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Supplementary figure legends 

Supplementary figure 1: (a) Outline of both the discovery and validation study cohort. The complete cohort 
metadata is available in Supplementary Table 1. (b) Outline of the processing and analysis steps undertaken to 
generate the major results in the paper. 
Supplementary figure 2: In vitro EV characterization. (a) Electron microscope images of representative cell-
line and patient-derived EVs. (b) Nanosight analysis of a representative cell line sample (RPMI) and patient 
sample. (c) Western blot of 5 cell line/paired EV proteins with no calnexin within EV, but high levels of CD9 
within EV as compared to paired cells. 
Supplementary figure 3: Characterization of transcriptomic similarities between cell-line derived melanoma 
samples and their matched EV. (a) Scatter plot visualizing differences between tissue and plasma-derived EV 
in patient samples. (b) Histogram visualizing the log fold changes between melanoma cell-lines and their EV 
counterparts. The profiles were compiled using the average of four expression profiles. (c) Concordance 
analysis across our 4 cell-line samples. Concordance was calculated by using a low expression cutoff as a cut-
off for expressed vs. non-expressed status. Genes that were either expressed or not expressed in both tissue 
and EV compartments are considered concordant. (d) Correlation plot between all 4 cell-lines and their EV 
counterparts. 
Supplementary figure 4: Box-plots and associated p-values for validated MSigDB canonical pathways that 
differ between responders (green) and non-responders (purple). The visualized points are individual GSVA 
scores inferred for each pathway. The p-values were generated by comparing responder vs. non-responder 
GSVA scores via a Mann-Whitney U-test.  
Supplementary figure 5: (a-e) Un-normalized time-series plots showing time dynamics for pathways and 
genes discussed in Fig. 2b and Fig. 2d. Individual GSVA scores were used to plot the TCR KEGG pathway, 
while platform-normalized log2 expression values were used to plot the individual gene expression levels. 
Supplementary figure 6: (a-d) Normalized and unnormalized time-series plots showing time dynamics for 
selected pathways. The plotting was performed per methodology previously discussed in captions for Fig. 2b, 
Fig. 2d and SFig 5. 
Supplementary figure 7: Kaplan-Meier progression-free and overall survival curves for selected genes that 
showed significant or near-significant differences between high-expressed and low-expressed patients. 
Supplementary figure 8: Kaplan-Meier progression-free and overall survival curves for selected genes that 
showed significant or near-significant differences between high-expressed and low-expressed patients. 
Supplementary figure 9: Example of per-patient imputed tumor-EV expression from our Bayesian 
deconvolution model. (a-b) Posterior estimates for two illustrative genes for high immune fraction (CD8A) and 
high tumor fraction (MIR47888). (c-d) Predicted tumor-derived EV expression from our deconvolution model for 
CD8A and MIR4788 for a subset of patients. 
Supplementary figure 10: Kaplan-Meier progression-free survival (PFS) plots for COSMIC mutational fraction 
in the validation evRNA-seq cohort. High and low expression classifications were determined for each patient 
based on whether a particular patient’s COSMIC mutational fraction was in the top half (teal) or bottom half 
(yellow) of the validation cohort’s COSMIC mutational fraction distribution. 
  
 

 

 

 

 

 



Supplementary Tables Legends 

Supplementary Table 1: Worksheet 1: Anonymized metadata of patient cohort from discovery cohort. 
Worksheet 2: anonymized metadata of patient cohort from validation cohort. Additional columns in worksheet 2 
denote driver mutations detected by SNaPShot tumor sequencing and the specific mutations validated in our 
evRNA-seq mutational analysis.   

Supplementary Table 2: GO pathways enriched in patient EV-unique or tumor-unique samples. 

Supplementary Table 3: Worksheet 1: Validated DEGs and associated statistics from limma from our on-
treatment DEG analysis. Worksheet 2: All DEGs from on-treatment discovery cohort and associated limma 
statistics. Worksheet 3: All DEGs from on-treatment validation cohort and associated limma statistics.  

Supplementary Table 4: Worksheet 1: Validated DEGs and associated statistics from limma from our pre-
treatment DEG analysis. Worksheet 2: All DEGs from pre-treatment discovery cohort and associated limma 
statistics. Worksheet 3: All DEGs from pre-treatment validation cohort and associated limma statistics.  

Supplementary Table 5: Estimated mixing fractions from our EV deconvolution model running in multi-gene 
mode for all genes. Full details regarding the model are available in the supplemental note. 

