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Figure S1. Evolutionary relationship between vascular pathogenesis and a conserved cell 
wall-degrading enzyme in Xanthomonas bacteria. This figure is a modified Fig. 1 with 
detailed strain information for genomes analyzed. To explore the association of the vascular/non-
vascular lifestyle a set of publicly available complete and annotated genomes from different 
species in the Xanthomonadaceae family was analyzed. A pan genome SNP-based parsimony 
tree was built using kSNP3 (optimum kmer size = 21)(26). Genomes were classified as vascular 
(blue), non-vascular (yellow) or unknown (gray) based on available information in the literature. 
Ortholog groups for all annotated proteins were identified using Orthofinder (44), and a 
parsimony tree was generated based on pan-genome SNPs using KSNP3. Associations were 
identified between the presence/absence of each orthologue group in the analyzed genomes and 
the vascular/non-vascular trait according to the phylogeny using BayesTraitsV3. The likelihood 
that both traits (vascularity vs. gene presence) evolved dependently was compared to the 
likelihood they evolved dependently. Evidence of dependent evolution was assessed as Log 
Bayes Factors = 2(log marginal likelihood dependent model – log marginal likelihood 
independent model). Gene groups that were determined to evolve dependent on vascularity with 
very strong evidence (logBF >10; dark red) are shown, as well as the next top 12 genes below 
the threshold (light red), genes are marked in red when present in a given strain. One gene group 
(OG0003492; CbsA) was commonly found in vascular strains, and the other (OG0002818; 
hypothetical) was more common in non-vascular genomes. 
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Figure S2. Vascular, xylem pathogenesis strongly correlates with presence of cbsA but not 
host species. A phylogenetic tree was created based on representative xanthomonad genomes 
from NCBI with Average Nucleotide Identity (ANI) (http://enve-omics.ce.gatech.edu/g-matrix/). 
Vascular, xylem-colonizing bacteria are denoted in blue. Black boxes identify genomes with a 
cbsA homolog. Primary, characterized host for each pathogen is listed to the right of the boxes. 
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Figure S3. The evolution and genomic context of cbsA. To the left is a nucleotide-based 
maximum likelihood phylogeny of cbsA homologs retrieved from the genome database from this 
paper (see Table S1). Bootstrap support values (out of 100) are indicated above each bipartition. 
Each tip of the tree lists the full name of the isolate from which the sequence was retrieved in 
addition to the sequence’s accession number. To the right are schematics of the four distinct 
types of gene neighborhoods in which cbsA sequences are found. The colored species names 
(fuchsia, green and orange) signify horizontal transfer events. All schematics are drawn to scale 
within each column. Genes belonging to orthogroups of interest are color-coded (see legend at 
bottom), while all other intervening genes are left blank. 
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Figure S4. Specific inactivation events for cbsA homologs in Xanthomonas spp. cbsA genes or 
genomic regions were aligned from vascular and non-vascular A) Xanthomonas translucens, B) 
Xanthomonas oryzae and C) Xanthomonas campestris with A&B) MAFFT alignment 
(www.benchling.com) and C) MAUVE. A&B) Gray and red signify the same or different 
respective nucleotide in the alignment. cbsA homologs were independently interrupted by three 
independent events: A) insertion, B) small deletion and C) complete gene loss. B) For 
Xanthomonas oryzae pathovars, the presence of CbsA (black circles) was strongly correlated with 
vascular (black circles) X. oryzae pv. oryzae genomes but absent from non-vascular (white circles) 
X. oryzae pv. oryzae. C) X. campestris pv. campestris is vascular, while X. campestris pv. raphani 
is non-vascular. Green signifies level of identity between a given nucleotide sequences. 
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Figure S5. Mutation of cbsA negatively affects virulence in X. oryzae pv. oryzae and Xylella 
fastidiosa. A) Rice plants (cv. Nipponbare) were inoculated with X. oryzae pv. oryzae wild-type 
or ∆cbsA mutant. A-B) Lesion lengths were measured and imaged 15 days post inoculation (Photo 
Credit: V. Narayanan Madhavan, CSIR). Lesion length was compared with Student’s t-test 
(P<0.0001). C-E) Disease severity progression over time in inoculated tobacco plants. Xylella 
fastidiosa subsp. fastidiosa strain TemeculaL (WT) and mutant ∆cbsA were inoculated into 
Nicotiana tabacum L. cv. Petit Havana SR1 plants (PBS mock inoculation used as control). Leaf 
scorch symptoms were recorded for measurements of disease incidence and severity once a week 
during ten weeks after appearance of the first disease symptoms. At the final time point of 
evaluation, disease incidence in TemeculaL WT reached 100%, compared to mutant ∆cbsA 
reaching 66%; while disease severity reached 95% in WT and 54% in ∆cbsA. The mutant ∆cbsA 
showed delay of leaf scorch symptom development, with symptom appearance at the seventh week 
onwards and mostly restricted to lower leaves close to the inoculation point. Data represent means 
and standard errors from one experiment (n=9 for WT and ∆cbsA). D) Mean AUDPC per treatment 
group (WT and ∆cbsA). AUDPC was calculated using data from disease severity over ten weeks 
after first disease symptom appearance. AUDPC was lower for plants inoculated with ∆cbsA, in 
comparison to WT-inoculated plants. Data represent means and standard errors. Statistical 
significance was calculated using Tukey-Kramer HSD (P<0.05) (Statistical software JMP 15.0.1, 
2015 SAS Inst. Inc., Cary, NC). E) Representative image of leaf scorch symptoms in WT- and 
∆cbsA-inoculated plants, as well as control plants (PBS-inoculated; Photo Credit: D. Shantharaj, 
Auburn). Arrows in figures point to symptomatic leaves, which were distributed throughout the 
entire plant in WT-inoculated plants, and were mainly restricted to basal and middle leaves in 
∆cbsA-inoculated plants. 

