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Supplemental Text for “Computationally predicting clinical drug combination efficacy 1 

with cancer cell line screens and independent drug action” 2 

Alexander Ling and R. Stephanie Huang 3 

SUPPLEMENTAL TEXT DESCRIPTION 4 

This file contains supplemental figures, tables, results, discussion, and references that 5 

relate to the findings of the main text but could not be included there due to a lack of space. In 6 

general, the text in this document simply expands on findings and discussions from the main 7 

text without introducing entirely new findings or discussion topics. 8 

SUPPLEMENTAL FIGURES 9 

 10 

Figure S1. Pipelines to validate IDACombo predictions both in vitro and in clinical trial data. A) In 11 
vitro validation strategy. Monotherapy data from NCI-ALMANAC is used to predict drug combination 12 
efficacies, and these efficacies are compared to the measured combination efficacies that are also in 13 
NCI-ALMANAC. B) Clinical trials are systematically identified using ClinicalTrials.gov and PubMed.gov, 14 
and efficacy predictions are made for each treatment in each trial using clinical drug concentrations and 15 
monotherapy cell line data from CTRPv2 and/or GDSC. These predictions are used to estimate hazard 16 
ratios (HRs) and powers for each trial, and these HRs and powers are compared to reported clinical trial 17 
outcomes. 18 
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 20 

Figure S2. Agreement between predicted and observed combination viabilities in the AstraZeneca-Sanger 21 
                    O’              016                          . A-C) Results using the AstraZeneca-22 
Sanger DREAM challenge (AZ-S DREAM) drug combination dataset. D-F)                   O’           ,  0 6      23 
combination dataset. A&D) Scatterplot showing high correlation between predicted average percent viability and 24 
experimentally observed average percent viability for each drug combination in the dataset. Predictions were made 25 
using monotherapy data from the dataset. The green line is a reference diagonal with slope = 1 and intercept = 0. 26 
Note that predictions were only made for the maximum concentration tested for each drug. B&E) Density plot 27 
showing that the absolute values of the differences between the predicted percent viabilities and the observed 28 
percent viabilities for each drug combination are generally below 10%, with >50% of drug combinations having an 29 
absolute prediction error below 5%. The red line marks a difference of ±10% viability between predicted and 30 
observed values. C&F) Density plot showing that the differences between the predicted percent viabilities and the 31 
observed percent viabilities for each drug combination have a slight tendency towards being positive—indicating that 32 
IDA-Combo underestimates efficacy more often than it overestimates efficacies. Source data are provided with this 33 
paper.  34 
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 35 

Figure S3. Agreement between drug combination efficacy predictions made with CTRPv2 or GDSC 36 
and measured efficacies in NCI-ALMANAC A-B) Scatterplots showing the correlation between drug 37 
combination mean % viabilities predicted with IDACombo and (A) CTRPv2 or (B) GDSC monotherapy 38 
data vs measured mean % viabilities for those combinations in NCI-ALMANAC. The green line is a 39 
reference diagonal with slope = 1 and intercept = 0. Note that CTRPv2 and GDSC predictions were made 40 
using all available cell lines for each combination in the dataset, so the predicted and measured mean % 41 
viabilities were produced with different cell line sets. Also note that predictions were only made for the 42 
maximum tested NCI-ALMANAC concentrations for each drug and that overlapping combinations were 43 
excluded if the concentration tested in NCI-ALMANAC exceeded the maximum tested concentration in 44 
CTRPv2 (for A) or GDSC (for B) for any drug in the combination. C-D) Mean monotherapy % viabilities 45 
for each drug included in at least one of the drug combinations plotted in A or B for C and D respectively. 46 
Monotherapy viabilities are plotted for C) CTRPv2 vs. NCI-ALMANAC and D) GDSC vs NCI-ALMANAC 47 
with average viabilities being calculated for all available cell lines in each dataset for each drug. The 48 
green line is a reference diagonal with slope = 1 and intercept = 0. Note that measured viability averages 49 
are at the maximum tested NCI-ALMANAC concentrations used for that drug in each combination the 50 
drug was included in. If the maximum concentration for a drug differed between different combinations 51 
involving that drug in NCI-ALMANAC, the most commonly used maximum concentration was selected for 52 
plotting in panels C and D. Source data are provided with this paper. 53 

