

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Exposure to Secondhand Smoke and Cognitive Function Among Middle-aged and Older Women in China: Findings of 3-waves of the China Health and Retirement Longitudinal Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039824
Article Type:	Original research
Date Submitted by the Author:	27-Apr-2020
Complete List of Authors:	Bai, Anying; Peking University Health Science Centre, School of Public Health; Jin, Yinzi; Peking University, School of Public Health Huang, Yangmu; Peking University Health Science Centre, School of Public Health;
Keywords:	EPIDEMIOLOGY, Dementia < NEUROLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

Title

Exposure to Secondhand Smoke and Cognitive Function Among Middle-aged and Older Women in China: Findings of 3-waves of the China Health and Retirement Longitudinal Study Anying, Bai¹, Yinzi Jin Ph.D.¹, Yangmu Huang Ph.D.¹ ¹ School of Public Health, Peking University Health and Science Centre

Corresponding Author: Yangmu Huang, Ph.D. Peking University Health and Science Centre, School of Public Health Xueyuan Road No.38, Haidian Distreet, BeiJing, China Tel: 15010376131 Fax: 010-62755782 Email: ymhuang@bjmu.edu.cn

1/37

Abstract

Objectives: To examine the association between passive smoking and women's global cognitive function and cognitive subdomains.

Design: Cohort study

Participants: Data for this study were obtained from the China Health and Retirement Longitudinal Study (CHARLS), and panel data analysis was applied to wave land wave 2(2011-2013) ,wave 2 and wave 3(2013-2015) and wave 1 and wave 3(2011-2015). Data from a total of 6875 Chinese women were selected for analysis, including 2981 who were interviewed in 2011, 2471 in 2013, and 1894 in 2015.

Primary and secondary outcome measures:

Global cognitive function, domains of cognitive function including visuospatial ability, orientation and attention, and episodic memory could be assessed by various sections of CHARLS questionnaire.

Results: Passive smoking was found to be significantly associated with cognitive function. Compared with those had not been exposed to household secondhand smoking, women who had lived with a smoking husband for over 40

 years had significantly faster cognition decline, especially in visuospatial ability(95%CI, -0.08--0.01 P < 0.05) and episodic memory function(95%CI, -0.31-- -0.01 P = 0.031). In addition, compared with individuals with lower educational levels, and residing in rural area, those with more education or living in urban area had higher cognitive scores, although exposed to SHS. **Conclusions:** Passive smoking within households is a risk factor for cognitive decline among Chinese non-smoking women. Provision of more educational opportunities and screening for depressive symptoms in advance for Chinese women should be promoted, as these will also help to protect them against the negative effects brought on by passive smoking.

Key words: aging; passive smoking; panel analysis; visuospatial ability; memory

Strengths and limitations of this study:

- The first study to investigate on the association between secondhand smoke exposure and women's different domains of cognitive functions in China using a 4-year longitudinal national representative data.
- > Addressed the issue of reverse causation in observational cohort studies by used

1	
2	
3 4	lagged demondant variable models and adjust for baseling accretion accret
5	lagged dependent variable models and adjust for baseline cognition scores
6	× · · · · · · · · · · · · · ·
7	> The exposure to secondhand smoke was evaluated based on
8	
9	self-report measures.
10 11	
12	> The analyses only contained household SHS exposure and
13	
14	excluding environmental exposure.
15	excluding environmental exposule.
16	
17	
18 19	
20	Word Count: 3361
21	
22	Number of references:30
23	
24	Number of data clarate 1
25	Number of data elements :1
26 27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	Introduction
39	
40	China's population has been ageing rapidly. By 2050,
41 42	
43	there will be 400 million Chinese citizens aged over 65
44	
45	years old, and 150 million of whom will be older than 80
46	years ord, and 150 million of whom will be order than 50
47 48	
48 49	years old(Fang, Scheibye-Knudsen et al. 2015), which
50	
51	brought about formidable healthcare challenges. It will
52	
53	become increasingly important to understand the cognitive
54 55	
55 56	changes that accompany aging, both normally and
57	enanged ende decompany dying, both normarry and
58	
59	pathologically(Harada, Natelson Love et al. 2013).
60	

 Cognitive impairment, described as a decline in intellectual functions(Robertson, Savva et al. 2013), ranges from mild forms of forgetfulness to severe and debilitating dementia and is common among the elderly (Yin, Ma et al. 2016). The prevalence of cognitive impairment is rising, with national figures estimating that around 9% of older persons in China had cognitive impairment in 2011(Yin, Ma et al. 2016).

Numerous determinants such as environmental, individual, and genetic factors could favor evolution toward cognitive impairment, and both age and late-life hypertension increase the risk of dementia over time (Bernardin, Maheut-Bosser et al. 2014). The mechanism lies in age-related functional and structural changes in cerebrovascular small and large blood vessels(Tadic, Cuspidi et al. 2016). Besides chronic diseases factors, depression has long been known to affect memory and other neurocognitive domains, and be associated with an increased risk of developing mild cognitive impairment(MCI) in cognitively normal elderly people(Taivalantti, Barnett et al. 2019).

Passive smoking is a heated public health issue in China. Exposure to secondhand smoke (SHS), also known as "passive

smoking," refers to a situation where a non-smoker inhales another person's smoke either by exposure to side stream smoke or mainstream smoke (Ling and Heffernan 2016). Current smoking prevalence in China decreased from 31.1% in 2002 to 28.1% in 2010; however, the number of adults exposed to secondhand smoking during this period still increased from 540 million to 556 million (Harada, Natelson Love et al. 2013). The negative health effects of high levels of exposure to SHS may be close to those of active smoking, including inferior performance on measures of general intelligence, visuospatial learning and memory and fine motor dexterity (Durazzo, Meyerhoff et al. 2012). Given the association between exposure to SHS and risk factors for cognitive impairment such as cardiovascular disease (Teo, Ounpuu et al. 2006), hypertension (Kim, 2019), and stroke

(Malek, 2015) it is possible that high level of exposure may be a preventable risk factor for cognitive impairment or dementia(Heffernan and O'Neill 2013). A cross-sectional research including 150 samples conducted in the North East of England revealed that participants who had no history of smoking and averagely exposed to SHS for around 6 years, showed significantly reduced performance in processing

6/37

speed (i.e. how quickly one can process information and perform tasks) and executive function(i.e. the ability to organize memory, cognitive flexibility, and problemability) with solving compared non-exposed as people(Heffernan and O'Neill 2013). Such an inversed relationship between environment tobacco smoke exposure and visuospatial reasoning skills were also reported among children and adolescents (Yolton, Dietrich et al. 2005). Besides, a longitudinal aging study concerning samples (aged 50 years or older) had found that participants were about 30 percent more likely to develop dementia when exposed to SHS over a period of six years, compared with those who never having been exposed; while this association did not reach statistical significance after adjusting for age, sex, and education (P>0.05) (Llewellyn, Lang et al. 2009).

•Few studies, however, have investigated the relationship between household SHS exposure and different domains of cognitive function among elders. Previous studies of active smoking and cognitive impairment among the Chinese population suggested that older current smokers(aged 63 years old on average)(Yolton, Dietrich et

7/37

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

al. 2005) or those being exposed to SHS (aged between 55-64 years old) (Pan, Luo et al. 2018) were more likely to develop cognitive impairment compared with never-smokers. Nevertheless, both of them used only a 2-wave longitudinal data and did not control for baseline cognition score. Therefore, the primary aim of this study was to investigate the relationship between secondhand smoking and cognitive function among older non-smoking Chinese women, using a 3wave longitudinal national representative data. Through the classification of respondents by different years of secondhand smoke exposure in a 4-year panel, we identified whether certain high SHS exposure groups were at higher risk of cognitive decline than others after controlling for demographic and socioeconomic factors. Besides, we aimed examine the association between secondhand to smoke This is especially exposure and cognitive subdomains. important given the escalating aging trend and increasing prevalence of SHS exposure in China.

Methods

Data

nationally

CHARLS

were

BMJ Open

We used data from 3 waves of the China Health and Retirement Longitudinal Study (CHARLS, 2011-2013-2015), which involved participants with а representative survey of adults aged 45 years or older, as well as their spouses when possible. The CHARLS includes assessments of social, economic, and health circumstances of community-residents. The national baseline survey was conducted between June 2011 and March 2012 and included 17,708 respondents from 10,257 households. respondents were followed every 2 years, using a face-to-face computer-assisted personal interview (CAPI) (Zhao, Hu et al. 2012). At baseline there was 3381 married women who never smoked cigarettes and lived with spouses who had either smoked cigarettes in the past or smoked at the time of interview. Besides, all the data for each variable have been collected for those respondents. Our final sample was composed of 6875 respondents, among them interviewed again during the second wave of data collection in 2013, and 2247were interviewed again during the third wave in 2015. The similar sample selection process was conducted for participants in the second wave in 2013 as baseline, and final sample was consisted of 1799 women who

9/37

BMJ Open

2 3 4 5 6	were inve
7 8 9	Measures
10 11	Secondhai
12 13 14	Based on
15 16 17	to SHS a
18 19	surveys,
20 21 22	marital
23 24 25	years th
26 27	smoking a
28 29 30	The sr
31 32	"Have you
33 34 35	rolled c:
36 37	still hav
38 39 40	age did y
41 42 43	start to
44 45	first qu
46 47 48	smokers".
49 50	nonsmokeı
51 52 53	difficult
54 55 56	smoking o
57 58	length of
59 60	total num

vestigated again in 2015 as participants.

and Smoke

n standardized CHARLS questionnaire, the exposure among Chinese women was assessed through several asking the participants about their current status, the exact year they got married, and the he husband in each household has begun or ceased at home.

smoking status section contained four questions: ou ever chewed tobacco, smoked a pipe, smoked selfcigarettes, or smoked cigarettes/cigars?", "Do you ave the habit or have you totally quit?", "At what you totally quit smoking?" and "At what age did you o smoke on a regular basis?". If the answer to the uestion was "yes", they were defined as "current ". Our analysis of SHS exposure focused only on ers excluding the "current smokers", because of the lty to differentiate the negative effects of active on health condition from that of SHS exposure. The of SHS exposure was calculated and expressed as the umber of years that never-smoking women spent living with their spouses who smoked cigarettes at home. Based on the constructed SHS exposure variable, the participants were classified into four different groups: Never or being exposed to secondhand smoke for less than 25 years, more than 25 years and less than 30 years, more than 30 years and less than 40 years and over 40 years.

Cognitive function

Cognitive functions measured from Telephone were Interview of Cognition Status form (self-rated memory, today's date, day of the week, and current season); recall and delayed recall test of memory of 10 words; test of serial subtractions of 7 from 100; ability to reproduce a overlapped pentagons picture of two in CHARLS questionnaires (Zhao, 2012. Cognitive subdomains including visuospatial ability, orientation and attention, and episodic memory (Ge, Wei et al. 2018) could be assessed by these various sections of questionnaire. The Telephone Interview of Cognitive Status (TICS) is a 10-item screening test for the assessment of cognitive function in patients with Alzheimer's disease who are unwilling or unable to be examined in person. To assess orientation and attention function, the number of correct answers to above questions

11/37

BMJ Open

was scored and summed up (range 0 to 10). Figure drawing was used to measure a person's ability to identify visual and spatial relationships among objects. Participants who successfully completed the task received a score of 1, and those who failed received 0(Ge, Wei et al. 2018).

In addition, the word recall test was consisted of 2 components, immediate recall and delayed recall, and evaluated episodic memory. Participants were required to immediately repeat 10 Chinese nouns just read to them, and after 20 questions concerning CES-D(approximately 4 to 10 minutes), they were again asked to recall as many of the original words as possible. The item was coded as 1 if recalled by the respondent, and as 0 if not. Scores for immediate and delayed recall both varied from 0 to 10. An evaluated episodic memory score was calculated using the mean of scores in immediate and delayed word recall(range 0 to 10) (Li, Cacchione et al. 2017).

The overall cognition scores were the sum of the three different domains (range 0 to 21).

Control variables

Given that cognitive function may vary across demographic and socioeconomic status, we thus included age,

12 / 37

urban/rural residence, education, annual household expenditures, chronic diseases and depressive symptoms as control variables. Education was categorized into 3 groups: "illiterate", "primary education" and "secondary education or above". Arterial hypertension and diabetes mellitus are separately strong independent risk factors for the development of cognitive impairment and dementia (Tadic, Cuspidi et al. 2016) (Moheet, Mangia et al. 2015). Thus, the baseline condition of hypertension and diabetes were included, in addition to whether the participants were being treated. The measure of depressive symptoms was based on the 10-item version of the Center for Epidemiologic Studies Depression Scale(CES-D) short form, and each of the 4-option response to item was scored ranging from 0 to 3. The total score is the sum of points for all 10 items, and a score of 10 or higher suggests the presence of depressive symptoms (Cheng, Chen et al. 2016).

Analysis

All analyses were conducted with STATA, version 14.0 (Stata, College Station, TX, USA).We used lagged dependentvariable regression models with ordinary least squares

BMJ Open

estimation. In the LDV method, covariation both between and within waves is used to estimate the coefficients, yielding more stable estimates and lower standard errors than those found in other methods, such as the change score (CS) methods (Johnson 2005). After pooling the three sets of panel data into one through using the "year" dummy variable to differentiate between change in 2 years or in 4 years, we have 6875 respondents who have complete data on all variables. The overall cognitive scores, episodic memory scores, visuospatial ability scores and orientation and attention scores were 4 separate outcome variables. The different groups of SHS exposure years were the predictor variable, and other independent variables included all demographic and socioeconomic characteristics. Prior to fitting the regression models, descriptive analyses were conducted to estimate the mean and standard deviations for continuous data and frequencies and percentages for categorical data.

Results

Table 1 provides a descriptive summary of all the variables for participants from each panel of three different waves: 2011-2013, 2011-2015 and 2013-2015. High

 prevalence of SHS exposure between 30 to 40 years were seen in different panels, accounting for 32.51%, 35.18% and 42.69% respectively.

The participants were over 45 years old, with the average age of 56, 56 and 58 years old, respectively in those waves . Participants were more likely to live in rural area, have lower education background and do not have hypertension or diabetes symptoms at baseline. In addition, our results indicated that the average baseline cognition scores were higher than wave-2 and wave-3 cognition scores. The average scores of CES-D indicated high prevalence of depression among Chinese middle-aged and old-aged women in those years. Other socio-demographic characteristics of the respondents are shown in Table 1

Results from the regression models for the relationship between SHS exposure and each domain of cognitive function and overall cognition scores are reported in Table 2 and Table 3. Scores of episodic memory, orientation and attention and visuospatial among respondents at baseline were strong predictors of their corresponding cognitive function measures 2 or 4 years later. Based on the analysis controlling age, annual

15 / 37

BMJ Open

2	
3 4 5	household expenditure, education, baseline cognitive
6 7	function and other chronic health status, we found th
8 9 10	only being exposed to SHS for more than 40 years
11 12	significantly resulted in a decline in visuospatial
13 14 15	abilities, episodic memory and overall cognition scor
16 17	for all respondents. Compared with respondents who we
18 19 20	not exposed to SHS or being exposed to it for less th
21 22	25 years, those who have exposed to SHS for more than
23 24 25	years suffered a 0.04-point decline in visuospatial
26 27	abilities(95%CI, -0.080.01 P <0.1), a 0.16-point declin
28 29 30	episodic memory(95%CI, -0.310.01 P <0.05), and a 0.33-r
31 32	decline in overall cognition functions(95%CI, -0.660.
33 34 35	<0.01). In addition, age was also a strong indicator.
36 37	4
38 39 40	one-year older resulted in a 0.01-point, 0.01-point,
41 42	0.03-point, 0.05-point decrease in visuospatial(95%CI,
43 44 45	0.010.00 P <0.01), orientation(95%CI, -0.030.01 P <0.0
46 47	memory(95%CI, -0.31 0.01 P <0.05) and overall cognition
48 49 50	scores(95%CI, -0.660.01 P <0.01), respectively. High
51 52	education level was associated with better cognitive
53 54 55	performance, especially in orientation and attention.
56 57	What's more, a one-point increase in CESD scores decr
58 59 60	0.02-point decrease in scores of orientation and

function and other chronic health status, we found that
only being exposed to SHS for more than 40 years
significantly resulted in a decline in visuospatial
abilities, episodic memory and overall cognition scores
for all respondents. Compared with respondents who were
not exposed to SHS or being exposed to it for less than
25 years, those who have exposed to SHS for more than 40
years suffered a 0.04-point decline in visuospatial
abilities(95%CI, -0.080.01 P <0.1), a 0.16-point decline in
episodic memory(95%CI, $-0.310.01 P < 0.05$), and a 0.33-point
decline in overall cognition functions(95%CI, -0.660.01 P
<0.01). In addition, age was also a strong indicator. Each
one-year older resulted in a 0.01-point, 0.01-point,
0.03-point, 0.05-point decrease in visuospatial(95%CI, -
0.010.00 P <0.01), orientation(95%CI, -0.030.01 P <0.01),
memory(95%CI, -0.31 0.01 P <0.05) and overall cognition
scores(95%CI, -0.660.01 P <0.01), respectively. High
education level was associated with better cognitive
performance, especially in orientation and attention.
What's more, a one-point increase in CESD scores decrease
0.02-point decrease in scores of orientation and

16/37

attention(95%CI, -0.03--0.00 P < 0.05), showing that respondents with depressive symptoms were more likely to suffer from cognitive decline in specific functions.

