20015
Cell Culture Reagents, Chemicals,		
Peptides, and Recombinant Proteins		
Accumax Cell Dissociation Solution	Innovative Cell	Cat# AM105
	Technologies	
HyClone [™] bovine growth serum	HyClone Laboratories	Cat# SH30541.03IR
LY294002	Selleck Chemicals	Cat#: S1105
MK2206	ApexBio	Cat#: A3010
RG7440 (Ipatasertib)	ApexBio	Cat#: A3006

Halt TM phosphatase inhibitor cocktail	Thermo Fisher Scientific	Cat#: 78420
Halt [™] protease inhibitor cocktail	Thermo Fisher Scientific	Cat#: 87785
ActinRed TM 555 ReadyProbes TM Reagent	Thermo Fisher Scientific	Cat#: R37112
Hoechst 33342	Thermo Fisher Scientific	Cat# H1399
2% uranyl acetate solution	Electron Microscopy	Cat# 22400-2
	Sciences	
SuperSignal West Pico PLUS or Femto	Thermo Fisher Scientific	Cat#34580 or 34095
chemiluminescent substrates		
Protein G MagBeads	GenScript	Cat#L00274
Recombinant active AKT1,	SignalChem	Cat#: A16-10G-10, A17-
AKT2, and AKT3 proteins		10G-10, A18-10G-10
	<u>c:</u> 101	G
Recombinant active MEK1 proteins	SignalChem	Cat#: M02-10G-10
Terefore Fred Manual Continues and the	Thormo Fisher Scientific	Cat#D0521
Iurborect ¹ transfection reagents	Sigma Aldrich	Cat#K0351
MISSION® SIGNA transfection reagent	Signa-Aldrich	Cat#: 51432
JetPRIME® transfection reagent	Polyplus-transfection [®] SA	
RNA SIAI-60 TM reagent	Tel-Test, Inc.	
Xfect ^{IM} Protein Transfection Reagent	Takara Bio USA	Cat#: 631324
6-FAM-dc-puromycin	Jena Bioscience	Cat#: NU-925-6FM
I-Step ^{IM} Ultra IMB-ELISA substrates	Thermo Fisher Scientific	Cat#: 34029
Synthetic human A β_{1-42} peptides	GenScript	Cat#: RP10017
Thioflavin T (ThT)	Thermo Fisher Scientific	Cat#: AC211760050
BLOXALL blocking solution	Vector Laboratories	Cat#: SP-6000
Mouse on mouse (M.O.M) blocking	Vector Laboratories	Cat#MKB-2213
reagents		G + 11 G 590 25
Congo Red (CR)	Thermo Fisher Scientific	Cat#: C580-25
4EGI-1	EMD Millipore	Cat#: 32451/-10MG
LY2384/02	BIOVISION	Cat#: 9445-25
Pan-caspase inhibitor (CI), Q-VD-OPH	APEXBIO	Cat#: A1901
Mito View TM Green dyes	Biotium	
Chloroquine diphosphate (CQ)	Axxora	Cat#: LK1-C2950-G025
Synthetic A β_{42-1} peptides	AnaSpec	
Recombinant GS1 proteins	SignalChem	Cat#: G52-30U-50
Recombinant human HSF1 proteins	Enzo Life Science	Cat#: ADI-SPP-900-F
Recombinant human HSP60 proteins	R&D Systems	Cat#: AP-140-050
Recombinant human HSP90 ^β	Enzo Life Science	Cat#: ALX20114/C025
Recombinant human HSP72 proteins	Enzo Life Science	Cat#: ADI-SPP-715-D
Recombinant human HSP27 proteins	Enzo Life Science	Cat#: ADI-NSP-555-D
Recombinant human HSP10 proteins		
	Enzo Life Science	Cat#: ADI-SPP-110-D
HiLyte TM Fluor 488-labeled human $A\beta_{1-42}$	Enzo Life Science AnaSpec	Cat#: ADI-SPP-110-D Cat#: AS-60479-01
HiLyte TM Fluor 488-labeled human $A\beta_{1-42}$ DABCYL acid, SE	Enzo Life Science AnaSpec AnaSpec	Cat#: ADI-SPP-110-D Cat#: AS-60479-01 Cat#: AS-81801