 



Pre-treatment EVs

*Patient 307 had pre-treatment tumor collected at an earlier time than his EV samples.
Pre-treatment Tumor

On-treatment EVs

N=7 Controls

Healthy control EVs

Cell-line tissue

Cell-line EVs

N=4 cell-lines
17 patients 
11 R, 6 NR

14 patients 
3 R, 11 NR 2 patients 

1 R, 1 NR

Responder (Clinical Benefit) 
Non-Responder (No Clinical Benefit)

1 patients 
1 R

6 patients* 
3 R, 3 NR4 patients 

3 R, 1 NR

6 patients 
3 R, 3 NR

 

Discovery Cohort - Profiled using microarray technology

30 patients 
19 R, 11NR

a.

b. Processing & Analysis Pipelines

Microarray .cel files supplied 
directly by ThermoFisher 
(contractor) from Human-
Transcriptome 

Discovery Cohort Validation Cohort

Standardization using 
‘rma’ and within-microar-
ray batch correction using 
‘ComBat’ to produce log2 
expression values

Technical replicates averaged and 
combined to single amalgamted files; 
removed samples collected from >365 
before treatment start 

evRNA-seq .fastq files from Illumina 
HiSeq 2000 sequencing from Ting Lab 
@ MGH (collaborator)

Production of .bam files via STAR 
alignment against hg38. Count matrix 
via R library ‘featureCounts’ against 
ucsc_hg38.gtf

Count matrix transformed into 
log2(TPM+1) using custom R script.

Joint-normalization of log2(TPM+1) 
RNA-seq & log2 microarray 
expression data with ‘ComBat’ 
followed by quantile normalization. 
This is to remove platform-specific 
effects & produce reasonable basis 
joint for analyses requiring both 
datasets 

Mapping with 
‘bwa’ against 
hg38 reference

Joint validation + discovery cohort analyses using platform-normalized expression data

Discovery Cohort DEG (via limma) 
& KEGG differential analysis 
(GAGE)

Validation Cohort DEG calling (via 
limma) & KEGG differential 
analysis (GAGE)

Discovery cohort/Microarray only
(micorrary expression 

was not platform-normalized)

1. Comparing cell-line EVs vs. cell-line 
(4 melanoma cell-lines vs. 4 melanoma 
cell-lined derived exosomes, Supple-
mental Fig 2) 

2. CIBERSORT on patient & EV data 
and comparison of enrichment of 
specific immune sub-populations (Fig. 
1)

3. Deconvolution modeling. Selected 
genes are displayed in Fig 4a.    

EV pre-treatment responders 
vs. non-responders (28R vs. 
13NR)

EV on-treatment  responders 
vs. non-responders (28R vs. 
9NR)  

Tis pre responders vs. 
non-responders (16R vs 14NR)

EV pre-treatment 
responders vs. 
non-responders (14R vs. 
16NR)

EV on-treatment 
responders vs. 
non-responders (14R vs. 
16NR)
 

Downstream analyses

*All numbers here refer to the 
number of samples used in each 
comparison 

+

+

Pre-treatment validation 
cohort & discovery 
pathway & DEG overlap 
(Fig. 3a-b)

Discovery cohort Random 
Forest model creation & K=5 
internal cross-validation  
based on replicated DEGs 
(Fig. 3c, methods)

Test performance of 
Random Forest trained 
using training set to predict 
testing set to compute ROC 
& AUC (Fig. 3c, methods)

Calling all (somatic & germline) 
mutations against hg38 using 
GATK HaplotypeCaller

Overlap GATK calls against 
COSMIC v91 significant genes

On-treatment EVs

Pre-treatment EVs

On-treatment calidation 
cohort & discovery KEGG 
& DEG overlap (Fig. 2a, 
2c)

Aggregate time dynamics 
analysis & plotting using 
GSVA (for KEGG pathways) or 
normalized gene expression 
values for validated DEGs 
(53R samples vs. 21NR 
samples Fig. 2b, 2d)

Compared VCF calls to panel 
sequencing results

Compared per-patient 
mutational load between 
responders and non-respond-
ers 

SFig. 1
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Supplemental Note: Plasma-derived EV deconvolution model