Discussion

Results from this longitudinal study with a large, representative sample of middle-aged and older women in China indicated that exposure to secondhand smoke for over associated with significantly years was poorer performance of global cognition and cognitive subdomains. It is the first examination of cognitive subdomains in relation to household SHS exposure using a 4-year longitudinal data in China. The inferior performance of passive smokers on measures of visuospatial abilities, episodic memory and orientation and attention abilities are creative as these domains were not specifically evaluated in earlier studies with middle-aged and older samples who never smoke (Durazzo, Meyerhoff et al. 2012). Previous study only suggested that secondhand smoke was associated with poorer cognitive performance specifically in children, adolescents and adults (Yolton, Dietrich et al. 2005). Besides, we found that having a high educational level, living in urban area and having better baseline cognitive

17/37

BMJ Open

function would improve their cognitive performance. Compared with those without diabetes, participants with diabetes in baseline were found to have a 0.172-point decline in episodic memory scores, whereas the exact type of diabetes could not be examined in our study. An early finding showed that people with both type 1 and type 2 diabetes had mild to moderate reductions in cognitive function compared to non-diabetic controls as measured by neuropsychological testing, while type 2 diabetes (T2DM), but not type 1 diabetes, has been associated with 50% increased risk of dementia (Moheet, Mangia et al. 2015).

Our results showed that compared with women who have never been exposed to SHS or being exposed for less than 20 years, those who was exposed to SHS for more than 40 years have experienced, on average, 0.04-point, 0,16-point and 0.33-point decline in scores of visuospatial function, episodic memory and overall cognitive scores, respectively. Compared with prior research (Pan, Luo et al. 2018), the coefficients were significant. Besides, each one-year increase in age resulted in a 0.01-point, 0.02-point, 0.04point, 0.06-point decrease in visuospatial, orientation, memory overall cognition scores, respectively. and

18 / 37

Secondhand smoke seems to be a stronger indicator of cognitive decline than aging. Study had reported that attention referred to the ability to concentrate and focus on specific stimuli slightly declined in later life (Lezak, M; Howieson, D, 2012), and orientation was one's ability to identify exact date, month, day and season of the year. Our results did not signify the relationship between SHS and orientation and attention ability may due to the relatively small size of sample and short period of cohort controlling all study after for demographic and socioeconomic confounders. Visuospatial abilities involve the ability to understand space in two and three dimensions. A nationally representative data concerning 5683 children and adolescents who were 6-16 years in America showed that years of SHS exposure was significantly associated with lower scores for reading, math, and visuospatial skills, after adjusting for covariates (Yolton, Dietrich et al. 2005). In our study, an inversed relationship between SHS exposure and visuospatial abilities among middle-aged and older adults was also presented, showing a 0.04-point decline in their visuospatial scores. As one of the most common cognitive complaints among elders, episodic memory

19/37

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

refers to personally experienced events which could be measured by stories, word lists or figures. Previous study proved that the onset of memory decline may vary among different memory types, with episodic memory lasting lifelong (Rönnlund, M; Nyberg, L.2005). Our study could not prove the onset age of memory decline without doing regression among different age groups, while the memory decline caused by SHS could be presented by the significant coefficient.

The inconsistent conclusions between our studies and prior ones may probably due to the relatively simplified version of cognition test procedure in CHARLS questionnaires compared with the MoCA(Li, Jia et al. 2018) and MMSE(Trzepacz, Hochstetler et al. 2015). Some studies also used clinical or magnetic resonance imaging (MRI) evidence of neurologic damage to detect cognitive impairment (Kalb R, et al 2018). Best adapted to a screening test, the MoCA exhibited excellent sensitivity in identifying MCI and AD(Alzheimer's disease) by 90% and 100%, respectively (Ziad S. Nasreddine 2005).

The most popular hypothesis about the mechanisms underlying the links between SHS exposure and poorer

20/37

> cognitive performance lies in the notion that the carbon monoxide (CO) in tobacco smoke may interfere with the oxygen being delivered to the brain via the blood system, which could be tested by measuring levels of CO in the blood of never smokers who have been exposed to SHS and comparing these with never smokers with no history of such exposure. However, the reasons behind different effect on various domains of brain function are far from clear. One possible explanation derives from an animal research. It may lead to reduced neuronal mass in specific regions of the brain associated with learning and memory after exposing animals to varying degrees of toxic mixtures of chemicals found in tobacco smoke. Since the hippocampal region of the brain is known to be involved in the mediation of memory (Staples and Mandyam 2016) and learning, further research should be conducted in other regions dominating visuospatial and orientation ability. Another possible mechanism is that prolonged exposure to SHS may be a significant risk factor for cardiovascular disease (Yankelevitz, Henschke et al. 2013), which may therefore lead to a range of health and cognitive problems in later life. longitudinal design elucidate А could this

21/37

BMJ Open

association by observing long-term exposure to SHS and a potential build-up of CVD as well as how these correlates with performance upon a range of cognitive measures.

limitations Several need be considered when to interpreting this study and designing future studies. Firstly, the exposure to secondhand smoke was evaluated based on self-report measures. This might be subject to recall bias and led to over-or-underestimation of exposure(Ling and Heffernan 2016). Therefore, further studies could include more biological assays, for example, cotinine residue levels or nicotine residue in saliva or hair samples (Akhtar, Andresen et al. 2013). Previous research using serum cotinine as a biomarker of exposure to SHS found that higher levels of serum cotinine were associated with significant reductions in performance in reading, mathematics, and visual and spatial abilities in children and adolescents (Yolton, Dietrich et al. 2005). However, no studies had used a combination of biomarker and self-report yet (Stirland, O'Shea et al. 2018). Cognitive impairment could also be detected by the effect of apolipoprotein $\epsilon 4$ (Apo $\epsilon 4$) polymorphism, which was a known risk factor for dementia. Secondly, it may be impossible

22/37

> to control for all potentially confounding variables. After adjusting for age, household expenditure, education, area, chronic health condition and depressive symptoms, some other demographic or socioeconomic confounders may be neglected. Nevertheless, this did not appear to affect the magnitude of the association between SHS exposure and cognition (Chen, Clifford et al. 2013).Besides, the analyses only contained household SHS exposure, which precludes the analyses of the influence of environment smoke inhale on smoking proclivity. Whether exposure to household SHS can hasten the onset of cognitive impairment for older Chinese women could by further proved by running regression models in different age groups.

Acknowledgments :

We would like to thank the professor Yaohui Zhao at Centre for Chinese Economic Research, Peking University for her thoughtful contributions to this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Author's Contribution

Anying Bai wrote and participated in all aspects of this research, including the field investigation. Dr Yangmu Huang reviewed and supervised this research. Yinzi Jin participated in the statistical analysis of this work and reviewed the final article.

Data sharing statement

CHARLS data is available to the public online : http://charls.pku.edu.cn

Funding Resources

This is a self-funded research.

References

Akhtar, W. Z., et al. (2013). "Association of blood cotinine level with cognitive and physical performance in non-smoking older adults." Environmental Research 121: 64-70. doi : 10.1016/j.envres.

Bernardin, F., et al. (2014). "Cognitive Impairments in Alcohol-Dependent Subjects." Frontiers in Psychiatry 5. doi : 10.3389/fpsyt.2014.00078

.Chen, R., et al. (2013). "Is exposure to secondhand smoke associated with cognitive parameters of children and adolescents?-a systematic literature review." Annals of Epidemiology 23(10): 652-661.doi : 10.1016/j.annepidem.2013.07.001

Chen, Z., et al. (2015). "Contrasting male and female trends in tobacco-attributed mortality in China: evidence from successive nationwide prospective cohort studies."

The Lancet 386(10002): 1447-1456.doi : 10.1016/S0140-6736(15)00340-2

Cheng, H. G., et al. (2016). "Prospective relationship of depressive symptoms, drinking, and tobacco smoking among middle-aged and elderly community-dwelling adults: Results from the China Health and Retirement Longitudinal Study (CHARLS)." J Affect Disord 195: 136-143.doi : 10.1016/j.jad.2016.02.023

Durazzo, T. C., et al. (2012). "A comprehensive assessment of neurocognition in middle-aged chronic cigarette smokers." Drug Alcohol Depend 122(1-2): 105-111.doi : 10.1016/j.drugalcdep.2011.09.019

Fang, E. F., et al. (2015). "A research agenda for aging in China in the 21st century." Ageing Research Reviews 24: 197-205.doi : 10.1016/j.arr.2015.08.003

Harada, C. N., et al. (2013). "Normal Cognitive Aging." Clinics in Geriatric Medicine 29(4): 737-752.doi : 10.1016/j.cger.2013.07.002

Heffernan, T. M. and T. S. O'Neill (2013). "Everyday prospective memory and executive function deficits associated with exposure to second-hand smoke." J Addict 2013: 160486.doi : 10.1155/2013/160486

Johnson, D. (2005). "Two-Wave Panel Analysis- Comparing Statistical Methods for

 Studying the Effects of Transitions." Journal of Marriage and Family 67: 1061-1075.doi : 10.1111/j.1741-3737.2005.00194.x

Kalb R, Beier M, Benedict RH, et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler. 2018;24(13):1665–1680. doi:10.1177/1352458518803785

Lei, X., et al. (2014). "Gender Differences in Cognition in China and Reasons for Change over Time: Evidence from CHARLS." J Econ Ageing 4: 46-55. doi : 10.1016/j.jeoa.2013.11.001

Li, J., et al. (2017). "Afternoon Napping and Cognition in Chinese Older Adults: Findings from the China Health and Retirement Longitudinal Study Baseline Assessment." J Am Geriatr Soc 65(2): 373-380. doi : 10.1111/jgs.14368

Li, X., et al. (2018). "The role of the Montreal Cognitive Assessment (MoCA) and its memory tasks for detecting mild cognitive impairment." Neurol Sci 39(6): 1029-1034.doi : 10.1007/s10072-018-3319-0

Ling, J. and T. Heffernan (2016). "The Cognitive Deficits Associated with Second-Hand Smoking." Frontiers in Psychiatry 7.doi : 10.3389/fpsyt.2016.00046 Llewellyn, D. J., et al. (2009). "Exposure to secondhand smoke and cognitive impairment in non-smokers: national cross sectional study with cotinine measurement." Bmj 338(feb12 2): b462-b462.doi : 10.1136/bmj.b462

Moheet, A., et al. (2015). "Impact of diabetes on cognitive function and brain structure." Annals of the New York Academy of Sciences 1353(1): 60-71.doi : 10.1111/nyas.12807

Pan, X., et al. (2018). "Secondhand Smoke and Women's Cognitive Function in China." American Journal of Epidemiology 187(5): 911-918.doi : 10.1093/aje/kwx377

Rönnlund, M., Nyberg, L., Bäckman, L., & Nilsson, L.-G. (2005). Stability, Growth, and Decline in Adult Life Span Development of Declarative Memory: Cross-Sectional and Longitudinal Data From a Population-Based Study. Psychology and Aging, 20(1), 3-18.doi : 10.1037/0882-7974.20.1.3

Robertson, D. A., et al. (2013). "Frailty and cognitive impairment--a review of the evidence and causal mechanisms." Ageing Res Rev 12(4): 840-851.doi : 10.1016/j.arr.2013.06.004

Staples, M. C. and C. D. Mandyam (2016). "Thinking after Drinking: Impaired Hippocampal-Dependent Cognition in Human Alcoholics and Animal Models of

BMJ Open

Alcohol Dependence." Frontiers in Psychiatry 7.doi : 10.3389/fpsyt.2016.00162

Stirland, L. E., et al. (2018). "Passive smoking as a risk factor for dementia and cognitive impairment: systematic review of observational studies." Int Psychogeriatr 30(8): 1177-1187.doi : 10.1017/S1041610217002824

Tadic, M., et al. (2016). "Hypertension and cognitive dysfunction in elderly: blood pressure management for this global burden." BMC Cardiovasc Disord 16(1): 208. doi : 10.1186/s12872-016-0386-0

Taivalantti, M., et al. (2019). "Depressive symptoms as predictors of visual memory deficits in middle-age." J Affect Disord 264: 29-34.doi : 10.1016/j.jad.2019.11.125

Teo, K. K., et al. (2006). "Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART study: a case-control study." The Lancet 368(9536): 647-658.doi : 10.1016/S0140-6736(06)69249-0

Trzepacz, P. T., et al. (2015). "Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for assessment of mild cognitive impairment in older adults." BMC Geriatr 15(107): 107.doi : 10.1186/s12877-015-0103-3

Yankelevitz, D. F., et al. (2013). "Second-Hand Tobacco Smoke in Never Smokers Is a Significant Risk Factor for Coronary Artery Calcification." JACC: Cardiovascular Imaging 6(6): 651-657.doi : 10.1016/j.jcmg.2013.02.004

Yin, P., et al. (2016). "Chronic obstructive pulmonary disease and cognitive impairment in the Chinese elderly population: a large national survey." International Journal of Chronic Obstructive Pulmonary Disease. doi : 10.2147/COPD.S96237

Yolton, K., et al. (2005). "Exposure to environmental tobacco smoke and cognitive abilities among U.S. children and adolescents." Environ Health Perspect 113(1): 98-103.doi : 10.1289/ehp.7210

Zhao, Y., et al. (2012). "Cohort Profile: The China Health and Retirement Longitudinal Study (CHARLS)." International Journal of Epidemiology 43(1): 61-68.doi : 10.1093/ije/dys203

Ziad S. Nasreddine, M. (2005). "The Montreal Cognitive Assessment (MoCA)-Concept and Clinical Review." the American Geriatrics Society 53(4): 695-699.

doi : /10.1111/j.1532-5415.2005.53221.x

BMJ Open

Table1.Characteristics of the Participants from 3 waves of CHARLS, 2011-2013-2015

	2011-2013		2011-2015		2013-2015	
	(N=2802)		(N=2274)		(N=1799)	
Variable	Count	Frequency	Count	Frequency	Count	Frequency
Area						
Urban	981	35.01%	730	32.10%	556	30.91%
Rural	1821	64.99%	1544	67.90%	1243	69.09%
Secondhand Smoke						
Less than 25 years	759	27.09%	531	23.35%	262	14.56%
More than 25 years and less	634	22.63%	573	25.20%	385	21.40%
than 30 years	034	22.03%	513	23.20%	202	21.40%
More than 30 years and less	911	32.51%	800	35.18%	768	42.69%
than 40 years	911	32.31%	000	55.10%	700	42.09%
More than 40 years	498	17.77%	370	16.27%	384	21.35%
Education						
Illiterate	1552	55.39%	1309	57.56%	1004	55.81%
Primary education	512	18.27%	414	18.21%	336	18.68%
Secondary or above	738	26.34%	551	24.23%	459	25.51%
Hypertension						
No hypertension	2124	75.80%	1720	75.64%	1365	75.88%
Hypertension with treatment	522	18.63%	1720	75.64%	358	19.90%
Hypertension without	156	5.57%	130	5.72%	76	4.22%
treatment	0 C T	J.J/6	100	J.126	0 /	4.220
Diabetes						
No Diabetes in baseline	2643	94.33%	2140	94.11%	1704	94.72%

Have Diabetes with treatment	143	5.10%	120	5.28%	86	4.78%	
Have Diabetes without	16	0.57%	14	0.62%	9	0.50%	
treatment	10	0.078	11	0.020	5	0.000	
	Count	Mean(SD)		Count	Mean(SD)	Count	Mean(SD)
Age	2802	55.84(8.22)		2274	56.19(7.75)	1799	57.90(7.43)
Annual Household Expenditure,	2002	12706 00/1/1	13786.99(14197.29)		13060.14(13639	1799	16632.84(18568.2
yuan ^a	2802	13700.99(141	97.29)	2274	33)	1199)
Visuospatial ability ^b	2802	0.51(0.50)		2274	0.48(0.50)	1799	0.49(0.50)
Orientation and attention $^{\circ}$	2802	5.87(3.29)		2274	5.84(3.19)	1799	5.97(3.14)
Memory Scores ^d	2802	3.33(1.96)		2274	3.04(1.93)	1799	3.15(1.91)
Baseline Visuospatial ability	2802	0.57(0.50)		2274	0.55(0.50)	1799	0.54(0.50)
Baseline Orientation and	2802	6.39(2.92)		2274	6.25(2.90)	1799	6.16(3.00)
attention	2002	0.39(2.92)		2274	0.23(2.90)	1739	0.10(3.00)
Baseline Memory Scores	2802	3.27(1.98)		2274	3.23(1.92)	1799	3.50(1.78)
Baseline CES-D Score ^e	2802	12.09(5.38)		2274	12.13(5.45)	1799	10.90(5.14)
					1		
viation: SHS, secondhand smoke.							
S dollar = 6.3 yuan.							
score range for visuospatial a	bility was	0-1.					
score range for orientation an	d attention	was 0-10. Highe	er scores i	ndicate better m	mental status.		