  54 
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 55 

Figure S4. Calculating Csustained,6hr from clinical plasma concentration curves. This figure gives 56 
two hypothetical examples to illustrate how Csustained is calculated from plasma concentration curves 57 
identified in phase I or II clinical trials. A) When mean plasma drug concentrations constantly decrease 58 
following administration of a drug, Csustained,6hr is simply the mean plasma concentration at 6 hours 59 
after drug administration. B) When mean plasma drug concentrations continue rising for more than 6 60 
hours following administration of a drug, Csustained,6hr is the maximum plasma concentration achieved 61 
at least 6 hours after drug administration. Error bars represent mean ± standard error. 62 

  63 
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Figure S5. Predicted vs measured hazard ratios for clinical validation analysis. This figure shows 64 
how hazard ratios (HRs) predicted with IDACombo (x-axes) compare to HRs reported by the clinical trials 65 
selected for the clinical trial validation analysis (y-axes). Note that, while this figure includes largely the 66 
same set of trials used in Figure 4 in the main text, some of those trials are not included in this figure 67 
because they did not report HRs. Red points represent trials which did not report a HR that was 68 
statistically less than 1, while green points represent trials that did report a HR that was statistically less 69 
than 1. Circles represent trials where the power predicted by IDACombo for that trial was <80%, while 70 
 q                                                     ≥80%         ’                ’          71 
reported alongside two-sided p-values for whether or not the measured correlation is significantly different 72 
from 0. A) Measured PFS/TTP HRs vs predicted HR in clinical trials where patients had not received 73 
chemotherapy prior to trial entry. B) Measured OS HRs vs predicted HR in clinical trials where patients 74 
had not received chemotherapy prior to trial entry. C) Measured PFS/TTP HRs vs predicted HR in clinical 75 
trials where patients had received chemotherapy prior to trial entry. D) Measured OS HRs vs predicted 76 
HR in clinical trials where patients had received chemotherapy prior to trial entry. Note that further 77 
information f                            ’                                      Supplementary Data 3. 78 
The tables below each plot indicate the change in predicted mean viability for the experimental therapy 79 
vs. the control therapy for the three highest predicted HRs and the three lowest predicted HRs from each 80 
panel (negative values indicate experimental therapy has lower predicted viability than control therapy). 81 
Source data are provided with this paper.  82 
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 83 

Figure S6. Using only cancer-specific cell lines does not improve model performance for clinical 84 
trial power predictions. Identical to Figure 4, except that predictions were made for each trial using sets 85 
of cell lines specific to the cancer type being studied in each trial. A) Predicted power of each trial in 86 
previously untreated patients to detect a significant improvement in PFS/TTP at an alpha of 0.05 versus 87 
whether or not the study actually detected a significant improvement in PFS/TTP. B) Predicted power of 88 
each study in previously untreated patients to detect a significant improvement in OS at an alpha of 0.05 89 
versus whether or not the study actually detected a significant improvement in OS. C) Predicted power of 90 
each trial in previously treated patients to detect a significant improvement in PFS/TTP at an alpha of 91 
0.05 versus whether or not the study actually detected a significant improvement in PFS/TTP. D) 92 
Predicted power of each study in previously treated patients to detect a significant improvement in OS at 93 
an alpha of 0.05 versus whether or not the study actually detected a significant improvement in OS. Error 94 
bars for each plotted clinical trial power represent mean estimated power ± standard error (bounded 95 
between 0 and 100% power). P values were calculated using one-tailed t-tests. Blue circles indicate 96 
predictions made using the CTRP dataset, and red circles indicate predictions made using the GDSC dataset. 97 
Boxplots are plotted so that the lower and upper whiskers indicate the extreme lower and upper values 98 
respectively, the box boundaries indicate the first and third quartiles, and the center line indicates the 99 
median. Source data are provided with this paper. 100 

  101 
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 102 

Figure S7. Clinical power predictions are dose-dependent. A&B) Similar to Figure 4A and 4B, all 103 
available cell lines were used to create predictions of study power for trials in chemo-naïve patients and 104 
compared to whether or not the trials saw a statistically significant improvement in PFS/TTP (A) or OS 105 
(B). In this figure, however, maximum tested concentrations were used for each drug instead of 106 
Csustained concentrations. Notably, these predictions with the maximum tested concentration of each 107 
drug results in much poorer model performance than the Csustained predictions in Figure 4. C&D) In an 108 
effort to determine how sensitive our method is to dose perturbation, power predictions were made for 109 
each trial in chemo-naïve patients using Csustained drug concentrations which have been multiplied by a 110 
multiplication factor between 0.1 and 10. Model performance metrics for PFS/TTP (C) or OS (D) were 111 
then calculated using predictions from each dose multiplication factor, and those metrics are plotted here. 112 
Error bars for each plotted clinical trial power represent mean estimated power ± standard error (bounded 113 
between 0 and 100% power). P values in A and B were calculated using one-tailed t-tests. Blue circles 114 
indicate predictions made using the CTRP dataset, and red circles indicate predictions made using the GDSC 115 
dataset. Boxplots are plotted so that the lower and upper whiskers indicate the extreme lower and upper 116 
values respectively, the box boundaries indicate the first and third quartiles, and the center line indicates 117 
the median. Source data are provided with this paper. 118 