In this supplemental note, we provide the mathematical background underlying our deconvolution model,
as described in Figure 4a of “Plasma-derived extracellular vesicles analysis and deconvolution enables
prediction and tracking of melanoma checkpoint blockade outcome”. The rationale for the model is
introduced in the main text. References in the Supplemental Note will also reference the main text. To
summarize, we want to infer the contribution of the tumor-derived EV component and non-tumor derived
(interchangeably referred to as “immune” and “non-tumor”) component to the observed plasma-derived
EV transcriptomic profile. In contrast to existing deconvolution models designed for bulk deconvolution
(e.g., CIBERSORT[12]), our model explicitly models the changes in transcript abundance as a result
of export/packaging from the transcript abundance in the tumor to the transcript abundance. All of
the data shown both here and in the main-figures related to deconvolution utilized only non-platform-
corrected discovery cohort microarray data, since the discovery cohort exoRNA-seq included only plasma-
derived EV samples and thus were not suitable inputs for our deconvolution model (see Supplementary
Figure 1b for more detailed information regarding our analysis methodology). We created two versions
of the deconvolution probabilistic model. In single-gene mode, the probabilistic model is fully fitted
using the No-U-Turn Sampler (NUTS) Hamiltonian Monte Carlo (HMC) algorithm[46] and full posterior
estimates for all the relevant parameters are returned. This model is fitted using the probabilistic pro-
gramming language Stan[45]. This mode is designed for in-depth analysis of a single gene (or few genes),
or situations where inferred parameters (e.g., scaling parameter, patient inferred tumor-EV expression)
of interest requires a full posterior estimate. Due to the time and resource intensive nature of the fitting
process, it is impractical to perform full MCMC inference when we want to analyze the deconvolution
profiles for tens of thousands of genes. Thus, we included a second mode, a multi-gene mode, in which
we fit a simplified version of the single-gene model using Scipy’s implementation sequential least squares
programming (SLSQP) to return a point estimate of the mixing coefficient. The single-gene model not
only returns posterior distribution mixing fraction, but also the full posterior distribution of the scaling
coefficient, which allows per-patient imputation of the tumor-derived EV fractions (Supplemental Figure
9); however, the multi-gene model only returns a single maximum a posterori (MAP) estimate of the
mixing fraction. We envision the usage of the single-gene model in cases when a specific gene needs to
carefully dissected and more robust inference is required, whereas the multi-gene model can be used on
large-scale transcriptomic datasets to infer population-wide mixing fractions.

1 Single-gene Bayesian probabilistic model

• N : number of patient derived tumor profiles and tumor EV profiles

• M : number of cell-line tumor and tumor EV profiles

• xi: the ith patient’s observed tumor expression for the current gene

• yi: the ith patient’s observed peripheral-blood derived expression for the current gene

• wj : the jth cell-line’s

• α: mixing fraction between tumor-component and immune-component

• σ2
T : variance component

• µI : Immune component mean (fixed parameter)

• σ2
I : Immune variance component (fixed parameter)

yi

xis

wj

vj µI

σ2
I

α

σ2
Tσ
2
T

i = 1, . . . , Nj = 1, . . . ,M



Prior specification

s ∼ N (0, 2)

σ2
T ∼ IG(1, 1)

α ∼ B(2, 2)

Where B denotes the Beta distribution and IG denotes the Inverse-Gamma distribution.

Data likelihood

p(yi|α, σ2
T ;µI , σ

2
I ) = αN (yi|xi + s, σ2

T )︸ ︷︷ ︸
Tumor EV component

+ (1− α)N (yi|µI , σ
2
I )︸ ︷︷ ︸

Immune/background EV component

(1)

p(wj |s, vj , σ2
T ) = N (wj |s+ vj , σ

2
T ) (2)

p(y,w|x,v, s, α, σ2
T ;µI , σ

2
I ) =

N∏
i=1

[
αN (yi|xi + s, σ2

T ) + (1− α)N (yi|µI , σ
2
I )
] M∏
j=1

N (wj |s+ vj , σ
2
T ) (3)

Full Posterior

p(y,w|x,v, s, α, σ2
T ;µI , σ

2
I ) ∝ p(y,w,x,v, s, α, σ2

T ;µI , σ
2
I )p(s, σ2

T , α) (4)

p(y,w|x,v, s, α, σ2
T ;µI , σ

2
I ) ∝

N∏
i=1

[
αN (yi|xi + s, σ2

T ) + (1− α)N (yi|µI , σ
2
I )
] M∏
j=1

N (wj |s+ vj , σ
2
T ) (5)

p(s, α, σ2
T |x,v,y,w;µI , σ

2
I ) ∝

N∏
i=1

[
αN (yi|xi + s, σ2

T ) + (1− α)N (yi|µI , σ
2
I )
] M∏
j=1

N (wj |s+ vj , σ
2
T )p(s, α, σ2

T )

(6)

2 Multi-gene probabilistic model

For the multi-gene model, we utilize a simplified version of the model from the single gene model to
reduce the time and computational intensiveness of the model. The multi-gene model only returns the
mixing fraction α for the gene-of-interest, and as a result, it runs significantly faster and is able to process
transcriptome-wide datasets on the order of hours instead of days on a single computer, unlike the more
computationally intensive single-gene model.