Abbreviation: SHS, secondhand smoke.

a 1 US dollar = 6.3 yuan.

 b The score range for visuospatial ability was 0-1.

d The score range for episodic memory was 0-10. Higher scores indicate better memory function.

e A score of 10 or greater indicated the presence of depressive symptoms.

 BMJ Open

Table2.Multivariable linear regression analysis of the relationship between smoking exposure and Visuospatial function and Orientation and Attention among older Chinese women (N = 6875), 2011-2013-2015

	Vi	isuospatial Scores		Orientation and Attention			
VARIABLES	β coefficient	95%CI	t	β coefficien	t 95%CI	t	
Age	-0.01ª	-0.01,-0.00	-6.73	-0.02ª	-0.03, -0.01	-4.34	
Expenditure	0.00	0.00, 0.00	0.01	0.00ª	0.00, 0.00	0.77	
Secondhand Smoke Exposure ^d More than 25 years less than 30 years	-0.01	-0.04, 0.02	-0.72	0.05	-0.12, 0.21	0.56	
More than 30 years less than 40 years	-0.02	-0.05, 0.02	-0.95	-0.03	-0.20, 0.13	-0.38	
More than 40 years	-0.04°	-0.08, 0.01	-1.67	-0.15	-0.38, 0.09	-1.24	
Baseline Visuospatial Scores	0.23ª	0.21, 0.26	17.93				
Baseline Orientation Socres				0.55 ^a	0.53, 0.57	44.86	

32 / 37

0.38ª	0.25, 0.51	5.72
1.11ª	0.94, 1.27	12.91
1.18ª	1.01, 1.36	13.44
0.06	-0.24, 0.35	-0.38
0.06	-0.11, 0.24	0.04
0.06	-0.19, 0.30	-0.01
0.25°	-0.03, 0.52	-1.77
0.21	-0.06, 0.48	-0.23
0.50	-0.22, 1.23	0.67
-0.02 ^b	-0.03, -0.00	-2.57
0.09	-0.05, 0.22	1.29
	1.11ª 1.18ª 0.06 0.06 0.06 0.25° 0.21 0.50 -0.02 ^b	1.11^a $0.94, 1.27$ 1.18^a $1.01, 1.36$ 0.06 $-0.24, 0.35$ 0.06 $-0.11, 0.24$ 0.06 $-0.19, 0.30$ 0.25^e $-0.03, 0.52$ 0.21 $-0.06, 0.48$ 0.50 $-0.22, 1.23$ -0.02^b $-0.03, -0.00$

Abbreviations: CI, confidence interval; SHS, secondhand smoke.

33 / 37

1	
2	
3 4	
4 5	a. p<0.01
6	b. p<0.05
7	c. p<0.1
8 9	d. Referent: No SHS exposure or Less than 25 years.
10	e. Expenditure is expressed as the natural log of the annual household expenditure
11	f. Referent: Illiterate
12	g. Referent: Without hypertension
13 14	h. Referent: Without diabetes
15	
16	
17	
18 19	
20	
21	
22	
23 24	
25	
26	
27	
28 29	
30	
31	
32 33	 d. Referent: No SHS expressue or Less than 25 years. e. Expenditure is expressed as the natural log of the annual household expenditure f. Referent: Illiterate g. Referent: Without hypertension h. Referent: Without diabetes
33 34	
35	
36	
37	
38 39	
40	
41	
42	34 / 37
43 44	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
45	
46	

 Table3.Multivariable linear regression analysis of the relationship between smoking exposure and Episodic memory and Overall cognitive function among older Chinese women (N = 6875), 2011-2013-2015

	E F	Episodic Memory		Ove	erall Cognition Socres	
VARIABLES	ß	95%CI	t	β coeffici	ent 95%CI	t
Age	-0.04ª	-0.05,-0.03	-11.37	-0.06ª	-0.07, -0.04	-7.87
Expenditure	0.00	0.00, 0.00	1.30	0.00^{a}	0.00, 0.00	0.32
Secondhand Smoke Exposure ^d More than 25 years less than 30 years	-0.04	-0.16, 0.08	-0.67	-0.01	-0.25, 0.25	-0.01
More than 30 years less than 40 years	0.02	-0.09, 0.13	0.36	-0.05	-0.29, 0.19	-0.41
More than 40 years	-0.16 ^b	-0.31, -0.01	-2.06	-0.33ª	-0.66, 0.01	-1.93
Baseline Memory Scores	0.30 ^a	0.28, 0.32	25.22			

Page 37 of 41

BMJ Open

1 2	
3 4	
5 6	
7 8	
9 10	
11 12	
13 14	
11 12 13 14 15 16 17	
17	
18 19 20	
21	
22 23	
24 25	
26 27	
28 29	
30 31	
32 33 34 35 36 37	
34 35	
36 37	
38 39	
40 41	
42 43	
44 45	
45 46	

Baseline Cognition Scores				0.55ª	0.46, 0.83	44.95
Urban ^e	0.25ª	0.16, 0.34	5.60	0.65ª	0.46, 0.83	6.68
Education ^f						
Primary	0.70 ^a	0.58, 0.80	12.42	1.77ª	1.53, 2.02	14.28
Secondary or Above	0.97ª	0.86, 1.08	17.29	2.00ª	1.74, 2.26	15.24
Hypertension ^g						
With Treatment	0.04	-0.16, 0.23	0.35	0.13	-0.29, 0.56	0.62
Without Treatment	0.06	-0.06, 0.17	0.95	0.12	-0.14, 0.38	0.93
Missing Group	0.07	-0.12, 0.25	0.70	0.10	-0.27, 0.47	0.52
Diabetes ^h						
With Treatment	-0.20 ^b	-0.38, 0.02	-2.20	-0.04	-0.43, 0.36	0.62
Without Treatment	-0.07	-0.25, 0.11	-0.77	0.08	-0.30, 0.47	0.43
Missing Group	0.32	-0.16, 0.80	1.30	0.87	-0.11, 1.84	1.75
Baseline CES-D Score	-0.01 ^b	-0.01, 0.00	-1.59	-0.01	-0.03, 0.00	-2.57
year = 2	-0.24	-0.33, -0.15	-5.21	-0.17	-0.37, 0.03	-1.70

Constant	0.63	0.53, 0.74	11.54	6.48 ^a	5.59, 7.37	14
Abbreviations: CI, confidence interval	; SHS, secondhand smoke.					
a. p<0.01						
b. p<0.05						
c. p<0.1						
d. Referent: No SHS exposure or Less t	chan 25 years.					
e. Expenditure is expressed as the nat	cural log of the annual h	ousehold expendit	ure			
f. Referent: Illiterate						
g. Referent: Without hypertension						
h. Referent: Without diabetes						
	nan 25 years. nural log of the annual h					
		37 /				

1 2 3 4	Reporting che	ist for qualitative study.					
5 6 7	Based on the SRQR guidelines.						
8 9	Instructions to aut	hors					
10 11 12 13	Complete this checklist by items listed below.	entering	g the page numbers from your manuscript where readers will find	each of the			
14 15 16 17 18 19 20	-						
21 22			ou used the SRQR reporting guidelines, and cite them as:				
23 24 25 26 27			J, Reed DA, Cook DA. Standards for reporting qualitative researce ad Med. 2014;89(9):1245-1251.	eh: a			
28 29 30 31			Reporting Item	Page Number			
31 32 33	Title						
34 35 36 37 38 39		<u>#1</u>	Concise description of the nature and topic of the study identifying the study as qualitative or indicating the approach (e.g. ethnography, grounded theory) or data collection methods (e.g. interview, focus group) is recommended	1			
40 41 42	Abstract						
43 44 45 46 47		<u>#2</u>	Summary of the key elements of the study using the abstract format of the intended publication; typically includes background, purpose, methods, results and conclusions	2			
48 49	Introduction						
50 51 52 53 54 55	Problem formulation	<u>#3</u>	Description and significance of the problem / phenomenon studied: review of relevant theory and empirical work; problem statement	4			
56 57 58 59	Purpose or research question	<u>#4</u>	Purpose of the study and specific objectives or questions	5			
60	For	peer revie	ew only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

Methods

Qualitative approach and	#5	Qualitative approach (e.g. ethnography, grounded theory, case	
research paradigm		study, phenomenolgy, narrative research) and guiding theory if appropriate; identifying the research paradigm (e.g. postpositivist, constructivist / interpretivist) is also recommended; rationale. The rationale should briefly discuss the justification for choosing that theory, approach, method or technique rather than other options available; the assumptions and limitations implicit in those choices and how those choices influence study conclusions and transferability. As appropriate the rationale for several items might be discussed together.	
Researcher characteristics and reflexivity	<u>#6</u>	Researchers' characteristics that may influence the research, including personal attributes, qualifications / experience, relationship with participants, assumptions and / or presuppositions; potential or actual interaction between researchers' characteristics and the research questions, approach, methods, results and / or transferability	
Context	<u>#7</u>	Setting / site and salient contextual factors; rationale	
Sampling strategy	<u>#8</u>	How and why research participants, documents, or events were selected; criteria for deciding when no further sampling was necessary (e.g. sampling saturation); rationale	
Ethical issues pertaining to human subjects	<u>#9</u>	Documentation of approval by an appropriate ethics review board and participant consent, or explanation for lack thereof; other confidentiality and data security issues	
Data collection methods	<u>#10</u>	Types of data collected; details of data collection procedures including (as appropriate) start and stop dates of data collection and analysis, iterative process, triangulation of sources / methods, and modification of procedures in response to evolving study findings; rationale	
Data collection instruments and technologies	<u>#11</u>	Description of instruments (e.g. interview guides, questionnaires) and devices (e.g. audio recorders) used for data collection; if / how the instruments(s) changed over the course of the study	
For pee	r reviev	v only - http://bmjopen.bmj.com/site/about/quidelines.xhtml	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 41 of 41

BMJ Open

1 2 3 4 5	Units of study	<u>#12</u>	Number and relevant characteristics of participants, documents, or events included in the study; level of participation (could be reported in results)	7
6 7 8 9 10 11 12	Data processing	<u>#13</u>	Methods for processing data prior to and during analysis, including transcription, data entry, data management and security, verification of data integrity, data coding, and anonymisation / deidentification of excerpts	10
12 13 14 15 16 17	Data analysis	#14	Process by which inferences, themes, etc. were identified and developed, including the researchers involved in data analysis; usually references a specific paradigm or approach; rationale	11
18 19 20 21 22	Techniques to enhance trustworthiness	<u>#15</u>	Techniques to enhance trustworthiness and credibility of data analysis (e.g. member checking, audit trail, triangulation); rationale	10
23 24 25	Results/findings			
25 26 27	Syntheses and	<u>#16</u>	Main findings (e.g. interpretations, inferences, and themes);	11
28 29 30	interpretation		might include development of a theory or model, or integration with prior research or theory	
31 32 33 34	Links to empirical data	<u>#17</u>	Evidence (e.g. quotes, field notes, text excerpts, photographs) to substantiate analytic findings	11
35 36	Discussion			
 37 38 39 40 41 42 43 44 	Intergration with prior work, implications, transferability and contribution(s) to the field	<u>#18</u>	Short summary of main findings; explanation of how findings and conclusions connect to, support, elaborate on, or challenge conclusions of earlier scholarship; discussion of scope of application / generalizability; identification of unique contributions(s) to scholarship in a discipline or field	13
45 46	Limitations	<u>#19</u>	Trustworthiness and limitations of findings	15
47 48 49	Other			
50 51 52 53	Conflicts of interest	<u>#20</u>	Potential sources of influence of perceived influence on study conduct and conclusions; how these were managed	17
53 54 55 56 57 58 59	Funding	<u>#21</u>	Sources of funding and other support; role of funders in data collection, interpretation and reporting	17
60	For pe	er reviev	v only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

The SRQR checklist is distributed with permission of Wolters Kluwer © 2014 by the Association of American Medical Colleges. This checklist was completed on 27. April 2020 using <u>https://www.goodreports.org/</u>, a tool made by the <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u>

For beer terien only

BMJ Open

Exposure to Secondhand Smoke and Cognitive Function Among Middle-aged and Older Women in China: Findings of 3-waves of the China Health and Retirement Longitudinal Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039824.R1
Article Type:	Original research
Date Submitted by the Author:	22-Aug-2020
Complete List of Authors:	Bai, Anying; Peking University Health Science Centre, School of Public Health; Jin, Yinzi; Peking University, School of Public Health Huang, Yangmu; Peking University Health Science Centre, School of Public Health;
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Smoking and tobacco, Public health, Mental health
Keywords:	EPIDEMIOLOGY, Dementia < NEUROLOGY, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

Exposure to Secondhand Smoke and Cognitive Function Among

Title

Middle-aged and Older Women in China: Findings of 3-waves of the China Health and Retirement Longitudinal Study Anying, Bai¹, Yinzi Jin Ph.D.¹, Yangmu Huang Ph.D.¹ real. ¹ School of Public Health, Peking University Health and Science Centre Corresponding Author: Yangmu Huang, Ph.D. Peking University Health and Science Centre, School of Public Health Xueyuan Road No.38, Haidian Distreet, BeiJing, China Tel: 15010376131 Fax: 010-62755782 Email: ymhuang@bjmu.edu.cn

Abstract

Objectives: To examine the association between secondhand smoke and women's global cognitive function and cognitive subdomains.

Design: Cohort study

Participants: Data for this study were obtained from the China Health and Retirement Longitudinal Study (CHARLS, 2011-2013-2015), and pooled analysis was applied to wave 1 and wave 2(2011-2013), wave 2 and wave 3(2013-2015) and wave 1 and wave 3(2011-2015). Data from a total of 6875 Chinese women with normal cognitive function in baseline were selected for analysis, including 2981 who were interviewed in 2011, 2471 in 2013, and 1894 in 2015.

Main outcome measures and methods: Secondhand smoke was classified based on length of exposed years (<25years, \geq 25 to <30 years, \geq 30 to <40 years, \geq 40 years). Global cognitive function, visuospatial ability, orientation and attention, and episodic memory function were used as measures of cognitive function. We pooled the three waves of data by using dummy variable to differentiate between

 2-year and 4-year. Lagged dependent variable models were used to examine independent associations between secondhand smoke and cognitive function. Demographic factors, socioeconomic factors, baseline cognitive functioning and health conditions were controlled in our models.

Results: Secondhand smoke was found to be inversely and significantly associated with cognitive function. Compared with those had not been exposed to household secondhand smoke, women who had lived with a smoking husband had significantly faster cognition decline, especially in global cognitive function (β =-0.33, 95%CI,-0.66--0.01,P<0.01), visuospatial ability (β =-0.04,95%CI, -0.08--0.01 P < 0.05) and episodic memory function (β =-0.16, 95%CI, -0.31---0.01 P = 0.031).

Conclusions: Secondhand smoke within household is a risk factor for cognitive decline among Chinese non-smoking women. Being exposed to secondhand smoke for more than 40 years was associated with greater decline in global cognitive function, visuospatial ability and episodic memory function, but not in orientation and attention function among elder Chinese women.

 BMJ Open

K	Key words: aging; passive smoking; panel analysis;
V	visuospatial ability; memory
S	Strengths and limitations of this study:
	> This is the first study to investigate on the
	association between secondhand smoke exposure and
	women's different domains of cognitive functions in
	China using a 4-year longitudinal national
	representative data.
	> This study addressed the issue of reverse causation in observational cohort studies
	by used lagged dependent variable models and adjust for baseline cognition scores
	> The exposure to secondhand smoke was evaluated based on
	self-report measures.
	> The analyses only contained household SHS exposure and
	excluding environmental exposure.
Ŵ	Nord Count: 3214
N	Number of references:31
N	Number of data elements :1
I	Introduction
	China's population has been ageing rapidly. By 2050,
t	there will be 400 million Chinese citizens aged over 65
У	vears old, and 150 million of whom will be older than 80

 years old^[1]. It will become increasingly important to understand the cognitive changes that accompany aging^[2]. Cognitive impairment, described as a decline in intellectual functions ^[3], ranges from mild forms of forgetfulness to severe and debilitating dementia ^[4]. The prevalence of cognitive impairment is rising, with national figures estimating that around 9% of older persons in China had cognitive impairment in 2011 ^[4].

Numerous determinants such as environmental, individual, and genetic factors could favor evolution toward cognitive impairment, and both age and late-life hypertension increase the risk of dementia over time ^[5]. The mechanism lies in age-related functional and structural changes in cerebrovascular small and large blood vessels ^[6]. Besides chronic diseases factors, depression has long been known to affect memory and other neurocognitive domains, and be associated with an increased risk of developing mild cognitive impairment (MCI) in cognitively normal elderly people ^[7].