  119 
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 120 

Figure S8. IDACombo predictions become less accurate when made using drug concentrations 121 
beyond the tested monotherapy concentration range. A) Similar to Figure 4A, this plot shows 122 
predicted clinical trial powers for PFS/TTP in trials with chemo-naïve patients, separated based on 123 
whether or not the trial actually observed a statistical improvement in PFS/TTP with the test treatment. 124 
Trial points are sized according to the maximum ratio of the Csustained concentrations used for the drugs 125 
in the trial to the maximum tested concentrations of those drugs in CTRPv2 or GDSC. Ratios above 1 126 
indicate that the Csustained concentration is higher than the maximum available concentration in 127 
CTRPv2 or GDSC. Notably, most of the incorrectly classified trails have ratios > 1 and most of the 128 
correctly classified trials have ratios < 1. B) Barplot showing PFS/TTP model performance for trials with 129 
chemo-naïve patients that fall within three different ranges of ratios of drug Csustained concentration to 130 
tested concentration in CTRPv2 or GDSC. Notably, trials with a Csustained/tested concentration ratio > 2 131 
are predicted much more poorly than trials with a ratio between 0 and 1 or with a ratio between 1 and 2. 132 
C) Same as A, except for OS in trials with chemo-naïve patients. D) Same as B, except for OS in trials 133 
with chemo-naïve patients. Error bars for each plotted clinical trial power represent mean estimated 134 
power ± standard error (bounded between 0 and 100% power). P values in A and C were calculated 135 
using one-tailed t-tests. Blue circles indicate predictions made using the CTRP dataset, and red circles indicate 136 
predictions made using the GDSC dataset. Boxplots are plotted so that the lower and upper whiskers indicate 137 
the extreme lower and upper values respectively, the box boundaries indicate the first and third quartiles, 138 
and the center line indicates the median. Source data are provided with this paper. 139 

  140 
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 141 

Figure S9. Predictions made using Bliss independence are less accurate than those made with 142 
independent drug action. Power predictions were made for the clinical trials shown in Figure 4, but 143 
using the Bliss independence model rather than the IDA model. In general, when compared to the IDA 144 
predictions in Figure 4, Bliss Independence inflates estimated powers, leading to decreased precision, 145 
specificity, and accuracy while providing marginal improvements in sensitivity. Error bars for each plotted 146 
clinical trial power represent mean estimated power ± standard error (bounded between 0 and 100% 147 
power). P values were calculated using one-tailed t-tests. Blue circles indicate predictions made using the 148 
CTRP dataset, and red circles indicate predictions made using the GDSC dataset. Boxplots are plotted so that the 149 
lower and upper whiskers indicate the extreme lower and upper values respectively, the box boundaries 150 
indicate the first and third quartiles, and the center line indicates the median. Source data are provided 151 
with this paper. 152 

  153 
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 154 

Figure S10. IDAcomboscore agreement between CTRPv2 and GDSC is affected by the number of 155 
cell lines available to make predictions with. In an effort to determine how many cell lines are required 156 
to estimate drug combination efficacy, IDAcomboscore correlations between CTRPv2 and GDSC are 157 
plotted versus the number of cell lines used to make those predictions. A) IDA-comboscore predictions 158 
were made using randomly sampled sets of cell lines of varying sizes. Sampling was performed three 159 
times for each number of cell lines and the mean of each triplicate is plotted with error bars representing 160 
the standard deviation of the triplicate correlation measurements. Notably, agreement between CTRPv2 161 
and GDSC decreases rapidly as the number of cell lines is reduced below 50. B) Correlations are plotted 162 
for predictions made using cancer-specific cell lines. Note that the x-axis denotes the median number of 163 
cell lines available for that cancer type for each drug combination, as the number of cell lines available for 164 
each cancer type varies from drug to drug. Subsets of breast cancer and lung cancer are highlighted in 165 
the plot. Note that for both panels A and B, correlations were only calculated for drug combinations that 166 
used drugs for which their clinical doses were available in both CTRP and GDSC so as to avoid 167 
calculating correlations between predictions made with different drug concentrations between the two 168 
datasets. Source data are provided with this paper. 169 
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 170 