Synthetic human Biotin-Aβ ₄₂₋₁ peptides	GenScript	Custom synthesis
Poly-L-Lysine	ScienCell Research	Cat#: 0403
	Laboratories	
Purified mouse laminin	EMD Millipore	Cat#: CC095
Commercial Kits		
EasyBlot anti-Rabbit or anti-Mouse	GeneTex	Cat# GTX225856-01,
IgG Kits		GTX225857-01
MycoAlert TM Mycoplasm Detection kits	Lonza	Cat# LT07-418
normocin	Invivogen	Cat# ant-nr-1
Complete neuronal medium	ScienCell Research	Cat# 1521
Pierce TM BCA Protein Assav Kit	Thermo Fisher Scientific	Cat#: 23225
NovaBright TM Phospha-Light TM FXP	Thermo Fisher Scientific	Cat#: N10578
Assay Kit for SEAP		
Pierce TM Gaussia Luciferase Glow	Thermo Fisher Scientific	Cat#: 16160
Assay Kit	0' 411'1	
Duolink® In Situ Detection Reagents	Sigma-Aldrich	Cat#: DUO92008,
Red, Green, or Brightheid		DU092014 DU092012
Vorea aDNA Synthesis hit	Thomas Fisher Scientific	D0092012
DuNAmo HS SVDD Groop aDCD kit	Thermo Fisher Scientific	Cat#: AB1455B
DyNAIIO HS ST BR Oreen qPCK Kit	New England Diolaha	Cat#: F410L
Q3 ⁻ Site-Directed Mutagenesis Kit	New Eligialid Biolabs	Cal#. E05545
NE-PER [™] Nuclear and Cytoplasmic	Thermo Fisher Scientific	Cat#: 78835
Extraction Kit		
NucleoSpin [®] TriPrep Kit	Takara Bio USA	Cat#: 740966.50
Detergent-free Nuclei Isolation Kit	101Bio, LLC	Cat#: P524-20
Caspase-3 Colorimetric Assay Kit	R&D Systems	Cat#: K106-100
Caspase 3 DEVD-R110 Fluorometric and	Biotium	Cat#: 30008-2
Colorimetric Assay Kit		
NeuroTACS TM In Situ Apoptosis	R&D Systems	Cat#: 4823-30-K
Detection Kit		
JC-1 Mitochondrial Membrane Potential	Biotium	Cat#: 30001
Detection Kit		
NovaUltra Nissl Stain Kit	IHCWORLD	Cat#: IW-3007
ImmPRESS [™] HRP horse anti-rabbit IgG	Vector Laboratories	Cat#: MP-7401-15
Polymers Detection Kit		
ImmPRESS [™] -AP Anti-Mouse	Vector Laboratories	Cat#: MP-5402-15
IgG (alkaline phosphatase) Polymer		
Detection Kit	X 7 / T 1 / ·	G
ImmPACT ^{IM} DAB Peroxidase (HRP)	Vector Laboratories	Cat#: SK-4105
Substrate Kit	X 7 4 T 1 4 *	G +// GVZ 4997
ImmPAC1 ^{IM} NovaRED ^{IM}	vector Laboratories	Cat#: SK-4803
Peroxidase (HKP) Substrate Kit		