Exposure to secondhand smoke (SHS), also known as "passive smoking," refers to a situation where a neversmoker inhales another person's smoke either by exposure

5/36

BMJ Open

to side stream smoke or mainstream smoke ^[8]. Current smoking prevalence in China decreased from 31.1% in 2002 to 28.1% 2010; however, the number of adults exposed to in secondhand smoke during this period still increased from 540 million to 556 million ^[2]. The negative health effects of high levels of exposure to SHS may be close to those of active smoking, including inferior performance on measures of general intelligence, visuospatial learning and memory and fine motor dexterity [9]. Given the association between exposure to SHS and risk factors for cognitive impairment such as cardiovascular disease ^[10], hypertension ^[11], and stroke ^[12], it is possible that high level of exposure may be a preventable risk factor for cognitive impairment or dementia ^[13].

Several studies have shown that exposure of SHS and cognitive impairment are interrelated ^[13-15]. However, much less is known about whether and to what extent SHS is associated with global and subdomains of cognitive function among elder women in China. Previous studies of active smoking and cognitive impairment among the Chinese population suggested that older current smokers(aged 63 years old on average) ^[14] or those being exposed to SHS

6/36

(aged between 55-64 years old) ^[16] were more likely to develop cognitive impairment compared with never-smokers. Nevertheless, both of them used only a 2-wave longitudinal data and did not control for baseline cognition. Therefore, the primary aim of this study was to investigate the relationship between secondhand smoke and cognitive function among older non-smoking Chinese women, using a 3wave longitudinal national representative data. Through the classification of respondents by different years of secondhand smoke exposure in a 4-year panel, we identified whether certain high SHS exposure groups were at higher risk of cognitive decline than others after controlling for confounders. Besides, we aimed to examine the association between secondhand smoke exposure and cognitive subdomains. This is especially important given the escalating aging trend and increasing prevalence of SHS exposure in China.

Methods

Data

 CHARLS had passed the ethical review before field investigation and we used data from 3 waves of the China Health and Retirement Longitudinal Study (CHARLS,2011-2013-2015), which was publicly available at <u>http://charls.pku.edu.cn</u>. CHARLS involved participants with a nationally

4 5 6

7 8 9

10 11

12 13 14

15 16

17 18 19

20 21 22

23 24

25 26 27

28 29

30 31 32

33 34 35

36 37

38 39 40

41 42

43 44 45

46 47 48

49 50

51 52 53

54 55

56

57 58

59 60

BMJ Open

representative survey of adults aged 45 years or older, as when possible, well as their spouses and included assessments of social, economic, and health circumstances of community-residents. The national baseline survey was conducted between June 2011 and March 2012 and samples were chosen through multistage probability sampling. After excluding empty or non-resident dwellings, final interviews were conducted on 17,708 respondents from 10,257 households, which completed at least one module of the survey beyond the cover screening for age eligibility. CHARLS respondents were followed every 2 years, using a face-to-face computerassisted personal interview (CAPI) ^[17]. At baseline there was 3381 married women who never smoked cigarettes and lived with spouses who had either smoked cigarettes in the past or smoked at the time of interview. Besides, all the data for each variable have been collected for those respondents. Our final sample was composed of 6875 respondents, among them 2802 were interviewed again during the second wave of data collection in 2013, and 2247 were interviewed again during the third wave in 2015. The similar sample selection process conducted for was participants in the second wave in 2013 as baseline, and

8/36

final sample was consisted of 1799 women who were investigated again in 2015 as participants.

Measures

Secondhand Smoke

Based on standardized CHARLS questionnaire, the exposure to SHS among Chinese women was assessed through several surveys, asking the participants about their current marital status, the exact year they got married, and the year the husband in each household has begun or ceased smoking at home.

The smoking status section contained four questions: "Have you ever chewed tobacco, smoked a pipe, smoked selfrolled cigarettes, or smoked cigarettes/cigars?", "Do you still have the habit or have you totally quit?", "At what age did you totally quit smoking?" and "At what age did you start to smoke on a regular basis?". If the answer to the first question was "yes", they were defined as "current smokers". Our analysis of SHS exposure focused only on never smokers excluding the "current smokers", because of the difficulty to differentiate the negative effects of active smoking on health condition from that of SHS exposure. The length of SHS exposure was calculated and

BMJ Open

expressed as the total number of years that never-smoking women spent living with their spouses who smoked cigarettes at home. Based on the constructed SHS exposure variable, the participants were classified into four different groups: Never or being exposed to secondhand smoke for less than 25 years, more than 25 years and less than 30 years, more than 30 years and less than 40 years and over 40 years.

Cognitive function

The cognitive function of the respondents in CHARLS questionnaires was measured through a question-and-answer interview instrument, and the respondents would be followed every two years using a face-to-face, computer-aided personal interview (CAPI). Cognitive subdomains including visuospatial ability, orientation and attention, and episodic memory could be assessed by these various sections of questionnaire. Figure drawing was tested by asking the participants to reproduce a picture of two overlapped pentagons in CHARLS questionnaires^[17], and was used to measure a person's ability to identify visual and spatial relationships among objects. The Telephone Interview of Cognitive Status (TICS) was a screening test including serial subtractions of 7 from 100 (up to 5 times), date (month, day, and year and season), and the day of the week. To assess orientation and attention function, the number of correct answers to above questions in TICS was scored and

summed up (range 0 to 10). Participants who successfully completed the task received a score of 1, and those who failed received $0^{[18]}$.

In addition, the word recall test was consisted of 2 components, immediate recall and delayed recall, and evaluated episodic memory. Participants were required to immediately repeat 10 Chinese nouns just read to them, and after 20 questions concerning Center for Epidemiologic Studies Depression Scale (CES-D, approximately 4 to 10 minutes), they were again asked to recall as many of the original words as possible. The item was coded as 1 if recalled by the respondent, and as 0 if not. Scores for immediate and delayed recall both varied from 0 to 10. An evaluated episodic memory score was calculated using the mean of scores in immediate and delayed word recall(range 0 to 10) ^[19].

The overall cognition scores were the sum of the three different domains (range 0 to 21).

Control variables

Given that cognitive function may vary across demographic and socioeconomic status, we thus included age, urban/rural residence, education, annual household expenditures, chronic diseases and depressive symptoms as

11 / 36

BMJ Open

control variables. Education was categorized into 3 groups: "illiterate", "primary education" and "secondary education or above". Arterial hypertension and diabetes mellitus are separately strong independent risk factors for the development of cognitive impairment and dementia^{[6] [20]}. Thus, the baseline chronic disease of hypertension and diabetes were classified as three types based on selfreported conditions on whether the participants were being treated: having hypertension/diabetes with treatment, having hypertension/diabetes without treatment and not having hypertension/diabetes. The measure of depressive symptoms was based on the 10-item version of the Center for Epidemiologic Studies Depression Scale (CES-D) short form, and each of the 4-option response to item was scored ranging from 0 to 3. The total score is the sum of points for all 10 items, and a score of 10 or higher suggests the presence of depressive symptoms .

Patient and Public Involvement

No patient involved.

Analysis

All analyses were conducted with STATA, version 14.0 (Stata, College Station, TX, USA).We used lagged dependent-

variable regression models with ordinary least squares estimation. LDV models were superior for analyzing the effects of predictor variables on an outcome with 2-wave panel data while controlling for the influence of timeinvariant variables ^[16]. It adjusted for baseline cognitive conditions for all participants, therefore provided more robust estimates of the effects of independent variables. After pooling the three sets of panel data into one through using the "year" dummy variable to differentiate between change in 2 years or in 4 years, we have 6875 respondents who have complete data on all variables. The overall cognitive scores, episodic memory scores, visuospatial ability scores and orientation and attention scores were 4 separate outcome variables. The different groups of SHS exposure years were the predictor variable, and other independent variables included all demographic and socioeconomic characteristics. Prior to fitting the regression models, descriptive analyses were conducted to estimate the mean and standard deviations for continuous data and frequencies and percentages for categorical data.

Results

Table 1 provides a descriptive summary of all the

13 / 36

BMJ Open

variables for participants from each panel of three different waves: 2011-2013, 2011-2015 and 2013-2015. High prevalence of SHS exposure between 30 to 40 years were seen in different panels, accounting for 32.51%, 35.18% and 42.69% respectively.

The participants were over 45 years old, with the average age of 56, 56 and 58 years old, respectively in those waves. Participants were more likely to live in rural area, have lower education background and do not have hypertension or diabetes diagnose at baseline. In addition, our results indicated that the average baseline cognition scores were higher than cognition scores after 2 or 4 years. The average scores of Center for Epidemiologic Studies Depression Scale (CES-D) indicated that the prevalence of depression among Chinese middle-aged and old-aged women hiqh in those years. Other socio-demographic were characteristics of the respondents are shown in Table 1

Results from the regression models for the relationship between SHS exposure and each domain of cognitive function and overall cognition scores are reported in Table 2 and Table 3. Scores of episodic memory, orientation and attention and visuospatial among

14 / 36

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

respondents at baseline were strong predictors of their corresponding cognitive function measures after 2 or 4 years. Based on the analysis adjusted for age, annual household expenditure, education, baseline cognitive function and other chronic health status, we found that only being exposed to SHS for more than 40 years significantly resulted in a decline in visuospatial abilities, episodic memory and overall cognition scores for all respondents. Compared with respondents who were not exposed to SHS or exposed to it for less than 25 years, those who have been exposed to SHS for more than 40 years was associated with 0.04-point decline in visuospatial abilities (95%CI, -0.08--0.01 P <0.1), 0.16point decline in episodic memory (95%CI, -0.31--0.01 P <0.05), and 0.33-point decline in overall cognition function (95%CI, -0.66--0.01 P <0.01). In addition, age was also negatively associated with cognitive function. Each one-year older resulted in 0.01-point, 0.01-point, 0.03point, and 0.05-point decrease in visuospatial (95%CI, -0.01--0.00 P <0.01), orientation (95%CI, -0.03---0.01 P <0.01), memory (95%CI, -0.31---0.01 P <0.05) and overall cognition scores (95%CI, -0.66---0.01 P <0.01), respectively. High

15/36

BMJ Open

education level was associated with better cognitive performance, especially in orientation and attention. What's more, one-point increase in CESD scores was associated with 0.02-point decrease in scores of orientation and attention (95%CI, -0.03--0.00 P <0.05), showing that respondents with depressive symptoms were more likely to demonstrate cognitive decline in specific functions.

Discussion

Results from this longitudinal study with a large, representative sample of middle-aged and older women in China indicated that exposure to secondhand smoke for over significantly associated with years was poorer performance of global cognition and cognitive subdomains. It is the first examination of cognitive subdomains in relation to household SHS exposure using 4-vear а longitudinal data in China. The inferior performance of secondhand smoke on visuospatial abilities, episodic memory and orientation and attention abilities are novel as these domains were not specifically evaluated in earlier studies among middle-aged and older women who never smoke ^[9].Previous study only suggested that secondhand smoke was

associated with poorer cognitive performance, specifically in children, adolescents and adults ^[14]. Besides, we found that having a high educational level, living in urban area and having better baseline cognitive function would improve their cognitive performance. Compared with those without diabetes, participants with diabetes in baseline were found to have a 0.172-point decline in episodic memory scores, which is similar to the previous findings ^[20].

Our results showed that compared with women who have never been exposed to SHS or have been exposed for less than 20 years, those who have been exposed to SHS for more than 40 years experienced 0.04-point, 0,16-point and 0.33point of decline in scores of visuospatial function, episodic memory and overall cognitive scores, respectively. Our results were quite similar in magnitude to prior research on the relationship between SHS and cognitive function ^[16]. A cross-sectional research including 150 samples conducted in the North East of England revealed that participants who had no history of smoking and being averagely exposed to SHS for around years showed significantly reduced performance in processing speed (i.e. how quickly one can process information and perform tasks)

17/36

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

and executive function (i.e. the ability to organize memory, cognitive flexibility, and problem-solving ability) as compared with non-exposed people^[13]. Another longitudinal aging study concerning 4809 samples (aged 50 years or older) found that never smokers exposed to the highest levels of SHS (salivary cotinine concentrations 0.8-13.5 ng/ml) were more likely to be cognitively impaired (odds ratio 1.70, 1.03 to 2.80) than those exposed to little or no SHS^[15].

Besides, each one-year increase in age resulted in a 0.01-point, 0.02-point, 0.04-point, 0.06-point decrease in visuospatial, orientation, memory and overall cognition scores, respectively. Secondhand smoke seems to be more strongly associated with cognitive decline than aging. Study had reported that attention referred to the ability to concentrate and focus on specific stimuli slightly declined in later life ^[21], and orientation was one's ability to identify exact date, month, day and season of the year. Our results did not observe the relationship between SHS and orientation and attention ability, which may due to the relatively small size of sample and short period of cohort study after controlling for all demographic and socioeconomic confounders. Visuospatial

18 / 36

abilities involve the ability to understand space in two and three dimensions. In our study, an inversed relationship between SHS exposure and visuospatial abilities among middle-aged and older adults was presented, showing a 0.04point decline in their visuospatial scores. Such an inversed relationship between SHS exposure and visuospatial reasoning skills were also reported among 5683 children aged 6-16 years in America, showing that years of SHS exposure was significantly associated with lower scores for reading, math, and visuospatial skills, after adjusting for covariates ^[14]. As one of the most common cognitive complaints among elders, episodic memory refers to personally experienced events which could be measured by stories, word lists or figures. Previous study proved that the onset of memory decline may vary among different memory types, with episodic memory lasting lifelong ^[22]. Our study could not prove the onset age of memory decline without doing regression among different age groups, while the memory decline caused by SHS could be presented by the significant coefficient.

The inconsistent conclusions between our studies and prior ones may probably due to the relatively simplified

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

version of cognition test procedure in CHARLS questionnaires compared with the MoCA ^[23] and MMSE ^[24]. Some studies also used clinical or magnetic resonance imaging (MRI) evidence of neurologic damage to detect cognitive impairment ^[25]. Best adapted to a screening test, the MoCA exhibited excellent sensitivity in identifying MCI and AD (Alzheimer's disease) by 90% and 100%, respectively ^[26].

The most popular hypothesis about the mechanisms underlying the links between SHS exposure and poorer cognitive performance lies in the notion that the carbon monoxide (CO) in tobacco smoke may interfere with the oxygen being delivered to the brain via the blood system. However, the reasons behind different effect on various domains of brain function are far from clear. One possible explanation derives from an animal research. Exposing animals to varying degrees of toxic mixtures of chemicals found in tobacco smoke may lead to reduced neuronal mass in specific regions of the brain associated with learning and memory. Since the hippocampal region of the brain is known to be involved in the mediation of memory [27] and learning, further research should be conducted in other regions dominating visuospatial and orientation ability.

20/36

Another possible mechanism is that prolonged exposure to SHS may be a significant risk factor for cardiovascular disease (CVD)^[28], which may therefore lead to a range of health and cognitive problems in later life. A longitudinal design could elucidate this association by observing long-term exposure to SHS and a potential buildup of CVD as well as how these correlates with performance upon a range of cognitive measures.

Several limitations need to be considered when interpreting this study and designing future studies. Firstly, the exposure to secondhand smoke was evaluated based on self-report measures. This might be subject to recall bias and lead to over-or-underestimation of exposure [8] Therefore, further studies could include more biological assays, for example, cotinine residue levels or nicotine residue in saliva or hair samples ^[29]. Previous research using serum cotinine as a biomarker of exposure to SHS found that higher levels of serum cotinine were associated with significant worse performance in reading, mathematics, and visual and spatial abilities in children and adolescents ^[14]. However, no studies had used a combination of biomarker and self-report yet ^[30]. Cognitive

21/36

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

impairment could also be detected by the effect of apolipoprotein $\varepsilon 4$ (Apo $\varepsilon 4$) polymorphism, which was a known risk factor for dementia. Secondly, it may be impossible to control for all potentially confounding variables. After adjusting for age, household expenditure, education, area, chronic health condition and depressive symptoms, some other demographic or socioeconomic confounders may be neglected. Nevertheless, this did not appear to affect the magnitude of the association between SHS exposure and cognition ^[31]. Besides, the analyses only contained household SHS exposure, which precluded the analyses of the influence of environment smoke inhale on smoking proclivity. Whether exposure to household SHS can hasten the onset of cognitive impairment for older Chinese women could be further proved by running regression models in different age groups.

Acknowledgments :

We would like to thank the professor Yaohui Zhao at Centre for Chinese Economic Research, Peking University for her thoughtful contributions to this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Author's Contribution

Anying Bai wrote and participated in all aspects of this research, including the field investigation. Dr Yangmu Huang reviewed and supervised this research. Yinzi Jin participated in the statistical analysis of this work and reviewed the final article.

Data sharing statement

CHARLS data is available to the public online : http://charls.pku.edu.cn

Funding Resources

This is a self-funded research.