Figure S11. IDACombo predicts that elesclomol will efficaciously combine with 171 
cisplatin+gemcitabine in EGFR WT lung cancer. A) IDAcomboscores were calculated for the addition 172 
of late-stage clinical drugs in GDSC at their Csustained concentrations to the control treatment 173 
                         (6   μ ) +             (    µ )    E F  W               The number of cell 174 
lines available to generate predictions for combinations with each additional drug are provided in 175 
parentheses in the x-axis labels. Only the top 20 IDAcomboscores are plotted here. B) Predicted 176 
IDAcomboscores for the addition of elesclomol to                              (6   μ ) +             177 
(1.14µM) across a range of concentrations of elesclomol in EGFR WT lung cancer. C) Maximum 178 
predicted hazard ratios for the addition of elesclomol to                          (6   μ ) +             179 
(1.14µM) in EGFR WT lung cancer across a range of concentrations of elesclomol. Maximum hazard ratio 180 
is defined as the higher hazard ratio (i.e. the hazard ratio that indicates less efficacy improvement from 181 
the test treatment vs the control treatment) of either: 1. elsclomol+cisplatin+gemcitabine vs 182 
cisplatin+gemcitabine or 2. elesclomol+cisplatin+gemcitabine vs elesclomol monotherapy. A-C) Error 183 
bars represent mean ± 95% confidence interval as estimated using Monte Carlo Simulations (see Online 184 
Methods). Source data are provided with this paper. 185 

  186 
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SUPPLEMENTAL TABLES 187 

Table S1. R packages used in the analyses performed in this paper. 188 

Package Name 
Package 
Version 

Package Citation Package WebLink 

car 2.1.5 
Fox and Weisberg, 

2011 
https://CRAN.R-project.org/package=car  

ComplexHeatm

ap 
1.14.0 Gu et al., 2016 

https://bioconductor.org/packages/release/bioc/html/ComplexHea

tmap.html  

drc 3.0.1 Ritz et al., 2015 https://CRAN.R-project.org/package=drc  

IDACombo 1.0.2 This paper. https://github.com/Alexander-Ling/IDACombo  

openxlsx 4.1.4 
Schauberger and 

Walker, 2019 
https://CRAN.R-project.org/package=openxlsx  

parallel 3.4.2 R Core Team, 2017 
Created by the R Core team and included in R since R version 

2.14.0. 

pbapply 1.3.3 
Solymos and 

Zawadzki, 2017 
https://CRAN.R-project.org/package=pbapply  

powerSurvEpi 0.0.9 Qiu et al., 2015 https://CRAN.R-project.org/package=powerSurvEpi  

precrec 0.9.1 
Saito and 

Rehmsmeier, 2017 
https://CRAN.R-project.org/package=precrec  

progress 1.1.2 
Csárdi and FitzJohn, 

2016 
https://CRAN.R-project.org/package=progress  

RColorBrewer 1.1.2 Neuwirth, 2014 https://CRAN.R-project.org/package=RColorBrewer  

readr 1.1.1 Wickham et al., 2017 https://CRAN.R-project.org/package=readr  

readxl 1.0.0 
Wickham and Bryan, 

2017 
https://CRAN.R-project.org/package=readxl  

rgl 0.98.1 Adler et al., 2017 https://CRAN.R-project.org/package=rgl  

rvest 0.3.2 Wickham, 2016 https://CRAN.R-project.org/package=rvest  

sandwich 2.4.0 Zeileis, 2004, 2006 https://CRAN.R-project.org/package=sandwich  

xlsx 0.5.7 Dragulescu, 2014 https://CRAN.R-project.org/package=xlsx  

https://cran.r-project.org/package=car
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://cran.r-project.org/package=drc
https://github.com/Alexander-Ling/IDACombo
https://cran.r-project.org/package=openxlsx
https://cran.r-project.org/package=pbapply
https://cran.r-project.org/package=powerSurvEpi
https://cran.r-project.org/package=precrec
https://cran.r-project.org/package=progress
https://cran.r-project.org/package=RColorBrewer
https://cran.r-project.org/package=readr
https://cran.r-project.org/package=readxl
https://cran.r-project.org/package=rgl
https://cran.r-project.org/package=rvest
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=xlsx
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SUPPLEMENTAL RESULTS 189 