 
 



 
 

 
 

 

Figure S6. The distribution of cbsA loci across beta- and gamma-proteobacteria (unedited 
version of Figure 1). Shown to the left is a majority rule consensus tree based on 81 maximum 
likelihood trees of single copy orthologs that summarizes species relationships among 86 
bacteria examined in this study. Each bifurcation in the consensus tree is present in at least 50% 
of the single copy ortholog trees. Branch support values indicate internode certainty (ranging 
from 0-1), which quantifies the degree of conflict associated with a given bipartition across all 81 
constituent trees. To the right of the tree is a graphic summarizing the distribution of the four 
distinct neighborhoods in which cbsA is found across each genome, in all cases whether cbsA is 
present or not. All neighborhood schematics are drawn to scale within each column. Genes 
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belonging to orthogroups of interest are color-coded (see legend at bottom), while all other 
intervening genes are left blank.  

 
 
 
  



 
 

 
 

See additional file attached (too large for supplemental document). 

Figure S7. Mid-point rooted, nucleotide-based maximum likelihood phylogenies of all genes 
in the type 4 cbsA neighborhood. Bootstrap support values (out of 100) are indicated above 
each bipartition. Each tip of the tree lists the full name of the isolate from which the sequence 
was retrieved in addition to the sequence’s accession number. Tree tips associated with 
sequences from X. campestris are colored orange, while tips associated with sequences from X. 
citri pv. phaseoli, X. citri pv. vignicola and X. fuscans are colored green. In topologies 
suggesting horizontal gene transfer (HGT), colored sequences were forced to be monophyletic in 
order to generate constrained topologies that would be expected under a scenario of vertical 
inheritance for phylogenetic hypothesis testing (Methods; Tables S4-5). A schematic of a cbsA 
gene neighborhood from X. oryzae pv. oryzae strain MAI1 is drawn above each tree, and a black 
vertical triangle indicates the current gene tree being displayed. Boundaries of the inferred 
homologous recombination events (Methods) are indicated by dashed lines, and are colored 
green for the HGT from the X. phaseoli clade to X. campestris and orange for the HGT from the 
X. phaseoli clade to X. citri pv. vignicola CFBP7112 and X. citri pv. phaseoli var. fuscans 
CFBP6996R. a) OG0001552. b) OG0002828. c) OG0000035 and 5’ UTR, partition 2. d) 
OG0000035 and 5’ UTR, partition 1. e) OG0000234. f) OG0002434. g) OG0002170. 
  