References

1 Fang EF, Scheibye-Knudsen M, Jahn HJ, et al. A research agenda for aging in China in the 21st century. *Ageing research reviews* 2015;24(Pt B):197-205. doi:

10.1016/j.arr.2015.08.003 [published Online First: 2015/08/26]

2 Harada CN, Natelson Love MC, Triebel KL. Normal Cognitive Aging. Clinics in Geriatric

Medicine 2013;29(4):737-52. doi: 10.1016/j.cger.2013.07.002

3 Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment--a review of the

evidence and causal mechanisms. Ageing Res Rev 2013;12(4):840-51. doi:

10.1016/j.arr.2013.06.004 [published Online First: 2013/07/09]

4 Yin P, Ma Q, Wang L, et al. Chronic obstructive pulmonary disease and cognitive

impairment in the Chinese elderly population: a large national survey. International

Journal of Chronic Obstructive Pulmonary Disease 2016 doi: 10.2147/copd.S96237

5 Bernardin F, Maheut-Bosser A, Paille Fo. Cognitive Impairments in Alcohol-Dependent

Subjects. Frontiers in Psychiatry 2014;5 doi: 10.3389/fpsyt.2014.00078

6 Tadic M, Cuspidi C, Hering D. Hypertension and cognitive dysfunction in elderly: blood

pressure management for this global burden. BMC Cardiovasc Disord
2016;16(1):208. doi: 10.1186/s12872-016-0386-0 [published Online First:
2016/11/05]
7 Taivalantti M, Barnett JH, Halt AH, et al. Depressive symptoms as predictors of visual
memory deficits in middle-age. J Affect Disord 2019;264:29-34. doi:
10.1016/j.jad.2019.11.125 [published Online First: 2019/12/18]
8 Ling J, Heffernan T. The Cognitive Deficits Associated with Second-Hand Smoking.
Frontiers in Psychiatry 2016;7 doi: 10.3389/fpsyt.2016.00046
9 Durazzo TC, Meyerhoff DJ, Nixon SJ. A comprehensive assessment of neurocognition in
middle-aged chronic cigarette smokers. Drug Alcohol Depend 2012;122(1-2):105-11.
doi: 10.1016/j.drugalcdep.2011.09.019 [published Online First: 2011/10/14]
10 Teo KK, Ounpuu S, Hawken S, et al. Tobacco use and risk of myocardial infarction in 52
countries in the INTERHEART study: a case-control study. The Lancet
2006;368(9536):647-58. doi: 10.1016/s0140-6736(06)69249-0
11 Kim BJ, Kang JG, Kim JH, et al. Association between Secondhand Smoke Exposure and
Hypertension in 106,268 Korean Self-Reported Never-Smokers Verified by Cotinine.
Journal of clinical medicine 2019;8(8) doi: 10.3390/jcm8081238 [published Online
First: 2019/08/21]
12 Malek AM, Cushman M, Lackland DT, et al. Secondhand Smoke Exposure and Stroke:
The Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study.
American journal of preventive medicine 2015;49(6):e89-97. doi:
10.1016/j.amepre.2015.04.014 [published Online First: 2015/06/29]

13 Heffernan TM, O'Neill TS. Everyday prospective memory and executive function deficits associated with exposure to second-hand smoke. *Journal of addiction*

2013;2013:160486. doi: 10.1155/2013/160486 [published Online First: 2013/01/01]

14 Yolton K, Dietrich K, Auinger P, et al. Exposure to environmental tobacco smoke and

cognitive abilities among U.S. children and adolescents. Environ Health Perspect

2005;113(1):98-103. doi: 10.1289/ehp.7210 [published Online First: 2005/01/01]

15 Llewellyn DJ, Lang IA, Langa KM, et al. Exposure to secondhand smoke and cognitive impairment in non-smokers: national cross sectional study with cotinine measurement. *Bmj* 2009;338(feb12 2):b462-b62. doi: 10.1136/bmj.b462

16 Pan X, Luo Y, Roberts AR. Secondhand Smoke and Women's Cognitive Function in China. *American Journal of Epidemiology* 2018;187(5):911-18. doi:

10.1093/aje/kwx377

17 Zhao Y, Hu Y, Smith JP, et al. Cohort Profile: The China Health and Retirement
Longitudinal Study (CHARLS). *International Journal of Epidemiology* 2012;43(1):6168. doi: 10.1093/ije/dys203

18 Ge S, Wei Z, Liu T, et al. Alcohol Use and Cognitive Functioning Among Middle-Aged and Older Adults in China: Findings of the China Health and Retirement Longitudinal Study Baseline Survey. *Alcohol Clin Exp Res* 2018;42(10):2054-60. doi:

10.1111/acer.13861 [published Online First: 2018/08/07]

19 Li J, Cacchione PZ, Hodgson N, et al. Afternoon Napping and Cognition in Chinese Older Adults: Findings from the China Health and Retirement Longitudinal Study Baseline

Assessment. J Am Geriatr Soc 2017;65(2):373-80. doi: 10.1111/jgs.14368 [published

1	
2	
3	
4	Online First: 2016/12/21]
5	
6	
7	20 Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain
8	
9	structure. Annals of the New York Academy of Sciences 2015;1353(1):60-71. doi:
10	
11	
12	10.1111/nyas.12807
13	
14	21 Burk JA, Blumenthal SA, Maness EB. Neuropharmacology of attention. <i>European journal</i>
15	
16	
17	<i>of pharmacology</i> 2018;835:162-68. doi: 10.1016/j.ejphar.2018.08.008 [published
18	
19	Online First: 2018/08/10]
20 21	
21	
22	22 Lövdén M, Rönnlund M, Wahlin A, et al. The extent of stability and change in episodic and
23	
25	semantic memory in old age: demographic predictors of level and change. The
26	
27	
28	journals of gerontology Series B, Psychological sciences and social sciences
29	
30	2004;59(3):P130-4. doi: 10.1093/geronb/59.3.p130 [published Online First:
31	
32	
33	2004/05/01]
34	
35	23 Li X, Jia S, Zhou Z, et al. The role of the Montreal Cognitive Assessment (MoCA) and its
36	
37	mennen teste for data dia a mild as militira integriti data di Alaura (Cai (2010, 20/6), 1020
38	memory tasks for detecting mild cognitive impairment. Neurol Sci 2018;39(6):1029-
39	
40	34. doi: 10.1007/s10072-018-3319-0 [published Online First: 2018/03/20]
41 42	
42 43	24 Transcer DT, Hechetetler II, Weng C, et al. Deletionship hetween the Mentreel Cognitive
44	24 Trzepacz PT, Hochstetler H, Wang S, et al. Relationship between the Montreal Cognitive
45	
46	Assessment and Mini-mental State Examination for assessment of mild cognitive
47	
48	impoirment in older adulte. <i>PMC Cariatr</i> 2015:15(107):107. doi: 10.1196/c12977.015
49	impairment in older adults. BMC Geriatr 2015;15(107):107. doi: 10.1186/s12877-015-
50	
51	0103-3 [published Online First: 2015/09/09]
52	
53	25 Xue LL, Wang F, Niu RZ, et al. Offspring of rats with cerebral hypoxia-ischemia manifest
54	
55	
56	cognitive dysfunction in learning and memory abilities. Neural regeneration research
57	
58	2020;15(9):1662-70. doi: 10.4103/1673-5374.276359 [published Online First:
59	
60	

2020/03/27]

- 26 Ziad S. Nasreddine M. The Montreal Cognitive Assessment (MoCA)- Concept and Clinical Review. *the American Geriatrics Society* 2005;53(4):695-99.
- 27 Staples MC, Mandyam CD. Thinking after Drinking: Impaired Hippocampal-Dependent Cognition in Human Alcoholics and Animal Models of Alcohol Dependence. *Frontiers*

in Psychiatry 2016;7 doi: 10.3389/fpsyt.2016.00162

28 Yankelevitz DF, Henschke CI, Yip R, et al. Second-Hand Tobacco Smoke in Never

Smokers Is a Significant Risk Factor for Coronary Artery Calcification. JACC:

Cardiovascular Imaging 2013;6(6):651-57. doi: 10.1016/j.jcmg.2013.02.004

29 Akhtar WZ, Andresen EM, Cannell MB, et al. Association of blood cotinine level with cognitive and physical performance in non-smoking older adults. *Environmental Research* 2013;121:64-70. doi: 10.1016/j.envres.2012.10.013

30 Stirland LE, O'Shea CI, Russ TC. Passive smoking as a risk factor for dementia and cognitive impairment: systematic review of observational studies. *Int Psychogeriatr* 2018;30(8):1177-87. doi: 10.1017/S1041610217002824 [published Online First: 2017/12/19]

31 Chen R, Clifford A, Lang L, et al. Is exposure to secondhand smoke associated with cognitive parameters of children and adolescents?-a systematic literature review. *Annals of Epidemiology* 2013;23(10):652-61. doi: 10.1016/j.annepidem.2013.07.001

3 4 5	
6 7 8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
21	
22 23	
24	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
36	
37 38	
38 39 40	
40 41	
42	
43 44	
45	
45 46 47	

	2011-2013		2011-2015		2013-2015	
	(N=2802)		(N=2274)		(N=1799)	
Variable	Count	Frequency	Count	Frequency	Count	Frequency
Area						
Urban	981	35.01%	730	32.10%	556	30.91%
Rural	1821	64.99%	1544	67.90%	1243	69.09%
Secondhand Smoke						
Less than 25 years	759	27.09%	531	23.35%	262	14.56%
More than 25 years and less	() (22 (28	573	25.20%	385	21.40%
than 30 years	634	22.63%	573	25.20%	380	21.40%
More than 30 years and less	911	32.51%	800	35.18%	768	42.69%
than 40 years	911	32.31%	800	35.18%	/ 68	42.698
More than 40 years	498	17.77%	370	16.27%	384	21.35%
Education						
Illiterate	1552	55.39%	1309	57.56%	1004	55.81%
Primary education	512	18.27%	414	18.21%	336	18.68%
Secondary or above	738	26.34%	551	24.23%	459	25.51%
Hypertension						
No hypertension	2124	75.80%	1720	75.64%	1365	75.88%
Hypertension with treatment	522	18.63%	1720	75.64%	358	19.90%
Hypertension without	156	5.57%	130	5.72%	76	4.22%
treatment						

Table1.Characteristics of the Participants from 3 waves of CHARLS, 2011-2013-2015

 29 / 36

Diabetes							
No Diabetes in baseline	2643	94.33%	2140	94.11%	1704	94.72%	
Have Diabetes with treatment	143	5.10%	120	5.28%	86	4.78%	
Have Diabetes without treatment	16	0.57%	14	0.62%	9	0.50%	
	Count	Mean(SD)		Count	Mean(SD)	Count	Mean(SD)
Age	2802	55.84(8.22)		2274	56.19(7.75)	1799	57.90(7.43)
Annual Household Expenditure, yuan ^a	2802	13786.99(1419	97.29)	2274	13060.14(13639 33)	1799	16632.84(18568))
Visuospatial ability $^{\rm b}$	2802	0.51(0.50)		2274	0.48(0.50)	1799	0.49(0.50)
Orientation and attention $^{\circ}$	2802	5.87(3.29)		2274	5.84(3.19)	1799	5.97(3.14)
Memory Scores ^d	2802	3.33(1.96)		2274	3.04(1.93)	1799	3.15(1.91)
Baseline Visuospatial ability	2802	0.57(0.50)		2274	0.55(0.50)	1799	0.54(0.50)
Baseline Orientation and attention	2802	6.39(2.92)		2274	6.25(2.90)	1799	6.16(3.00)
Baseline Memory Scores	2802	3.27(1.98)		2274	3.23(1.92)	1799	3.50(1.78)
Baseline CES-D Score ^e	2802	12.09(5.38)		2274	12.13(5.45)	1799	10.90(5.14)

b The score range for visuospatial ability was 0-1.

c The score range for orientation and attention was 0-10. Higher scores indicate better mental status.

d The score range for episodic memory was 0-10. Higher scores indicate better memory function.

e A score of 10 or greater indicated the presence of depressive symptoms.

 Table2.Multivariable linear regression analysis of the relationship between smoking exposure and Visuospatial function and Orientation and Attention among older Chinese women (N = 6875), 2011-2013-2015

		visuospatial Scores		Ori	entation and Attention	
VARIABLES	β coefficient	95%CI	t	β coefficie	ent 95%CI	t
Age	-0.01ª	-0.01,-0.00	-6.73	-0.02ª	-0.03, -0.01	-4.34
Expenditure	0.00	0.00, 0.00	0.01	0.00ª	0.00, 0.00	0.77
Secondhand Smoke Exposure ^d 25 to <30 years	-0.01	-0.04, 0.02	-0.72	0.05	-0.12, 0.21	0.56
≥30 to <40 years	-0.02	-0.05, 0.02	-0.95	-0.03	-0.20, 0.13	-0.38
≥ 40 years	-0.04°	-0.08, 0.01	-1.67	-0.15	-0.38, 0.09	-1.24
Baseline Visuospatial Scores	0.23ª	0.21, 0.26	17.93			

31/36

Page 33 of 38

1

46

BMJ Open

0.53, 0.57

0.25, 0.51

0.94, 1.27

1.01, 1.36

-0.24, 0.35

-0.11, 0.24

-0.19, 0.30

-0.03, 0.52

-0.06, 0.48

-0.22, 1.23

-0.03, -0.00

-0.05, 0.22

44.86

5.72

12.91

13.44

-0.38

0.04

-0.01

-1.77

-0.23

0.67

-2.57

1.29

Baseline Orientation Socres				0.55ª	0.53, (
Urban ^e	0.06 ^a	0.04, 0.09	5.27	0.38ª	0.25, (
Education ^f					
Primary	0.23ª	0.20, 0.26	14.00	1.11ª	0.94,
Timary	0.25	0.20, 0.20	14.00	1.11	0.94,
Secondary or Above	0.29ª	0.26, 0.32	18.51	1.18 ^a	1.01,
Hypertension ^g					
With Treatment	-0.03	-0.09, 0.02	-1.20	0.06	-0.24,
Without Treatment	-0.02	-0.06, 0.03	-0.69	0.06	-0.11,
Missing Group	-0.05°	-0.12, 0.01	-1.67	0.06	-0.19,
anoong or oup	0.00	0.12, 0.01		0.00	0.17,
Diabetes ^h					
With Treatment	0.02	-0.03, 0.07	0.90	0.25°	-0.03,
Without Treatment	0.03	-0.04, 0.09	0.82	0.21	-0.06,
Missing Group	0.07	-0.08, 0.21	0.88	0.50	-0.22,
Baseline CES-D Score	-0.00 ^c	-0.00, 0.00	-1.71	-0.02 ^b	-0.03, -
year = 2	-0.02	-0.04, 0.01	-1.58	0.09	-0.05,
		32 / 36			
For neer rev	/iew only - http://l	omiopen bmi co	om/site/abo	out/auideline	s.xhtml
to peer ex	new only incp.//i		, , , , , , , , , , , , , , , , , , ,	sad galaciille	

Abbreviations: CI, confidence interva	1. SHS_secondband_smoke
a. p<0.01	it, sho, seconditatia smoke.
b. p<0.05	
c. p<0.1	
-	than 25 years.
e. Expenditure is expressed as the na	tural log of the annual household expenditure
f. Referent: Illiterate	
g. Referent: Without hypertension	
	than 25 years. tural log of the annual household expenditure
	33 / 36

42 43

44 45 46 BMJ Open

10 11 12 13 Table3.Multivariable linear regression analysis of the relationship between smoking exposure and Episodic memory and Overall 14 15 cognitive function among older Chinese women (N = 6875), 2011-2013-2015 16 **Overall Cognition Socres** Episodic Memory 17 18 19 VARIABLES 95%CI ß coefficient 95%CI ß t t 20 coefficient 21 22 23 Age -0.04^a -0.05,-0.03 -11.37 -0.06ª -0.07, -0.04 -7.87 24 25 Expenditure 0.00, 0.00 0.32 0.00 0.00, 0.00 1.30 0.00^a 26 27 28 Secondhand Smoke Exposured 29 25 to <30 years -0.04 -0.16, 0.08 -0.67 -0.01 -0.25, 0.25 -0.01 30 31 32 \geq 30 to <40 years 0.02 -0.09, 0.13 0.36 -0.05 -0.29, 0.19 -0.41 33 34 ≥ 40 years -1.93 35 -0.16^b -0.31, -0.01 -2.06 -0.33a -0.66, 0.01 36 37 **Baseline Memory Scores** 0.30^a 0.28, 0.32 25.22 38 39 40 41

Baseline Cognition Scores				0.55ª	0.46, 0.83	44.95
Urban ^e	0.25ª	0.16, 0.34	5.60	0.65ª	0.46, 0.83	6.68
Education ^f Primary	0.70ª	0.58, 0.80	12.42	1.77ª	1.53, 2.02	14.28
Secondary or Above	0.97ª	0.86, 1.08	17.29	2.00ª	1.74, 2.26	15.24
Hypertension ^g With Treatment	0.04	-0.16, 0.23	0.35	0.13	-0.29, 0.56	0.62
Without Treatment	0.06	-0.06, 0.17	0.95	0.12	-0.14, 0.38	0.93
Missing Group	0.07	-0.12, 0.25	0.70	0.10	-0.27, 0.47	0.52
Diabetes ^h						
With Treatment	-0.20 ^b	-0.38, 0.02	-2.20	-0.04	-0.43, 0.36	0.62
Without Treatment	-0.07	-0.25, 0.11	-0.77	0.08	-0.30, 0.47	0.43
Missing Group	0.32	-0.16, 0.80	1.30	0.87	-0.11, 1.84	1.75
Baseline CES-D Score	-0.01 ^b	-0.01, 0.00	-1.59	-0.01	-0.03, 0.00	-2.57
year = 2	-0.24	-0.33, -0.15	-5.21	-0.17	-0.37, 0.03	-1.70