Clinical Trial Validation 190 

Identifying clinical drug concentrations for clinical validation of IDACombo 191 

As mentioned in the main text, we searched published phase I and II clinical trials to 192 

identify clinical plasma concentrations for each drug at the administered doses used in each trial 193 

in our clinical trial validation analysis. Since maximum plasma concentrations (Cmax) are 194 

extremely transient for some drugs, especially those administered via IV bolus, we decided to 195 

use the maximum plasma concentrations achieved at least 6 hours after drug administration (a 196 

metric we termed Csustained,6hr) as our concentrations for IDACombo predictions. Figure S4A 197 

illustrates how Csustained is calculated for drugs with constantly decreasing plasma 198 

concentrations over time, and Figure S4B illustrates how Csustained is calculated for drugs with 199 

increasing plasma concentrations beyond 6 hours. A more detailed description of this metric 200 

and why it was chosen is included in the Online Methods. Csustained values for each drug in 201 

the clinical trial analysis, along with the citations used to determine them, are included in 202 

Supplementary Data 4. 203 

Misclassified trials in Figure 4A: PFS/TTP powers in first-line therapy trials 204 

The first false positive in Figure 4A tested the addition of vinorelbine to gemcitabine in 205 

non-small cell lung cancer (NSC lung cancer)1. Notably, the National Comprehensive Cancer 206 

Network (NCCN) currently classifies vinorelbine + gemcitabine as a category 1 therapy useful in 207 

certain circumstances for the first-line treatment of advanced NSC lung cancer2, indicating that 208 

the predicted utility of this combination may not be entirely inappropriate. Furthermore, this trial 209 

                                                                                         (≥70       210 

old), most of whom had multiple comorbidities and non-zero ECOG scores, and death from 211 

unknown causes or losing patients to follow up was considered as progression in this study. 212 

The other two false positives in Figure 4A were ovarian cancer trials that tested: 1) the 213 

addition of paclitaxel to carboplatin3 and 2) the addition of gemcitabine to paclitaxel + 214 

carboplatin4. While NCCN guidelines do not recommend paclitaxel + carboplatin + gemcitabine 215 

for ovarian cancer5, paclitaxel + carboplatin is considered the backbone of first-line therapy for 216 

ovarian cancer6           ,                                  ’                        217 

treatments, because dimethyl sulfoxide (DMSO) was used as the solvent for drug testing in 218 

CTRPv2, and DMSO is known to inactivate platinum complexes7. Indeed, carboplatin 219 

monotherapy produces an average viability of 97% in CTRPv2 (Supplementary Data 3), 220 

suggesting that the drug may be inactivated in the dataset and, therefore, is not being properly 221 

accounted for in the control therapies for these trials. 222 

The false negative in Figure 4A was also an ovarian cancer trial, this time testing the 223 

addition of nintedanib to paclitaxel + carboplatin8. Since carboplatin inactivation in this case 224 

would have increased the predicted benefit of nintedanib, it cannot be the cause of this 225 

misclassification. While it is possible that this case represents a case of drug additivity/synergy, 226 

we believe the fact that three out of four misclassified trials are ovarian cancer trials suggests 227 

that the pan-cancer set of cell lines used to generate these predictions may perform poorly 228 

when making predictions for ovarian cancer trials. It is also worth noting that, while this study did 229 

                                                   F ,          ’                        230 
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Clinical IDACombo predictions with cancer type/subtype specific sets of cell lines 233 

As mentioned in the main text, we performed analyses to evaluate the suitability of 234 

IDACombo to predict the efficacy of targeted therapies, which are often only effective in specific 235 

molecular subsets of cancer. Two of the clinical trials in our dataset tested targeted therapies 236 

and reported full study results for patients with and without the molecular features targeted by 237 

those therapies. We made power predictions for these two trials using sets of cell lines with or 238 

without the relevant molecular features for each reported patient subgroup. The resulting 239 

predictions for these trials are shown in Supplementary Data 5         ,         ’  240 

predictions agreed with clinical findings that there is a higher expected benefit for patients with 241 

the molecular features targeted by the targeted therapies than for patients without those 242 

molecular features. However, the subtype-specific predictions did not reach the 80% power 243 

cuttoff necessary to correctly classify the trials. This may be due to the fact that very few cell 244 

lines were available for these subtype-specific predictions, leading to relatively high prediction 245 

uncertainties and a relatively small population in which to detect phenotypic heterogeneity. 246 