The multi-gene model differs from the single gene model in several key respects:

• The inference of the scaling coefficient s is not done jointly with the inference of α and other
parameters of interest. Instead, it is precomputed for each gene. To compute s, we take the mean
difference between vj and wj for each gene and use this as a fixed constant.

• Thus, the inference of α is simplified into a much simpler problem that only depends on the right
plate in the graph model depicted in section 1. Since we are interested in only in α, we optimize
the log posterior formula using Sequential Least Squares Programming (SLSQP) from the python
SciPy library with the appropriate constraints for α. The B(2, 2) prior for α is retained.
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3 Validation of our deconvolution model using CIBERSORTx

Figure 1: Scatterplot with line-of-best-fit and correlation between inferred CIBERSORTx and our de-
convolution model inferred tumor fraction estimates on discovery cohort data

In order to provide evidence that our model is correctly partitioning genes into tumor and non-tumor com-
ponents, we utilized CIBERSORTx[13]- a recently published bulk deconvolution program from Newman
et al. that attempts to separate bulk transcriptomic profiles into component cell-type-specific profiles. In
order to run the program, we utilized first inputted our discovery cohort (non-cross-platform corrected)
microarray data matrix into the online CIBERSORTx web portal and utilized the melanoma reference
profiles from Tirosh et al.’s Science 2016 single-cell dissection of metastatic melanoma that is provided
by CIBERSORTx’s default online profiles[12,13]. Since the algorithm generates estimates for all com-
ponent cell-types instead of tumor-only profiles, we averaged the non-tumor cell-types in order to make
it comparable to our non-tumor component estimation. A direct comparison of our values can be found
in Supplemental Note Figure 1. We see that there’s a slight but significant correlation between CIBER-
SORTx inferred-tumor fraction and tumor fraction inferred from our deconvolution model; however, it is
clear from the CIBERSORTx density plot (y-axis) that the inferred tumor fraction is roughly normally
distributed, an assumption that our model does not make (see density plot on x-axis). This continuous
coding of tumor fractions hinders direct comparison of model predictions between CIBERSORTx and
our model; thus, in order to better compare our cell-type predictions, we binarized model predictions for
each gene as either tumor-derived or non-tumor derived using a cut-off of 0.5 as the threshold between
tumor and non-tumor (same threshold used in the main manuscript). Using this cutoff, we can generate
the confusion matrix found in Supplementary Note Table 1.

CIBERSORTx tumor CIBERSORTx non-tumor
EV deconvolution tumor 12984 2319
EV deconvolution non-tumor 3719 1244

Table 1: Confusion matrix between CIBERSORTx and our deconvolution model using 0.5 tumor fraction
as a cutoff between tumor and non-tumor binary classification of genes

We can assess the concordance between binary predictions generated by CIBERSORTx and our
model using values from the confusion matrix. This corresponded to the following binary classification
statistics shown in Supplementary Note Table 2, using CIBERSORTx tumor predictions as “ground”
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truth and our deconvolution model estimates as predictions. We see that overall accuracy (0.70), sensi-
tivity (0.78), precision (0.85), and F1-score (0.81) all support the ability of our deconvolution model to
properly classify CIBERSORTx predicted tumor-derived genes. However, the two models’ predictions
diverge significantly in terms of specificity (0.35) and negative predictive value (0.25), suggesting that
the two models differ significantly in the overall prediction of non-tumor derived genes, with our model
predicting a higher fraction of tumor-derived genes relative to CIBERSORTx. This is likely a result of
the different distributional assumptions regarding tumor vs. non-tumor distributions between the two
models (see Supplementary Note Figure 1). We reason that our model is likely to approximate reality
more closely, based on known literature regarding significant increases in both overall and tumor-derived
EV load in plasma during progression[10]. Furthermore, as mentioned in the main text, our model
explicitly accounts for EV-specific characteristics - such as the differential EV packaging process - that
bulk deconvolution techniques like CIBERSORTx does not account for. Additionally, our the underlying
reference profiles is trained directly or inferred utilizing EV data, which is likely a far better approxi-
mation of the underlying mixture profiles in the context of cell-type deconvolution than bulk references.
Though in silico independent validation via CIBERSORTx provides evidence for the validity of our de-
convolution model predictions, particularly the prediction of tumor-derived genes, in vivo experimental
evidence gathered via tumor vs. non-tumor derived EV selection/enrichment remains the gold standard
to validate our model.