Constant	0.63	0.53, 0.74	11.54	6.48 ^a	5.59, 7.37	14.28
obreviations: CI, confidence interval;	SHS, secondhand smoke.					
. p<0.01						
. p<0.05						
. p<0.1						
. Referent: No SHS exposure or Less th	nan 25 years.					
Expenditure is expressed as the natu	han 25 years. ural log of the annual house	nold expenditur	e			
. Referent: Illiterate						
. Referent: Without hypertension						
. Referent: Without diabetes						
		36 / 36				
	For peer review only - http	v//bmionon.hm	i com/sito/ah	out/auidalia	es yhtml	
	i or peer review only - http	,, onjopen.om	J.COTT/ SILE/ aL	Jour guidelli	CJ.AIIUIII	

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1-3
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			•
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-9
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7-9
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	9-10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6
1		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	10-
1		and information on exposures and potential confounders	11
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	11

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Exposure to Secondhand Smoke and Cognitive Function Among Middle-aged and Older Women in China: Findings of 3-waves of the China Health and Retirement Longitudinal Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039824.R2
Article Type:	Original research
Date Submitted by the Author:	13-Sep-2020
Complete List of Authors:	Bai, Anying; Peking University Health Science Centre, School of Public Health; Jin, Yinzi; Peking University, School of Public Health Huang, Yangmu; Peking University Health Science Centre, School of Public Health;
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Smoking and tobacco, Public health, Mental health
Keywords:	EPIDEMIOLOGY, Dementia < NEUROLOGY, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

	1	Ti	tle
--	---	----	-----

2	Exposure to Secondhand Smoke and Cognitive Function Among
3	Middle-aged and Older Women in China: Findings of 3-waves
4	of the China Health and Retirement Longitudinal Study
5	Anying, Bai ¹ , Yinzi Jin Ph.D. ¹ , Yangmu Huang Ph.D. ¹
6	¹ School of Public Health, Peking University Health and
7	Science Centre
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
22	
23	
25	
26	
27	
28	Corresponding Author:
29	Yangmu Huang, Ph.D.
30	Peking University Health and Science Centre, School of
31	Public Health
32	Xueyuan Road No.38, Haidian Distreet, Beijing, China
33	Tel: 15010376131
33 34	Fax: 010-62755782
35	Email: ymhuang@bjmu.edu.cn
36	
37	

BMJ Open

3	38	
4 5	39	
6 7	40	
8		
9 10	41	Abstract
11 12 13	42	Objectives: To examine the association between secondhand
14 15	43	smoke and women's global cognitive function and cognitive
16 17 18	44	subdomains.
19 20 21	45	Design: Cohort study
22 23	46	Participants: Data for this study were obtained from the
24 25 26	47	China Health and Retirement Longitudinal Study (CHARLS,
27 28 20	48	2011-2013-2015), and pooled analysis was applied to wave
29 30 31	49	1 and wave 2 (2011-2013), wave 2 and wave 3 (2013-2015)
32 33 34	50	and wave 1 and wave 3 (2011-2015). Data from a total of
35 36	51	6875 Chinese women with normal cognitive function in
37 38 39	52	baseline were selected for analysis, including 2981 who
40 41 42	53	were interviewed in 2011, 2471 in 2013, and 1894 in 2015.
43 44	54	Main outcome measures and methods: Secondhand smoke was
45 46 47	55	classified based on the length of exposed years
48 49	56	(<25years, \geq 25 to <30 years, \geq 30 to <40 years, \geq 40
50 51 52	57	years). Global cognitive function, visuospatial ability,
53 54	58	orientation and attention, as well as episodic memory
55 56 57	59	function were used as measures of cognitive function.
58 59 60	60	Three waves of data were pooled by using dummy variable

61	to differentiate between 2-year and 4-year. Lagged
62	dependent variable models were used to examine
63	independent associations between secondhand smoke and
64	cognitive function. Demographic factors, socioeconomic
65	factors, baseline cognitive functioning and health
66	conditions were controlled in our models.
67	Results: Secondhand smoke was found to be inversely and
68	significantly associated with cognitive function.
69	Compared with those had not been exposed to household
70	secondhand smoke, women who had lived with a smoking
71	husband had significantly faster cognition decline,
72	especially in global cognitive function (β =-0.33, 95%CI=
73	-0.66 to -0.01, P < 0.01), visuospatial ability (β =-0.04,
74	95%CI=-0.08 to -0.01 P < 0.05) and episodic memory
75	function (β =-0.16, 95%CI= -0.31 to -0.01 P = 0.031).
76	Conclusions: Household secondhand smoke exposure for more
77	than 40 years was associated with a more significant
78	decline in global cognitive function, visuospatial
79	ability and episodic memory function, but not in
80	orientation and attention function among older Chinese
81	women.
82	Key words: ageing; passive smoking; panel analysis;

2		
3	83	wigue anatial ability, memory
4 5	65	visuospatial ability; memory
6		
8 7	84	Strengths and limitations of this study:
8		
9	85	\succ This is the first study to investigate on the
10	00	, into it one iffer beau, to invotergate on one
11	0.6	
12	86	association between secondhand smoke exposure and
13		
14 15	87	women's different domains of cognitive functions in
15 16		
17	88	China byusing a 4-year longitudinal national
18	00	china by using a 4 year rongreadmar hacronar
19		
20	89	representative data.
21		
22	90	> This study addressed the issue of reverse causation in observational cohort studies
23		
24	01	by used lagged dependent variable models and adjust for baseline econition secres
25 26	91	by used lagged dependent variable models and adjust for baseline cognition scores
26 27		
27	92	The exposure to secondhand smoke was evaluated based on
29		
30	93	self-report measures.
31		
32	0.4	
33	94	The analyses only contained household SHS exposure and
34		
35	95	excluding environmental exposure.
36 27		
37 38	96	
39		
40	07	
41	97	Word Count: 3295
42		Number of references:32
43	98	Number of references:32
44		
45	99	Number of data elements:1
46		
47 48	100	
40 49	100	
50		
51	101	Introduction
52		
53	102	China's population has been ageing rapidly. By 2050,
54	102	entra e populación nas seen ageing lapialy. Dy 2000,
55		
56	103	there will be 400 million Chinese citizens aged over 65
57 59		
58 59	104	years old, and 150 million of whom will be older than 80
59 60		

1

58

59 60

I		
2 3 4	105	years old ^[1] . It will become increasingly important to
5 6 7	106	understand the cognitive changes that accompany ageing $^{[2]}$.
8 9 10	107	Cognitive impairment, described as a decline in
11 12 13	108	intellectual functions ^[3] , ranges from mild forms of
14 15	109	forgetfulness to severe and debilitating dementia $^{\left[4 ight]}$. The
16 17 18	110	prevalence of cognitive impairment is rising, with national
19 20 21	111	figures estimating that over 9.4% of older persons in China
21 22 23	112	had cognitive impairment in 2011 ^[4] .
24 25 26	113	Numerous determinants such as environmental, individual,
26 27 28	114	and genetic factors could favor evolution toward cognitive
29 30 31	115	impairment, and both age and late-life hypertension
32 33	116	increase the risk of dementia over time $^{\left[5\right] }.$ The mechanism
34 35 36	117	lies in age-related functional and structural changes in
37 38 39	118	cerebrovascular small and large blood vessels [6]. Besides
40 41	119	chronic diseases factors, depression has long been known
42 43 44	120	to affect memory and other neurocognitive domains. Previous
45 46	121	studies have emphasized that depression could increase the
47 48 49	122	risk of developing mild cognitive impairment (MCI) in
50 51	123	cognitively normal elderly people ^[7] .
52 53 54	124	Exposure to secondhand smoke (SHS), also known as
55 56 57	125	"passive smoking," refers to a situation where a never-

126 smoker inhales another person's smoke either by exposure

5/36

BMJ Open

2 3		
4 5	127	to sidestream smoke or mainstream smoke $^{\mbox{[8]}}$. Current smoking
6 7	128	prevalence in China decreased from 31.1% in 2002 to 28.1%
8 9 10	129	in 2010; however, the number of adults exposed to SHS during
11 12	130	this period still increased from 540 million to 556 million
13 14 15	131	^[2] . The negative health effects of high levels of exposure
16 17	132	to SHS may be close to those of active smoking, including
18 19 20	133	inferior performance on measures of general intelligence,
21 22	134	visuospatial learning and memory and fine motor dexterity ^[9]
23 24 25	135	. Given the association between exposure to SHS and risk
26 27	136	factors for cognitive impairment such as cardiovascular
28 29 30	137	disease ^[10] , hypertension ^[11] , and stroke ^[12] , it is possible
31 32	138	that high level of exposure may be a preventable risk factor
33 34 35	139	for cognitive impairment or dementia ^[11, 13] .
36 37		4
38 39	140	There are some evidence to suggest that older current
40 41	141	smokers (ages \geq 63) ^[14] or those being exposed to SHS (aged
42 43 44	142	55-64) ^[13-16] were more likely to develop cognitive
45 46	143	impairment compared with never-smokers. However, much less
47 48 49	144	is known about whether and to what extent SHS is associated
50 51	145	with global and subdomains of cognitive function among
52 53 54	146	elder women in China. Previous studies in China indicated
55 56	147	that SHS exposure increased the risk of cognitive
57 58 59 60	148	impairment in older adults $^{[17, 18]}$. Nevertheless, both of

2		
4 5	149	these studies only used a 2-wave longitudinal data and did
6 7	150	not control for baseline cognition $[17, 18]$. Therefore, the
8 9 10	151	primary aim of this study was to investigate the
11 12 13	152	relationship between SHS and cognitive function among older
14 15	153	non-smoking Chinese women, using a 3-wave longitudinal
16 17 18	154	national representative data. Through the classification
19 20	155	of respondents by different years of SHS exposure in a 4-
21 22 23	156	year panel, we identified whether certain high SHS exposure
24 25	157	groups were at higher risk of cognitive decline than others
26 27 28	158	after controlling for confounders. Besides, we aimed to
29 30 31	159	examine the association between SHS exposure and cognitive
32 33 34	160	subdomains. This is especially important given the
34 35 36	161	escalating ageing trend and increasing prevalence of SHS
37 38	162	exposure in China.
39 40 41	163	Methods
42 43 44	164	Methods Data
45 46	165	CHARLS had passed the ethical review before field investigation and we used data
47 48 49	166	from 3 waves of the China Health and Retirement Longitudinal Study (CHARLS,2011-
50 51 52	167	2013-2015), which was publicly available at http://charls.pku.edu.cn. CHARLS

survey of adults aged 45 years or older, as well as their

spouses when possible, and included assessments of social,

7/36

involved participants with a nationally representative

60

BMJ Open

2		
3 4 5	171	economic, and health circumstances of community-residents.
6 7	172	The national baseline survey was conducted between June
8 9 10	173	2011 and March 2012 and samples were chosen through
11 12 13	174	multistage probability sampling. After excluding empty or
14 15	175	non-resident dwellings, final interviews were conducted on
16 17 18	176	17,708 respondents from 10,257 households, which completed
19 20	177	at least one module of the survey beyond the cover screening
21 22 23	178	for age eligibility. CHARLS respondents were followed every
24 25	179	2 years, using a face-to-face computer-assisted personal
26 27 28	180	interview (CAPI) ^[14] . At baseline, there were 3381 married
29 30 31	181	women who never smoked cigarettes and lived with spouses
32 33	182	who had either smoked cigarettes in the past or smoked at
34 35 36	183	the time of interview. Besides, all the data for each
37 38 39	184	variable have been collected for those respondents. Our
40 41	185	final sample was composed of 6875 respondents. Among them,
42 43 44	186	2802 were interviewed again during the second wave of data
45 46	187	collection in 2013, and 2247 were interviewed again during
47 48 49	188	the third wave in 2015. The similar sample selection
50 51 52	189	process was conducted for participants in the second wave
53 54	190	in 2013 as a baseline. The final sample consisted of 1799
55 56 57	191	women who were investigated again in 2015 as participants.
58 59	192	Measures

3	
4	
5	
6	
7	
8	
9	
10	
11 12	
13	
14	
15	
16	
17	
18	
19	
20 21	
21	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

193 Secondhand Smoke

In this study, the exposure to SHS among Chinese women was assessed through several surveys based on standardized CHARLS questionnaire. Questions about the participant's current marital status, the exact year they got married, and the year the husband in each household has begun or ceased smoking at home were asked.

200 The smoking status section contained four questions: "Have you ever chewed tobacco, smoked a pipe, smoked self-201 202 rolled cigarettes, or smoked cigarettes/cigars?", "Do you 203 still have the habit or have you totally quit?", "At what age did you totally quit smoking?" and "At what age did you 204 start to smoke on a regular basis?". If the answer to the 205 first question was "yes", they were defined as "current 206 smokers". Our analysis of SHS exposure focused only on 207 208 never smokers excluding the "current smokers", because of the difficulty to differentiate the negative effects of 209 210 active smoking on health condition from that of SHS 211 exposure. The length of SHS exposure was calculated and expressed as the total number of years that never-smoking 212 213 women spent living with their spouses who smoked cigarettes 214 at home.

BMJ Open

1		
2 3		
5 4 5	215	Since the impact of SHS might be neglected if we only
6 7	216	used a continuous variable to represent exposure; moreover,
8 9 10	217	compared with continuous variables, the use of categorical
11 12 13	218	variables has greater public health significance. Based on
13 14 15	219	the constructed SHS exposure variable, the participants
16 17 18	220	were classified into four different groups: Never or being
19 20	221	exposed to SHS for less than 25 years, more than 25 years
21 22 23	222	and less than 30 years, more than 30 years and less than
24 25	223	40 years and over 40 years.
26 27 28	224	Cognitive function
29 30 31	225	The cognitive function of the respondents in CHARLS
32 33	226	questionnaires was measured through a question-and-answer
34 35 36	227	interview instrument, and the respondents were followed
37 38	228	every two years using a face-to-face, computer-aided
39 40 41	229	personal interview (CAPI). These various sections of the questionnaire
42 43 44	230	could assess cognitive subdomains including visuospatial ability, orientation and
45 46	231	attention, and episodic memory. Figure drawing was tested by asking the participants
47 48 49	232	to reproduce a picture of two overlapped pentagons in CHARLS questionnaires ^[18] . It
50 51	233	was used to measure a person's ability to identify visual and spatial relationships among
52 53 54	234	objects. The Telephone Interview of Cognitive Status (TICS)
55 56 57	235	was a screening test, including serial subtractions of 7
57 58 59 60	236	from 100 (up to 5 times), date (month, day, and year and
1		

2 3		
3 4 5	237	season), and the day of the week. In order to assess orientation and
6 7 8	238	attention function, the number of correct answers to the above questions in TICS was
9 10	239	scored and summed up (range 0 to 10). Participants who successfully completed the
11 12 13	240	task received a score of 1, and those who failed received 0 ^[19] .
14 15	241	In addition, the word recall test was consisted of 2
16 17 18	242	components, immediate recall and delayed recall, and
19 20	243	evaluated episodic memory. Participants were required to
21 22 23	244	repeat 10 Chinese nouns just read to them immediately, and
24 25 26	245	after 20 questions concerning Center for Epidemiologic
27 28	246	Studies Depression Scale (CES-D, approximately 4 to 10
29 30 31	247	minutes), they were again asked to recall as many of the
32 33	248	original words as possible. The item was coded as 1 if
34 35 36	249	recalled by the respondent, and as 0 if not. Scores for
37 38 39	250	immediate and delayed recall both varied from 0 to 10. An
40 41	251	evaluated episodic memory score was calculated using the
42 43 44	252	mean of scores in immediate and delayed word recall (range
45 46	253	0 to 10) ^[19] .
47 48 49	254	The overall cognition scores were the sum of the three
50 51	255	different domains (range 0 to 21).
52 53 54	256	Control variables
55 56 57	257	Given that cognitive function may vary across
57 58 59 60	258	demographic and socioeconomic status, we thus included age,

11/36

BMJ Open

2	
3 4 25 5	urban/rural residence, education, annual household
6 7 26	expenditures, chronic diseases and depressive symptoms as
8 9 26 10	control variables. Education was categorized into 3 groups:
11 12 26 13	"illiterate", "primary education" and "secondary education
14 26 15	or above". Arterial hypertension and diabetes mellitus are
16 17 26 18	separately strong independent risk factors for the
19 20 26 21	development of cognitive impairment and dementia ^{[20] [21]} .
22 26 23	Thus, the baseline chronic disease of hypertension and
24 25 26 26	diabetes were classified as three types based on self-
27 26 28 29	reported conditions on whether the participants were being
30 26 31	treated: having hypertension/diabetes with treatment,
32 33 27 34	having hypertension/diabetes without treatment and not
35 27 36 37	having hypertension/diabetes. The measure of depressive
38 27 39	symptoms was based on the 10-item version of the CES-D
40 27 41 42	short form, and each of the 4-option response to the item
43 27 44 45	was scored ranging from 0 to 3. The total score is the sum
46 ²⁷ 47	of points for all 10 items, and a score of 10 or higher
48 27 49 50	
51 27 52 53 27	
54 ²⁷ 55	
56 27 57 58 50 28	±
59 28 60	111(1+y 5+5