To further assess the utility of making predictions with sets of cell lines matched to 247 

patient phenotypes, we predicted clinical trial powers using cancer-specific sets of cell lines for 248 

each clinical trial (Figure S6). Note that clinical trials were excluded if fewer than 5 cancer-249 

specific cell lines were available with which to make predictions. The cancer-specific predictions 250 

resulted in accuracies > 80% for trials in chemo-naïve patients, but model performance was 251 

generally reduced and prediction uncertainties increased for cancer-specific predictions versus 252 

pan-cancer predictions. This result, along with the analysis of the two targeted therapy trials, 253 

suggests that predictions made using cancer and subtype-specific sets of cell lines could be 254 

preferable to pan-cancer predictions if sufficient numbers of cell lines were available for each 255 

cancer type, but there are currently too few cell lines available for each cancer type in these 256 

datasets for this approach to be viable. In the meantime, pan-cancer predictions appear to be 257 

adequate for most of the drug combinations used in our clinical trial dataset. 258 

Clinical IDACombo predictions are affected by selected drug concentrations, but remain 259 
accurate, sensitive, and specific across a range of concentrations 260 

Beyond the selection of cell lines, we also wanted to investigate the importance of drug 261 

concentration selection for IDACombo predictions. We examined the importance of drug 262 

concentration selection by assessing whether or not prediction performance was harmed by 263 

using drug concentrations that deviated from clinical plasma concentrations. When predictions 264 

were made using the maximum concentrations tested for each drug in either CTRPv2 or GDSC 265 

rather than Csustained concentrations, prediction accuracies in treatment-naïve trials fell 266 

dramatically (65.4% accuracy for PFS/TTP and 71.4% accuracy for OS) (Figures S7A and 267 

S7B). Alternatively, when the Csustained concentrations for each drug in a trial were multiplied 268 

by factors between 0.1 and 10, we found that uniformly increasing drug concentrations kept the 269 

      ’                                         ,            ,                         F /    270 

and OS. Uniformly decreasing concentrations quickly reduced sensitivity and precision (Figures 271 

S7C and S7D). These results suggest that correctly identifying clinical drug concentrations is 272 

important for in vitro predictions using IDA, with underestimated concentrations decreasing 273 
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model performance more than overestimated concentrations when clinical dose ratios between 274 

drugs are preserved. 275 

Clinical IDACombo prediction accuracy drops when predicting efficacy for trials with drugs which 276 
have plasma concentrations beyond the tested in vitro concentrations 277 

To further assess the importance of drug concentration for model performance, we 278 

looked at trials that used treatments which resulted in Csustained concentrations greater than 279 

the concentrations tested for those drugs in vitro. Several of the trials identified from 280 

ClinicalTrials.gov tested drugs with Csustained concentrations above the tested concentrations 281 

for those drugs in CTRPv2 or GDSC, with several trials including drugs with Csustained 282 

concentrations > 2x the tested in vitro concentrations in GDSC (Figures S8A and S8C). To 283 

determine whether or not this would affect IDACombo based power predictions for these trials, 284 

we calculated model performance for both PFS/TTP and OS for these trials (specifically trials in 285 

chemo-naïve patients) and compared model performance to whether or not trials included drugs 286 

with Csustained concentrations higher than tested in vitro concentrations. Trials with at least 287 

one drug with a Csustained concentration > 2x the maximum tested in vitro concentration for 288 

that drug showed largely reduced accuracy, specificity, and precision in both PFS/TTP and OS 289 

                                                                              ≤ x       x     290 

tested in vitro concentrations (Figures S8B and S8D). As a result of this finding, only trials with 291 

dru                                       ≤ x       x            in vitro concentrations 292 

were included in the clinical analyses in this paper. 293 

Prospective Analysis 294 

IDAcomboscore Clusters 295 

As mentioned in the main text, the clusters in Figure 5 can partially be explained by drug 296 

mechanisms of action, as drugs with the same mechanism of action often end up in the same 297 

hierarchical clusters (at least, this is the case for the few mechanisms of action for which we 298 

have more than one drug). This does not fully explain the clustering, however, as we can see 299 

with topoisomerase inhibitors and EGFR inhibitors, which are divided between several small 300 

                                                ’                                     x          , 301 

as, for the topoisomerase inhibitors, drugs are separated by whether or not they inhibit 302 

topoisomerase I or II and whether or not they act by binding DNA or intercalating DNA. This is 303 

highly speculative, however, given the small number of drugs available for each mechanism of 304 

action. It is also notable that drugs which have similar average viabilities across all cell lines 305 

when used as a monotherapy tend to be more closely clustered. This suggests that the 306 

clustering observed in Figure 5 may be explained partially by similarity in drug mechanisms and 307 

partially by similarity in the average monotherapy efficacies of drugs at their clinical 308 

concentrations. Unfortunately, a more detailed analysis of which mechanisms and monotherapy 309 

efficacies provide the most effective combinations is prevented by the limited number of drugs 310 

available for each drug mechanism. 311 

The accuracy of cancer-specific IDACombo predictions is currently limited by the number of 312 
available cell lines for each cancer type 313 