 
 

 
 

See additional file attached (too large for supplemental document). 

Figure S8. Mid-point rooted, nucleotide-based maximum likelihood phylogenies of all genes 
in the type 3 cbsA neighborhood, with midpoint rooting. Bootstrap support values (out of 
100) are indicated above each bipartition. Each tip of the tree lists the full name of the isolate 
from which the sequence was retrieved in addition to the sequence’s accession number. Tree tips 
associated with sequences from X. citri pv. glycines, X. citri pv. punicae, X. citri subsp. 
malvacearum, X. citri pv. mangiferaeindicae, X. citri subsp. citri and X. axonopodis pv. citri are 
colored pink. In topologies suggesting horizontal gene transfer (HGT), colored sequences were 
forced to be monophyletic in order to generate constrained topologies that would be expected 
under a scenario of vertical inheritance for phylogenetic hypothesis testing (Methods; Table S6). 
A schematic of a cbsA gene neighborhood taken from X. citri pv. glycines str. 8a is drawn above 
each tree, and a black vertical triangle indicates the current gene being viewed. The boundaries 
of the inferred homologous recombination event (Methods) from X. vesicatoria to X. citri pv. 
glycines is indicated by black dashed lines. A black bracket indicates the boundaries of a 9-gene 
region that was likely inserted into the cbsA neighborhood after the HGT event. a) OG0003189. 
b) OG0003864. c) OG0001138. d) OG0003475. e) OG0003407. f) OG0006923. g) OG0000202. 
h) OG0012116. i) OG0006653. j) OG0004064. k) OG0005040. l) OG0015184. m) OG0004674. 
n) OG0005551. o) OG0003060. p) OG0001360. q) OG0000926. r) OG0002126. s) OG0001639. 
t) OG0001483. u) OG0001080. v) OG0000801, partition 2. w) OG0000801, partition 1. x) 
OG0001155. y) OG0001453. 

 
 
  



 
 

 
 

 

 

 

Fig. S9. Complete, whole genome sequencing validation of X. translucens pv. translucens 
∆cbsA. We were unable to create a miniTn7::cbsA complementation of X. translucens pv. 
translucens UPB886 by transformation or conjugation. Therefore, we performed whole genome 
sequencing to define the ∆cbsA mutation in UPB886. Genomic DNA from X. translucens pv. 
translucens ∆cbsA extracted with QIAGEN Genomic-tips 100G kit and sequenced by Psomagen, 
Inc using Pacbio RSII 20Kb SMRTbell. Assembly was done using Flye software with the 
parameters --pacbio-raw –g 5m (45). Genome annotation was done with Prokka (46). Genome 
comparisons and variant call was done using Mauve and NUCmer alignments (47). A MAUVE 
genome alignment of wild-type X. translucens UPB886 (Xtt886, top) compared to X. translucens 
pv. translucens ∆cbsA (UPB886c, bottom) demonstrates that the ∆cbsA gene was completely 
deleted by sacB mutagenesis for the cbsA loci (48, 49). Red signifies level of homology between 
sequences with specific open reading frames in boxes below for each genome. The empty gray 
space above signifies no sequence identity and demonstrates the deletion for the Xtt UPB886 
∆cbsA mutant below. 
 
 
 
  



 
 

 
 

Tables S1-S8. See additional file attached for supplemental tables. 
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