2	"illiterate", "primary education" and "secondary education
3	or above". Arterial hypertension and diabetes mellitus are
ł	separately strong independent risk factors for the
5	development of cognitive impairment and dementia ^{[20] [21]} .
5	Thus, the baseline chronic disease of hypertension and
7	diabetes were classified as three types based on self-
3	reported conditions on whether the participants were being
)	treated: having hypertension/diabetes with treatment,
)	having hypertension/diabetes without treatment and not
[having hypertension/diabetes. The measure of depressive
2	symptoms was based on the 10-item version of the CES-D
3	short form, and each of the 4-option response to the item
ł	was scored ranging from 0 to 3. The total score is the sum
5	of points for all 10 items, and a score of 10 or higher
5	suggests the presence of depressive symptoms $^{[6]}$.
7	
3	Patient and Public Involvement
)	No patient involved.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

12/36

3 4 5	281	All analyses were conducted with STATA, version 14.0
5 6 7	282	(Stata, College Station, TX, USA). The lagged dependent-
8 9 10	283	variable regression models with ordinary least squares
11 12 13	284	estimation were used during analysis. LDV models were
14 15	285	superior for analyzing the effects of predictor variables
16 17 18	286	on an outcome with 2-wave panel data while controlling for
19 20 21	287	the influence of time-invariant variables ^[22] . It adjusted
22 23	288	for baseline cognitive conditions for all participants,
24 25 26	289	therefore provided more robust estimates of the effects of
27 28	290	independent variables. After pooling the three sets of
29 30 31	291	panel data into one through using the "year" dummy variable
32 33	292	to differentiate between a change in 2 years or in 4 years,
34 35 36	293	we have 6875 respondents who have complete data on all
37 38 39	294	variables. The overall cognitive scores, episodic memory
40 41	295	scores, visuospatial ability scores and orientation and
42 43 44	296	attention scores were 4 separate outcome variables. The
45 46	297	different groups of SHS exposure years were the predictor
47 48 49	298	variable, and other independent variables included all
50 51 52	299	demographic and socioeconomic characteristics. Prior to
53 54	300	fitting the regression models, descriptive analyses were
55 56 57	301	conducted to estimate the mean and standard deviations for
58 59 60	302	continuous data and frequencies and percentages for

13/36

1		
2		
3 4	303	categorical data.
5 6	304	
7 8	305	Results
9 10 11	306	Table 1 provides a descriptive summary of all the
12 13 14	307	variables for participants from each panel of three
15 16 17	308	different waves: 2011-2013, 2011-2015 and 2013-2015. High
18 19	309	prevalence of SHS exposure between 30 to 40 years was seen
20 21 22	310	in different panels, accounting for 32.51%, 35.18% and
23 24	311	42.69% respectively.
25 26 27	312	The participants were over 45 years old, with the mean
28 29 30	313	age of 56, 56 and 58 years old, respectively in those waves.
31 32	314	Participants were more likely to live in a rural area, have
33 34 35	315	a lower education background and do not have hypertension
36 37 38	316	or diabetes diagnoses at baseline. In addition, our results
39 40	317	indicated that the mean baseline cognition scores were
41 42 43	318	higher than cognition scores after 2 or 4 years. The mean
44 45	319	scores of CES-D suggested that the prevalence of depression
46 47 48	320	among Chinese middle-aged and old-aged women was increased
49 50 51	321	in those years. Other socio-demographic characteristics of
52 53	322	the respondents are shown in Table 1
54 55 56	323	Results from the regression models for the
57 58	324	relationship between SHS exposure and each domain of the
59 60	325	cognitive function and overall cognition scores are
		14/36

14 / 36

Page 16 of 38

BMJ Open

1 2

2 3		
5 4 5	326	reported in Table 2 and Table 3. Scores of episodic
6 7 8	327	memory, orientation and attention and visuospatial among
8 9 10	328	respondents at baseline were strong predictors of their
11 12 13	329	corresponding cognitive function measures after 2 or 4
14 15	330	years. Based on the analysis adjusted for age, annual
16 17 18	331	household expenditure, education, baseline cognitive
19 20	332	function and another chronic health status, we found that
21 22 23	333	only being exposed to SHS for more than 40 years was
24 25 26	334	significantly associated with a decline in visuospatial
26 27 28	335	abilities, episodic memory and overall cognition scores
29 30 31	336	for all respondents. Compared with respondents who were
32 33	337	not exposed to SHS or exposed to it for less than 25
34 35 36	338	years, those who have been exposed to SHS for more than
37 38	339	40 years was associated with a 0.04-point decline in
39 40 41	340	visuospatial abilities (95%CI, -0.08 to -0.01 P <0.1), a
42 43 44	341	0.16-point decline in episodic memory (95%CI, -0.31 to -
45 46	342	0.01 P <0.05), and a 0.33-point decline in overall
47 48 49	343	cognition function (95%CI, -0.66 to -0.01 P <0.01). In
50 51	344	addition, age was also negatively associated with
52 53 54	345	cognitive function. Each one-year older was associated
55 56 57	346	with 0.01-point, 0.01-point, 0.03-point, and 0.05-point
57 58 59 60	347	decrease in visuospatial (95%CI, -0.01 to -0.00 P <0.01),

BMJ Open

1		
2		
3 4 5	348	orientation (95%CI, -0.03 to -0.01 P <0.01), memory
6 7	349	(95%CI, -0.31 to-0.01 P <0.05) and overall cognition
8 9 10	350	scores (95%CI, -0.66 to -0.01 P <0.01), respectively.
11 12 13	351	High education level was associated with better cognitive
14 15	352	performance, especially in orientation and attention. In
16 17 18	353	addition, a one-point increase in CESD scores was
19 20	354	associated with 0.02-point decrease in scores of
21 22 23	355	orientation and attention (95%CI, -0.03 to 0.00 P <0.05),
24 25	356	showing that respondents with depressive symptoms were
26 27 28	357	more likely to demonstrate a cognitive decline in
29 30	358	specific functions.
21		
31 32 33	359	Discussion
32 33 34 35	359 360	Discussion Results from this longitudinal study with a large,
32 33 34 35 36 37 38		
32 33 34 35 36 37 38 39 40 41	360	Results from this longitudinal study with a large,
32 33 34 35 36 37 38 39 40 41 42 43	360 361	Results from this longitudinal study with a large, representative sample of middle-aged and older women in
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	360 361 362	Results from this longitudinal study with a large, representative sample of middle-aged and older women in China indicated that exposure to SHS for over 40 years was
32 33 34 35 36 37 38 39 40 41 42 43 44 45	360361362363	Results from this longitudinal study with a large, representative sample of middle-aged and older women in China indicated that exposure to SHS for over 40 years was significantly associated with the more unsatisfactory
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	 360 361 362 363 364 	Results from this longitudinal study with a large, representative sample of middle-aged and older women in China indicated that exposure to SHS for over 40 years was significantly associated with the more unsatisfactory performance of global cognition and cognitive subdomains.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	 360 361 362 363 364 365 	Results from this longitudinal study with a large, representative sample of middle-aged and older women in China indicated that exposure to SHS for over 40 years was significantly associated with the more unsatisfactory performance of global cognition and cognitive subdomains. It is the first examination of cognitive subdomains
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	 360 361 362 363 364 365 366 	Results from this longitudinal study with a large, representative sample of middle-aged and older women in China indicated that exposure to SHS for over 40 years was significantly associated with the more unsatisfactory performance of global cognition and cognitive subdomains. It is the first examination of cognitive subdomains concerning household SHS exposure using a 4-year

 were not specifically evaluated in earlier studies among middle-aged and older women who never smoke. In addition to the previous findings that SHS was associated with poor cognitive performance, especially in children, adolescents and adults ^[18]. We found that having a high educational level, living in an urban area and having better baseline cognitive function would improve their cognitive performance. The episodic memory score of participants with diabetes at baseline decreased by 0.172 points compared with those without diabetes, which is similar to previous findings^[9].

Moreover, our results showed that compared with women who have never been exposed to SHS or have been exposed for less than 20 years, those who have been exposed to SHS for significant more than years have а decline in visuospatial function (0.04-point), episodic memory (0,16-point) and overall cognitive scores (0.33-point). These findings were quite similar in magnitude to prior research on the relationship between SHS and cognitive function [14]. Moheet and colleagues (2015) conducted a cross-sectional study in the North East of England to explore the impact diabetes on cognitive function and brain structure of

17/36

BMJ Open

י ר	
2 3	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
$\begin{array}{c} 3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 38\end{array}$	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

(N=150). Research suggested that compared with non-exposed 392 393 people, participants who had no history of smoking and being averagely exposed to SHS for around 6 years showed 394 395 significantly reduced performance in processing speed (i.e. how quickly one can process information and perform tasks) 396 and executive function (i.e. the ability to organize memory, 397 cognitive flexibility, and problem-solving ability)^[22]. 398 Another longitudinal ageing study in China (N=4809, ages 399 \geq 50) found that never smokers exposed to the highest levels 400 401 of SHS (salivary cotinine concentrations 0.8-13.5 ng/ml) 402 were more likely to be cognitively impaired (odds ratio =1.70) than those exposed to little or no SHS^[18]. 403 Attention referred to the ability to concentrate and 404 focus on specific stimuli slightly declined in later life 405 ^[13]. Orientation was one's ability to identify the exact 406

406 ^[13]. Orientation was one's ability to identify the exact 407 date, month, day and season of the year^[23]. Our results 408 suggested that for each one-year increase in age, there 409 were additional 0.01-point, 0.02-point, 0.04-point and 410 0.06-point decline in visuospatial, orientation, memory and 411 overall cognition scores, respectively. SHS seems to be 412 more strongly associated with cognitive decline than ageing, 413 since the magnitude of signitificant coefficient between

SHS and cognitive decline was almost four times the one in relationship ageing. However, the between SHS and orientation and attention ability was not observed. This may due to the size of the sample is relatively small, plus the period of cohort study after controlling for all demographic and socioeconomic confounders is relatively short.

Visuospatial abilities involve the ability to understand space in two and three dimensions. In our study, an inversed relationship between SHS exposure and visuospatial abilities among middle-aged and older adults was presented, showing a 0.04-point decline in their visuospatial scores. Such an inversed relationship between SHS exposure and visuospatial reasoning skills was also reported among American children (N=5683; ages 6-16), showing that years of SHS exposure was significantly associated with lower scores for reading, math, and visuospatial skills, after adjusting for covariates ^[15]. As one of the most common cognitive complaints among elders, episodic memory refers to personally experienced events which could be measured by stories, word lists or figures. Previous research has indicated that the onset of memory decline may vary among

19/36

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1		
2		
3 4 5	436	different memory types, with episodic memory decline
6 7	437	possibly being lifelong $^{[24]}$. Our study could not explore
8 9 10	438	the onset age of memory decline without doing regression
11 12 13	439	among different age groups. The significant coefficient
14 15	440	could indicate momory decline associated with SHS exposure.
16 17 18	441	The inconsistent conclusions between our studies and
19 20	442	prior ones may probably due to the relatively simplified
21 22 23	443	version of the cognition test procedure in CHARLS
24 25 26	444	questionnaires compared with the MoCA $^{[14]}$ and MMSE $^{[25]}$. Some
27 28	445	studies also used clinical or magnetic resonance imaging
29 30 31	446	(MRI) evidence of neurologic damage to detect cognitive
32 33	447	impairment. Best adapted to a screening test, the MoCA
34 35 36	448	exhibited excellent sensitivity in identifying MCI and AD
37 38 39	449	(Alzheimer's disease) by 90% and 100%, respectively $^{[26]}$.
40 41	450	The most popular hypothesis about the mechanisms
42 43 44	451	underlying the links between SHS exposure and more
45 46	452	unsatisfactory cognitive performance lies in the notion
47 48 49	453	that the carbon monoxide (CO) in tobacco smoke may
50 51 52	454	interfere with the oxygen being delivered to the brain via
53 54	455	the blood system. However, the reasons behind the
55 56 57	456	different effect on various domains of brain function are
58 59 60	457	far from clear. One possible explanation derives from

4 5	458	research on laboratory animals. Exposing animals to
6 7 8	459	varying degrees of toxic mixtures of chemicals found in
9 10	460	tobacco smoke may lead to reduced neuronal mass in specific
11 12 13	461	regions of the brain associated with learning and memory.
14 15	462	Since the hippocampal region of the brain is known to be
16 17 18	463	involved in the mediation of memory $^{\left[27 ight] }$ and learning,
19 20 21	464	further research should be conducted in other regions
22 23	465	dominating visuospatial and orientation ability. Another
24 25 26	466	possible mechanism is that prolonged exposure to SHS may
27 28 20	467	be a significant risk factor for cardiovascular disease
29 30 31	468	(CVD) ^[28] , which may therefore lead to a range of health
32 33 34	469	and cognitive problems in later life. In the future, a
35 36	470	longitudinal design may elucidate any associations by
37 38 39	471	observing long-term exposure to SHS and the incidence of
40 41 42	472	CVD, and whether this CVD may mediate or interact with SHS
43 44	473	exposure to impact cognitive function.
45 46 47	474	Several limitations need to be considered when interpreting
48 49	475	this study and designing future studies. Firstly, exposure
50 51 52	476	to SHS was evaluated based on self-report measures. This
53 54	477	might be subject to recall bias and lead to over-or-
55 56 57	478	underestimation of exposure $^{\left[29\right] }.$ Therefore, further studies
58 59	479	could include more biological assays, for example, cotinine

BMJ Open

3		
4 5	480	residue levels or nicotine residue in saliva or hair
6 7 8	481	samples ^[30] . Previous research using serum cotinine as a
9 10	482	biomarker of exposure to SHS found that higher levels of
11 12 13	483	serum cotinine were associated with significantly worse
14 15	484	performance in reading, mathematics, and visual and spatial
16 17 18	485	abilities in children and adolescents ^[8] . However, no
19 20 21	486	studies had used a combination of biomarker and self-report
22 23	487	yet ^[31] . Some validated biomarkers could be used as proxies
24 25 26	488	for AD neuropathological changes, such as cerebrospinal
27 28	489	fluid (CSF) amyloid-beta (A β)42 concentrations or A β 42/
29 30 31	490	Aβ40 ratio and amyloid load on positron emission tomography
32 33	491	(PET) scans. These biomarkers could provide more reliable
34 35 36	492	measures of cognitive impairment ^[32] . Secondly, it may be
37 38 39	493	impossible to control for all potentially confounding
40 41	494	variables. After adjusting for age, household expenditure,
42 43 44	495	education, area, chronic health condition and depressive
45 46	496	symptoms, some other demographic or socioeconomic
47 48 49	497	confounders may be neglected. However, this did not appear
50 51 52	498	to affect the magnitude of the association between SHS
53 54	499	exposure and cognition $^{[14]}$. Besides, the analyses only
55 56 57	500	contained household SHS exposure, which precluded the
58 59 60	501	analyses of the influence of environment smoke inhale on

3		
4 5	502	smoking proclivity. Whether exposure to household SHS can
6 7	503	hasten the onset of cognitive impairment for older Chinese
8 9 10	504	women could be further proved by running regression models
11 12 13	505	in different age groups.
14 15	506	Acknowledgments :
16 17 18	507	We would like to thank the professor Yaohui Zhao at Centre for Chinese Economic
19 20 21	508	Research, Peking University for her thoughtful contributions to this study.
22 23	509	Conflict of Interest
24 25 26	510	The authors have no conflicts of interest to declare.
27 28 29	511	Author's Contribution
30 31	512	Anying Bai wrote and participated in all aspects of this research, including the field
32 33 34	513	investigation. Dr Yangmu Huang reviewed and supervised this research. Yinzi Jin
35 36 37	514	participated in the statistical analysis of this work and reviewed the final article.
38 39	515	Data sharing statement
40 41 42	516	CHARLS data is available to the public online: http://charls.pku.edu.cn
43 44	517	Funding Resources
45 46	518	This is a self-funded research.
47 49	519	
48 49	520	Reference
50	521	
51 52 53	522	1 Fang EF, Scheibye-Knudsen M, Jahn HJ, et al. A research agenda for aging in China in the
54 55 56	523	21st century. Ageing research reviews 2015;24(Pt B):197-205. doi:
57 58	524	10.1016/j.arr.2015.08.003 [published Online First: 2015/08/26]
59 60	525	2 Harada CN, Natelson Love MC, Triebel KL. Normal Cognitive Aging. Clinics in Geriatric