As discussed in the main text, we sought to determine how many cell lines are 314 

necessary to create accurate predictions using IDACombo. Since the true efficacy of most drug 315 

combinations is not known, we decided to use agreement between predictions made using 316 
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CTRPv2 and GDSC as a metric of prediction accuracy. Notably, we only compared CTRPv2 317 

and GDSC predictions for combinations in which Csustained was available for both drugs in 318 

both datasets and which had at least 400 cell lines available to make predictions with—this 319 

resulted in comparisons for 351 drug combinations involving 27 compounds. 320 

For the comparison,                       ’  ρ                         321 

predictions made with varying number of cell lines and plotted them in Figure S10A. This 322 

                ρ            0 8                           0                   ,               323 

correlation slowly decreased to ~0.7 as the number of cell lines was reduced to 50. With less 324 

      0           , ρ                       ,    ~0 6      25 cell lines and ~0.3 with 5 cell lines. 325 

This suggests that most cancer-specific predictions will be suboptimal, owing to their having 326 

less than 50 cell lines available to make predictions with, but it also suggests that there is some 327 

level of reproducibility using those numbers of cell lines. To quantify this reproducibility 328 

                                                              ,                     ρ’  329 

between cancer-specific IDAcomboscores versus the median number of cell lines available for 330 

each of 27 cancer types/subtypes (Figure S10B). The results largely agreed with the 331 

downsampling approach in Figure S10 ,                       ρ’            -specific 332 

predictions ranged from ~0.7 to ~0.3 depending roughly on how many cell lines were available 333 

for each cancer type. A full list of correlation coefficients for each cancer type can be found in 334 

Data S6. These findings suggest that highly reproducible cancer-specific predictions are 335 

currently possible for some cancer types, but IDACombo predictions for most cancer types 336 

would likely be significantly improved by increasing the number of cell lines available for those 337 

cancer types. 338 

SUPPLEMENTAL DISCUSSION 339 

As briefly mentioned in the main text, there are several limitations of our method that 340 

must be considered when using it in the future. 341 

F    ,               ’                                                                   342 

in NCI-ALMANAC and deviations of predicted efficacies from measured efficacies are generally 343 

small, it is still obvious that examples can be found where the measured effect of a drug 344 

combination is significantly different from the predicted effect. These may represent true cases 345 

of drug synergy, additivity, or antagonism, and the drug interactions present in these 346 

combinations could have a significant impact on the clinical behavior of these treatments. Given 347 

this result and the fact that synergistic drug combinations are likely to outperform combinations 348 

that work via IDA9, it is likely that predictions based on IDA will fail to identify a subset of highly 349 

effective drug combinations. Synergy and additivity based prediction methods will need to be 350 

developed to identify such combinations. Fortunately, however, the results of our clinical trial 351 

validation analysis suggest that this is not a problem for most clinical drug combinations, as the 352 

large majority of them were predicted well using IDACombo, at least for trials in previously 353 

untreated patients. 354 

This brings us to a second, and perhaps more serious, limitation of the method, which is 355 

an apparent unsuitability of cell-line based IDA predictions for patients who have undergone 356 

previous cancer drug treatment. We do not have sufficient data from our analyses to definitively 357 

explain this finding, but we can propose several hypotheses for future testing. First, there is the 358 

possibility that the difference in model performance between previously treated and previously 359 

untreated patients is coincidental—merely due to the model working better for some drugs than 360 
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for others and to different drugs being tested in trials of previously treated or untreated patients.  361 

Upon a closer inspection of the drugs involved in misclassified trials, however, we believe this is 362 

unlikely to be the case. Of the 12 drugs involved in trials that were misclassified for PFS/TTP 363 

improvement, all except vandetanib  and nintedanib (which were both used in only a single trial) 364 

were also used in trials that were correctly classified, and 8 of the 12 drugs were used in 365 

correctly classified trials at least as often as they were used in misclassified trials. A more likely 366 

explanation for this finding could be that the cell line models in CTRPv2 and GDSC may more 367 

accurately represent chemo-naïve tumors than previously treated tumors. It is well known that 368 

                                                                                  ’      369 

sensitivities10. While these altered sensitivities may be reflected in cell lines that were generated 370 

from the tumors of previously treated patients11, it is likely that the cell lines in CTRPv2 and 371 