Metrics Value
Accuracy 0.70
Sensitivity 0.78
Specificity 0.35
Precision 0.85
Negative Predictive Value 0.25
False Positive Rate 0.65
F1 Score 0.81

Table 2: Binary classification performance metrics generated from the confusion matrix in Table 1
.

4 Source Code

4.1 Stan code for the single-gene model:

data {
int<lower = 0> N; // number of patient samples
int<lower = 0> M; // number of cell line samples/controls
real<lower = 0> L; //lower bound on truncated normal
real<lower = 0> mu i; // non−tumor observed mean
real<lower = 0> sigmaSq i; // non−tumor observed variance
vector[N] y; // observed EV mixture
vector[N] x; // observed tumor
vector[M] ct; // observed cell line cancer
vector[M] ce; // observed cell line EV

}

parameters {
real s; // tumor to EV
//real<lower = 0> sigmaSq e; // variance of tumor EV
real<lower = 0> sigmaSq t; // variance of tumor
real<lower = 0, upper=1> alpha; //mixing coefficient
// real<lower = 0> sigma common;
// real<lower = 0> sigmaSq immune;

}

transformed parameters {
vector[N] z;
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//real<lower = 0> sigma immune;
real<lower = 0> sigma t;
real<lower = 0> sigma i;
real<lower = 0> sigma e;
for (n in 1:N)
z[n] = s+x[n];
// sigma immune = sqrt(sigmaSq immune);
sigma t = sqrt(sigmaSq t);
//sigma e = sqrt(sigmaSq e);
sigma i = sqrt(sigmaSq i);

}

model {
s ~ normal(0,1);
sigma t ~ inv gamma(1,1);
//sigma e ~ inv gamma(1,1);
alpha ~ beta(2,2);
for (m in 1:M)
target += normal lpdf(ce[m] | s+ct[m], sigma t);
for (n in 1:N)
target += log mix(alpha, normal lpdf(y[n] | z[n], sigma t),
normal lpdf(y[n] | mu i , sigma i));

}

Inference was performed using pystan’s MCMC module with 10000 iterations and 4 chains, and all
other parameters at default. The default pystan inference algorithm is the No-U-Turn Hamiltonian
Monte Carlo (NUTS-HMC) sampler.

4.2 Python inference code for the simplified multi-gene model MAP infer-
ence procedure.

from scipy.optimize import minimize
from scipy.stats import beta, norm
import numpy as np
import math

def log loss(theta,x,y,s,mu i ,sigmasq i ,N):
alpha = theta[0]
sigmasq = theta[1]
log loss = 0
for i in range(N):

log loss += np.log(alpha ∗norm.pdf(y[i], x[i]+s, sigmasq)
+ (1−alpha)∗norm.pdf(y[i], mu i ,sigmasq i))

log loss += beta.logpdf(alpha, 2,2)
return −1∗log loss

def SimpleInferenceSLSQP(gene):
N = tumor shared df.shape[1]
M = cell line exp mat.shape[1]
mu i = healthy exp mean.loc[gene]
sigmasq i = healthy exp var.loc[gene]
y = exosome shared df.loc[gene,:]
x = tumor shared df.loc[gene,:]
ct = cell line exp df.loc[gene,:]
ce = exosome exp df.loc[gene,:]

exosome shared mean = np.mean(y) #h e a l t h y
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cell line exosome = np.mean(ce)
cell line tissue = np.mean(ct)
cell line diff = cell line tissue − cell line exosome
imputed tumor = x + cell line diff
imputed immune = np.repeat(mu i , N)

design matrix = np.vstack([imputed tumor , imputed immune]).T

alpha0 = [0.5, 1]
xargs = (x, y, cell line diff ,mu i , sigmasq i , N)
bounds = [(0,1), (None, None)]
SLSQP = minimize(log loss two , alpha0,args=xargs,

method=’SLSQP’, bounds=bounds, tol = 1e−9)
return SLSQP.x[0]

MAP inference was performed using the SLSQP package from the Python scipy.optimize library
using default parameters. Note that the MAP estimates for α can and often differ from the single-gene
probabilistic model - this is primarily due to the (1) the simplification of the probabilistic model for
computational ease and (2) less robust/advanced inference algorithm relative to the NUTS-HMC used
in the single-gene model.
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