ImmPACT [®] Vector Red Alkaline	Vector Laboratories	Cat#: SK-5105
Phosphatase (AP) substrate		
Vector Blue Alkaline Phosphatase (Blue	Vector Laboratories	Cat#: SK-5300
AP) Substrate Kit		
ImmPRESS [™] Excel Amplified HRP	Vector Laboratories	Cat#: MP-7601
Polymer Staining Kit (Anti-Rabbit IgG)		
HSF1 ELISA Kit	Enzo Life Sciences	Cat# ADI-900-198
Amyloid beta 42 Mouse ELISA Kit	Thermo Fisher Scientific	Cat#: KMB3441
Mouse HSP60 ELISA Kit	Abcam	Cat# Ab208344
Mitochondrial Isolation Kit	Sigma-Aldrich	Cat#: MITOISO2-1KT
Molecular Probes Alexa Fluor [™] 594	Thermo Fisher Scientific	Cat#: A30008
Microscale Protein Labeling Kit		
Lenti-X TM GoStix TM Plus	Takara Bio USA	Cat#: 631280
CellTiter-Blue [®] Cell Viability Assay	Promega	Cat# G8080
Cell Lines and Mouse Strains		
HEK293T cells	GE Dharmacon	Cat#: HCL4517
HeLa cells	ATCC	Cat#: CCL-2
A2058 cells	ATCC	Cat#: CRL-11147
NIH3T3 cells	Lab Collection	N/A
HEK293T cells stably expressing	Lab Collection	N/A
HSF1-targeting lentiviral shRNAs (A6)		
<i>Rosa26-CreER</i> ^{T2} ; <i>Hsf1</i> ^{f1/f1} MEFs (male)	Lab Collection	N/A
hGFAP-Cre ⁺ ; PI3K p110* STOP ^{fl} ;	This study	N/A
<i>Hsf1</i> ^{+/+} or <i>fl/fl</i> astrocytes		
<i>Hsf1^{fl/fl}</i> astrocytes stably expressing	This study	N/A
Scramble or <i>Pten</i> -targeting shRNAs		
Primary human neurons	ScienCell Research	Cat#: 1520
	Laboratories	
<i>Hsfl^{jijji}</i> mice	Lab Collection	N/A
$R26Stop^{FL}P110*$	The Jackson Laboratory	Stock#: 012343
<i>hGFAP-Cre</i> mice	The Jackson Laboratory	Stock#: 004600
Alb-Cre mice	The Jackson Laboratory	Stock#: 016832
<i>Pten^{11/jt}</i> mice	The Jackson Laboratory	Stock#: 006440
Oligonucleotides		
All listed in Table S3	Fisher Scientific and IDT	N/A
Recombinant DNAs, shRNAs,		
and siRNAs		
pHSE-SEAP	Clontech Laboratories	Cat#: 631910
pCMV-Gaussia Luc	Thermo Fisher Scientific	Cat#: 16147
pcDNA3-Myr-HA-AKT1	Addgene	Cat#: 9008
pcDNA3-Myr-HA-AKT2	Addgene	Cat#: 9016
pcDNA3-Myr-HA-AKT3	Addgene	Cat#: 9017
pCMV-dR8.2 dvpr	Addgene	Cat#: 8455
pCMV-VSV-G	Addgene	Cat#: 8454
pLKO.1-shScramble	Addgene	Cat#: 1864

pLKO.1-shPTEN_A	Addgene	Cat#: 25638
pLKO.1-shPTEN B	Addgene	Cat#: 25639
pLKO-shPten_A	Sigma-Aldrich	Cat#: TRCN0000322421
pLKO-shPten_B	Sigma-Aldrich	Cat#: TRCN0000322487
pLenti6-LacZ	Lab Collection	N/A
pLenti6-FLAG-HSF1 ^{WT}	Lab Collection	N/A
pLenti6-FLAG-HSF1 ^{S230A}	This study	N/A
pLX304-HSP60	DNASU repository	Cat#: HsCD00442045
siControl	Thermo Fisher Scientific	Cat#: D-001810-01
siAkt1	Sigma-Aldrich	Cat#: SIHK0096
siAkt2	Sigma-Aldrich	Cat#: SIHK0099
siAkt3	Sigma-Aldrich	Cat#: SIHK0102
siHsp60_A	Sigma-Aldrich	Cat#: SASI_Hs01_00136360
siHsp60_B	Sigma-Aldrich	Cat#:SASI_Mm01_00146428
siHSP60_A	Sigma-Aldrich	Cat#: SASI_Hs01_00136360
siHSP60_B	Sigma-Aldrich	Cat#: SASI_Hs01_00136363
pLenti6-FLAG-HSF1 ¹⁻³²³	This study	N/A
pLenti6-FLAG-HSF1 ³²⁴⁻⁵²⁹	This study	N/A
Software and Algorithm		
Prism 8	GraphPad Software	N/A
FlowJo v10	FlowJo, LLC	N/A
Fiji v1.0	NIH	N/A
Others		
Ad5CMVhr-GFP and Ad5CMVCre	University of Iowa Gene	Cat#: VVC-U of Iowa-2161
viral particles	Transfer Vector Core	and -5
Immobilon® PVDF membranes, 0.45µm	EMD Millipore	Cat# IPVH07850
pore size		
200-mesh carbon-coated nickel grid	Electron Microscopy	Cat# CF200-Ni
	Sciences	0 1// 154041
8-well Nunc ^{IM} Lab-Tek ^{IM} II CC2 ^{IM}	Thermo Fisher Scientific	Cat# 154941
Chamber Slides		G
Tissue arrays, Alzheimer's Disease	US Biological	Cat#: T5595-6325
Alzheimer QC control slides	StatLab Medical Products, LLC	Cat#: CSA0224P