GDSC were derived under a diverse set of circumstances. As such, we would not expect our 372 

population of available cell lines to be a good representation of a population of tumors which 373 

had all recently received similar drug treatments. In the future, it may be possible to test this 374 

hypothesis by creating panels of cell lines that are derived from patients who had received the 375 

same prior therapies as the patients in the trials which were poorly predicted in this study and 376 

then test whether predictions made with these cell line panels agree with the clinical findings of 377 

those trials. 378 

A third limitation of this study is that our method is currently unable to make predictions 379 

for combinations which include immunotherapies or drugs which function by acting systemically 380 

on non-tumor cells, such as drugs that act systemically to block hormone synthesis. This is 381 

because our predictions rely on in vitro drug screening data, and the in vitro systems that have 382 

been used for high-throughput cancer cell line drug screens lack the ability to mimic immune 383 

responses or non-tumor processes such as systemic hormone production. This does not mean, 384 

however, that IDA based predictions of drug combination efficacy are unsuitable for 385 

immunotherapies or drugs which act outside of the tumor. Efforts are underway to generate in 386 

vitro models which may be suitable for screening immunotherapies in the future12 and which 387 

could allow for IDA based predictions to be made for immunotherapy combinations. While those 388 

models mature, however, IDA based predictions of efficacy for combinations with 389 

immunotherapies/systemically acting therapies may be made using the results of monotherapy 390 

based clinical trials and the method developed by Palmer and Sorger9, providing that cross-391 

resistance can be estimated between combined treatments. 392 

Despite these limitations, our results are notable for several reasons which are briefly 393 

discussed in the main text. A more detailed discussion of these reasons is as follows. 394 

First, these results demonstrate that in vitro drug screening data can be used to 395 

generate clinically meaningful predictions for drug combination efficacies in patients, and, 396 

furthermore, they suggest that many of these predictions can be made using pan-cancer sets of 397 

cell lines. This is somewhat unexpected given the wide range of genetic and phenotypic 398 

diversities observed between different cancer types. On the other hand, our results suggest that 399 

it will be necessary to make predictions using cell lines of the appropriate cancer type/subtype 400 

for targeted therapies, and we believe it is likely that cancer-specific IDACombo predictions 401 

could be comparable to or better than pan-cancer predictions if not for the fact that many cancer 402 

types currently have relatively few available cell lines in CTRPv2 and GDSC. The solution to this 403 

problem, however, may be more complicated than simply increasing the number of cell lines for 404 

each cancer type. That is because it must also be noted that, beyond the limited numbers of cell 405 
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lines available for many cancer types, the ethnic diversity of available cancer cell lines is also 406 

very limited—particularly for ethnicities other than Caucasian or Asian 13. This means that 407 

caution will be necessary when applying the predictions made in this paper to ethnicities that 408 

are poorly represented in the cell lines currently available in CTRPv2 and GDSC. Fortunately, 409 

others in the field have already recognized the need to increase the number and genetic 410 

diversity of available cancer cell lines 14, and the Broad Institute has received an NCI contract to 411 

create new cancer cell lines (https://portals.broadinstitute.org/cellfactory). This has already lead 412 

to the creation of over 100 validated cancer models. The use of these models in future 413 

monotherapy drug screens may improve predictions made with IDACombo even further. 414 

A second reason that the success of IDACombo is notable is that, despite our extensive 415 

efforts to identify clinical relevant drug concentrations for each drug in our analysis, these 416 

concentrations remain only rough estimates of true clinically relevant concentrations. Beyond 417 

the fact that measured plasma concentrations are simply unavailable for some drugs and doses 418 

for patients of each cancer type, there is little available information about how plasma drug 419 

concentrations relate to intratumoral drug concentrations in vivo. Similarly, there is little 420 

available information about how media drug concentrations relate to intracellular drug 421 

concentrations in vitro. In the single study we were able to find that did examine these 422 

relationships, researchers found that the clinically relevant in vitro drug concentration for 423 

paclitaxel may be an order of magnitude below clinically measured plasma concentrations 15. 424 

Even with this information, the appropriate paclitaxel concentration to use for different cancer 425 

types is unclear, because the concentrations identified in the study were based on only two cell 426 

lines and six patients in a single cancer type. Given that our results suggest that varying drug 427 

concentrations can significantly affect prediction performance, it is possible that IDACombo 428 

predictions could be improved by future research aimed at identifying the in vitro drug 429 

concentrations that most closely mimic the drug exposure of tumor cells in the clinic. It is 430 

notable, however, that IDACombo works as well as it does—especially given the high 431 

uncertainties in the drug concentrations we used to estimate clinical trial powers. It is our hope 432 

that this method will help researchers identify promising combinations for future clinical 433 

development and that they will ultimately lead to improved therapies for cancer patients. 434 

  435 
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