Table S3: Nucleotide sequences of primers and target sequences of siRNAs and shRNAs.

qitti i cit primers	
Primer ID	Primer sequences (5'→3')
Mouse_Hspa1a/Hsp72_ Forward	ATGGACAAGGCGCAGATCC
Mouse_Hspa1a/Hsp72_ Reverse	CTCCGACTTGTCCCCCAT
Mouse_Hspb1/Hsp25_ Forward	ATCCCCTGAGGGCACACTTA
Mouse_Hspb1/Hsp25_ Reverse	GGAATGGTGATCTCCGCTGAC
Mouse_Hsp90aa1/Hsp90α_ Forward	AATTGCCCAGTTAATGTCCTTGA
Mouse_Hsp90aa1/Hsp90α_ Reverse	CGTCCGATGAATTGGAGATGAG
Mouse_Hspd1/Hsp60_ Forward	CACAGTCCTTCGCCAGATGAG
Mouse_Hspd1/Hsp60_ Reverse	CTACACCTTGAAGCATTAAGGCT
Mouse_βActin_Forward	GGCTGTATTCCCCTCCATCG
Mouse_βActin_Reverse	CCAGTTGGTAACAATGCCATGT
Human_HSPA1A/HSP72_Forward	CAAGATCACCATCACCAACG
Human_HSPA1A/HSP72_ Reverse	TCGTCCTCCGCTTTGTACTT
Human_HSPB1/HSP27_ Forward	GGACGAGCTGACGGTCAAG
Human_HSPB1/HSP27_ Reverse	AGCGTGTATTTCCGCGTGA
Human_βACTIN_Forward	CATGTACGTTGCTATCCAGGC
Human_βACTIN_Reverse	CTCCTTAATGTCACGCACGAT

qRT-PCR primers

ChIP qPCR primers

Primer ID	Primer sequences (5'→3')
Human_HSP72_HSE Forward	GGCGAAAACCCTGGAATATTCCCGA
Human_HSP72_HSE Reverse	AGCCTTGGGACAACGGGAG
Human_HSP27_HSE_ Forward	GTCGCGCTCTCGAATTCAT
Human_HSP27_HSE_ Reverse	CCTCCCATGCACTCCTC

Mutagenesis primers

Primer ID	Primer sequences (5'→3')		
HSF1_1-323_ Forward	GACTACAAGGACGACGATGACAAGTAG		
HSF1_1-323_ Reverse	GGTGTCCACGGAAGATGG		
HSF1_324-529_ Forward	CTCTTGTCCCCGAC		
HSF1_324-529_ Reverse	CATCTCGAGCAAGGA		
HSF1_S230A_Forward	CGGCAGTTCGCCCTGGAGCACGTC		
HSF1_S230A_ Reverse	GCTATACTTGGGCATGGAATGTGC		

siRNAs

	Gene ID	Sequences	Vector	Vendor	Cat#
Akt1		Proprietary	N/A	Sigma-Aldrich	SIHK0096

Akt2	Proprietary	N/A	Sigma-Aldrich	SIHK0099
Akt3	Proprietary	N/A	Sigma-Aldrich	SIHK0102
HSPD1/HSP60_A	Proprietary	N/A	Sigma-Aldrich	SASI_Hs01_00136360
HSPD1/HSP60_B	Proprietary	N/A	Sigma-Aldrich	SASI_Hs01_00136363
Hspd1/Hsp60_A	Proprietary	N/A	Sigma-Aldrich	SASI_Mm01_00146427
Hspd1/Hsp60_B	Proprietary	N/A	Sigma-Aldrich	SASI_Mm01_00146428
Non-targeting control	Proprietary	N/A	Thermo Fisher Scientific	D-001810-01

shRNAs

Gene ID	Sequences	Vector	Vendor	Cat#
PTEN_A	CCACAGCTAGAACTTATCAAA	pLKO	Addgene	#25638
PTEN_B	CCACAAATGAAGGGATATAAA	pLKO	Addgene	#25639
Pten_A	CGACTTAGACTTGACCTATAT	pLKO	Sigma- Aldrich	TRCN0000322421
Pten_B	ACATTATGACACCGCCAAATT	pLKO	Sigma- Aldrich	TRCN0000322487
Scramble control	CCTAAGGTTAAGTCGCCCTCG	pLKO	Addgene	#1864