BMJ Open

1		
2		
3 4 5	526	<i>Medicine</i> 2013;29(4):737-52. doi: 10.1016/j.cger.2013.07.002
6 7 8	527	3 Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairmenta review of the
9 10	528	evidence and causal mechanisms. <i>Ageing Res Rev</i> 2013;12(4):840-51. doi:
11 12 13	529	10.1016/j.arr.2013.06.004 [published Online First: 2013/07/09]
14 15	530	4 Yin P, Ma Q, Wang L, et al. Chronic obstructive pulmonary disease and cognitive
16 17 18	531	impairment in the Chinese elderly population: a large national survey. International
19 20 21	532	Journal of Chronic Obstructive Pulmonary Disease 2016 doi: 10.2147/copd.S96237
21 22 23	533	5 Bernardin F, Maheut-Bosser A, Paille Fo. Cognitive Impairments in Alcohol-Dependent
24 25 26	534	Subjects. Frontiers in Psychiatry 2014;5 doi: 10.3389/fpsyt.2014.00078
27 28	535	6 Tadic M, Cuspidi C, Hering D. Hypertension and cognitive dysfunction in elderly: blood
29 30 31	536	pressure management for this global burden. BMC Cardiovasc Disord
32 33	537	2016;16(1):208. doi: 10.1186/s12872-016-0386-0 [published Online First:
34 35 36	538	2016/11/05]
37 38 39	539	7 Modrego PJ, Ferrández J. Depression in Patients With Mild Cognitive Impairment Increases
40 41	540	the Risk of Developing Dementia of Alzheimer Type: A Prospective Cohort Study.
42 43 44	541	Archives of Neurology 2004;61(8):1290-93. doi: 10.1001/archneur.61.8.1290
45 46	542	8 Ling J, Heffernan T. The Cognitive Deficits Associated with Second-Hand Smoking.
47 48 49	543	Frontiers in Psychiatry 2016;7 doi: 10.3389/fpsyt.2016.00046
50 51 52	544	9 Durazzo TC, Meyerhoff DJ, Nixon SJ. A comprehensive assessment of neurocognition in
53 54	545	middle-aged chronic cigarette smokers. Drug Alcohol Depend 2012;122(1-2):105-11.
55 56 57	546	doi: 10.1016/j.drugalcdep.2011.09.019 [published Online First: 2011/10/14]
58 59 60	547	10 Teo KK, Ounpuu S, Hawken S, et al. Tobacco use and risk of myocardial infarction in 52
00		

2		
3 4 5	548	countries in the INTERHEART study: a case-control study. Lancet (London, England)
6 7 8	549	2006;368(9536):647-58. doi: 10.1016/s0140-6736(06)69249-0 [published Online
9 10	550	First: 2006/08/22]
11 12 13	551	11 Kim BJ, Kang JG, Kim JH, et al. Association between Secondhand Smoke Exposure and
14 15	552	Hypertension in 106,268 Korean Self-Reported Never-Smokers Verified by Cotinine.
16 17 18	553	Journal of clinical medicine 2019;8(8) doi: 10.3390/jcm8081238 [published Online
19 20 21	554	First: 2019/08/21]
22 23	555	12 Teo KK, Ounpuu S, Hawken S, et al. Tobacco use and risk of myocardial infarction in 52
24 25 26	556	countries in the INTERHEART study: a case-control study. The Lancet
27 28	557	2006;368(9536):647-58. doi: 10.1016/s0140-6736(06)69249-0
29 30 31	558	13 Heffernan TM, O'Neill TS. Everyday prospective memory and executive function deficits
32 33 34	559	associated with exposure to second-hand smoke. Journal of addiction
35 36	560	2013;2013:160486. doi: 10.1155/2013/160486 [published Online First: 2013/01/01]
37 38 39	561	14 Yolton K, Dietrich K, Auinger P, et al. Exposure to environmental tobacco smoke and
40 41	562	cognitive abilities among U.S. children and adolescents. Environ Health Perspect
42 43 44	563	2005;113(1):98-103. doi: 10.1289/ehp.7210 [published Online First: 2005/01/01]
45 46	564	15 Llewellyn DJ, Lang IA, Langa KM, et al. Exposure to secondhand smoke and cognitive
47 48 49	565	impairment in non-smokers: national cross sectional study with cotinine
50 51 52	566	measurement. <i>Bmj</i> 2009;338(feb12 2):b462-b62. doi: 10.1136/bmj.b462
53 54	567	16 Malek AM, Cushman M, Lackland DT, et al. Secondhand Smoke Exposure and Stroke:
55 56 57	568	The Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study.
58 59 60	569	American journal of preventive medicine 2015;49(6):e89-97. doi:

BMJ Open

1		
2 3		
4 5	570	10.1016/j.amepre.2015.04.014 [published Online First: 2015/06/29]
6 7 8	571	17 He F, Li T, Lin J, et al. Passive Smoking Exposure in Living Environments Reduces
9 10	572	Cognitive Function: A Prospective Cohort Study in Older Adults. International journal
11 12 13	573	of environmental research and public health 2020;17(4) doi: 10.3390/ijerph17041402
14 15	574	[published Online First: 2020/02/27]
16 17 18	575	18 Pan X, Luo Y, Roberts AR. Secondhand Smoke and Women's Cognitive Function in
19 20	576	China. American Journal of Epidemiology 2018;187(5):911-18. doi:
21 22 23	577	10.1093/aje/kwx377
24 25 26	578	19 Zhao Y, Hu Y, Smith JP, et al. Cohort Profile: The China Health and Retirement
27 28	579	Longitudinal Study (CHARLS). International Journal of Epidemiology 2012;43(1):61-
29 30 31	580	68. doi: 10.1093/ije/dys203
32 33	581	20 Ge S, Wei Z, Liu T, et al. Alcohol Use and Cognitive Functioning Among Middle-Aged and
34 35 36	582	Older Adults in China: Findings of the China Health and Retirement Longitudinal
37 38 39	583	Study Baseline Survey. Alcohol Clin Exp Res 2018;42(10):2054-60. doi:
39 40 41	584	10.1111/acer.13861 [published Online First: 2018/08/07]
42 43 44	585	21 Li J, Cacchione PZ, Hodgson N, et al. Afternoon Napping and Cognition in Chinese Older
45 46	586	Adults: Findings from the China Health and Retirement Longitudinal Study Baseline
47 48 49	587	Assessment. J Am Geriatr Soc 2017;65(2):373-80. doi: 10.1111/jgs.14368 [published
50 51	588	Online First: 2016/12/21]
52 53 54	589	22 Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain
55 56 57	590	structure. Annals of the New York Academy of Sciences 2015;1353(1):60-71. doi:
58 59	591	10.1111/nyas.12807
60		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
11 12 13 14 15 16 17	
14	
15	
16	
17	
18	
19	
20	
21	
20 21 22 23 24 25 26 27 28 29	
23	
24	
25	
26	
20	
27 20	
20	
29	
30	
31	
32	
33	
34 35	
35	
36 37	
37	
38	
38 39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

592	23 Peters-Founshtein G, Peer M, Rein Y, et al. Mental-orientation: A new approach to
593	assessing patients across the Alzheimer's disease spectrum. Neuropsychology
594	2018;32(6):690-99. doi: 10.1037/neu0000463 [published Online First: 2018/05/22]
595	24 Burk JA, Blumenthal SA, Maness EB. Neuropharmacology of attention. European journal
596	of pharmacology 2018;835:162-68. doi: 10.1016/j.ejphar.2018.08.008 [published
597	Online First: 2018/08/10]
598	25 Lövdén M, Rönnlund M, Wahlin A, et al. The extent of stability and change in episodic and
599	semantic memory in old age: demographic predictors of level and change. <i>The</i>
600	journals of gerontology Series B, Psychological sciences and social sciences
601	2004;59(3):P130-4. doi: 10.1093/geronb/59.3.p130 [published Online First:
602	2004/05/01]
603	26 Li X, Jia S, Zhou Z, et al. The role of the Montreal Cognitive Assessment (MoCA) and its
604	memory tasks for detecting mild cognitive impairment. Neurol Sci 2018;39(6):1029-
605	34. doi: 10.1007/s10072-018-3319-0 [published Online First: 2018/03/20]
606	27 Trzepacz PT, Hochstetler H, Wang S, et al. Relationship between the Montreal Cognitive
607	Assessment and Mini-mental State Examination for assessment of mild cognitive
608	impairment in older adults. BMC Geriatr 2015;15(107):107. doi: 10.1186/s12877-015-
609	0103-3 [published Online First: 2015/09/09]
610	28 Ziad S. Nasreddine M. The Montreal Cognitive Assessment (MoCA)- Concept and Clinical
611	Review. the American Geriatrics Society 2005;53(4):695-99.
612	29 Staples MC, Mandyam CD. Thinking after Drinking: Impaired Hippocampal-Dependent
613	Cognition in Human Alcoholics and Animal Models of Alcohol Dependence. Frontiers

1		
1 2		
3		
4	614	<i>in Psychiatry</i> 2016;7 doi: 10.3389/fpsyt.2016.00162
5		
6	615	20 Vankalavitz DE, Hanaahka CI, Vin R, at al. Sacand Hand Tahaaaa Smaka in Navar
7	015	30 Yankelevitz DF, Henschke CI, Yip R, et al. Second-Hand Tobacco Smoke in Never
8		
9 10	616	Smokers Is a Significant Risk Factor for Coronary Artery Calcification. JACC:
10		
12	617	<i>Cardiovascular Imaging</i> 2013;6(6):651-57. doi: 10.1016/j.jcmg.2013.02.004
13		
14	618	31 Akhtar WZ, Andresen EM, Cannell MB, et al. Association of blood cotinine level with
15	010	
16	(10	
17 18	619	cognitive and physical performance in non-smoking older adults. Environmental
18		
20	620	<i>Research</i> 2013;121:64-70. doi: 10.1016/j.envres.2012.10.013
21		
22	621	32 Banning LCP, Ramakers I, Deckers K, et al. Affective symptoms and AT(N) biomarkers in
23	021	
24	622	mild acquitive imperment and Alphaimar's diseases. A systematic literature review
25	622	mild cognitive impairment and Alzheimer's disease: A systematic literature review.
26 27		
28	623	Neuroscience and biobehavioral reviews 2019;107:346-59. doi:
29		
30	624	10.1016/j.neubiorev.2019.09.014 [published Online First: 2019/09/17]
31		
32	625	
33	626	
34 35	020	
36	< - -	
37	627	
38		
39	628	
40		
41 42	629	
42		
44		
45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55		
56 57		
57 58		
59		
60		

Table1.Characteristics of the Participants for	rom 3 waves of CHARLS, 2011-2013-2015
--	---------------------------------------

	2011-2013		2011-2015		2013-2015	
	(N=2802)		(N=2274)		(N=1799)	
Variable	Count	Frequency	Count	Frequency	Count	Frequency
Area						
Urban	981	35.01%	730	32.10%	556	30.91%
Rural	1821	64.99%	1544	67.90%	1243	69.09%
SHS						
Less than 25 years	759	27.09%	531	23.35%	262	14.56%
More than 25 years and less	634	22.63%	573	25.20%	385	21.40%
than 30 years	034	22.038	373	20.2Uð	202	∠⊥.4∪%
More than 30 years and less	911	32.51%	800	35.18%	768	42.69%
than 40 years	911	32.31%	800	55.10%	/00	42.09%
More than 40 years	498	17.77%	370	16.27%	384	21.35%
Education						
Illiterate	1552	55.39%	1309	57.56%	1004	55.81%
Primary education	512	18.27%	414	18.21%	336	18.68%
Secondary or above	738	26.34%	551	24.23%	459	25.51%
Hypertension						
No hypertension	2124	75.80%	1720	75.64%	1365	75.88%
Hypertension with treatment	522	18.63%	1720	75.64%	358	19.90%
Hypertension without	150	F F70	1 2 0	5 700	76	4.22%
treatment	156	5.57%	130	5.72%	0 /	4.22%
Diabetes						
No Diabetes in baseline	2643	94.33%	2140	94.11%	1704	94.72%

29 / 36

 BMJ Open

Have Diabetes with treatment	143	5.10%	120	5.28%	86	4.78%	
Have Diabetes without	16	0.57%	14	0.62%	9	0.50%	
treatment	10			0.020	-		
	Count	Mean(SD)		Count	Mean(SD)	Count	Mean(SD)
Age	2802	55.84(8.22)		2274	56.19(7.75)	1799	57.90(7.43)
Annual Household Expenditure,	2802	13786.99(14197.	291	2274	13060.14(13639.	1799	16632.84(18568.2
yuan ^a	2002	13/00.99(1419/.	251	22/4	33)	1799)
Visuospatial ability ^b	2802	0.51(0.50)		2274	0.48(0.50)	1799	0.49(0.50)
Orientation and attention $^{\rm c}$	2802	5.87(3.29)		2274	5.84(3.19)	1799	5.97(3.14)
Memory Scores ^d	2802	3.33(1.96)		2274	3.04(1.93)	1799	3.15(1.91)
Baseline Visuospatial ability	2802	0.57(0.50)		2274	0.55(0.50)	1799	0.54(0.50)
Baseline Orientation and attention	2802	6.39(2.92)		2274	6.25(2.90)	1799	6.16(3.00)
Baseline Memory Scores	2802	3.27(1.98)		2274	3.23(1.92)	1799	3.50(1.78)
Baseline CES-D Score ^e	2802	12.09(5.38)		2274	12.13(5.45)	1799	10.90(5.14)

d The score range for episodic memory was 0-10. Higher scores indicate better memory function.

e A score of 10 or greater indicated the presence of depressive symptoms.

 Table2.Adjusted Multivariable linear regression analysis of the relationship between smoking exposure and Visuospatial function and Orientation and Attention among older Chinese women (N = 6875), 2011-2013-2015

	Vis	uospatial Function		Orient	ation and Attention	
VARIABLES	β coefficient	95%CI	t	β coefficient	95%CI	t
Age	-0.01ª	-0.01,-0.00	-6.73	-0.02ª	-0.03, -0.01	-4.34
Expenditure	0.00	0.00, 0.00	0.01	0.00ª	0.00, 0.00	0.77
SHS Exposure ^d						
25 to <30 years	-0.01	-0.04, 0.02	-0.72	0.05	-0.12, 0.21	0.56
≥30 to <40 years	-0.02	-0.05, 0.02	-0.95	-0.03	-0.20, 0.13	-0.38
≥40 years	-0.04°	-0.08, 0.01	-1.67	-0.15	-0.38, 0.09	-1.24
Baseline Visuospatial Function	0.23ª	0.21, 0.26	17.93			
Baseline Orientation and Attention				0.55ª	0.53, 0.57	44.86

Page 33 of 38

BMJ Open

Urban ^e	0.06ª	0.04, 0.09	5.27	0.38ª	0.25, 0.51	5.72
Education ^f						
	0.000	0.00	14.00	1.11.	0.04 1.05	10.01
Primary	0.23ª	0.20, 0.26	14.00	1.11ª	0.94, 1.27	12.91
Secondary or Above	0.29ª	0.26, 0.32	18.51	1.18 ^a	1.01, 1.36	13.44
Hypertension ^g						
With Treatment	-0.03	-0.09, 0.02	-1.20	0.06	-0.24, 0.35	-0.38
Without Treatment	-0.02	-0.06, 0.03	-0.69	0.06	-0.11, 0.24	0.04
without I reatment	-0.02	-0.00, 0.03	-0.09	0.00	-0.11, 0.24	0.04
Missing Group	-0.05°	-0.12, 0.01	-1.67	0.06	-0.19, 0.30	-0.01
Diabetes ^h						
With Treatment	0.02	-0.03, 0.07	0.90	0.25°	-0.03, 0.52	-1.77
Without Treatment	0.03	-0.04, 0.09	0.82	0.21	-0.06, 0.48	-0.23
		,			57	
	0.07	0.00.0.01	0.00	0.50		0.67
Missing Group	0.07	-0.08, 0.21	0.88	0.50	-0.22, 1.23	0.67
Baseline CES-D Score	-0.00 ^c	-0.00, 0.00	-1.71	-0.02 ^b	-0.03, -0.00	-2.57
year = 2	-0.02	-0.04, 0.01	-1.58	0.09	-0.05, 0.22	1.29
fidence interval; SHS, secondha						

1	
2	
3 4	
5	
6	
/ 8	
9	
10	
11	
13	
14	
15	
10 17	
18	
19	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37	
22	
23	
24 25	
26	
27	
28 20	
30	
31	
32	
33 34	
35	
36	
37 38	
39	
40	
41 42	
42 43	
44	
45	
46	

b. p<0.05

c. p<0.1

- d. Referent: No SHS exposure or Less than 25 years.
- e. Expenditure is expressed as the natural log of the annual household expenditure

f. Referent: Illiterate

- g. Referent: Without hypertension
- h. Referent: Without diabetes

I. This model adjusted for age, expenditure, living area, education, baseline hypertension, diabetes, depression status and baseline cognitive function.

 BMJ Open

Table3. Adjusted Multivariable linear regression analysis of the relationship between smoking exposure and Episodic memory and Overall cognitive function among older Chinese women (N = 6875), 2011-2013-2015

-	Е	pisodic Memory			Overall Cognition	
VARIABLES	ß	95%CI	t	β coefficie	ent 95%CI	t
Age	-0.04ª	-0.05,-0.03	-11.37	-0.06ª	-0.07, -0.04	-7.87
Expenditure	0.00	0.00, 0.00	1.30	0.00ª	0.00, 0.00	0.32
SHS Exposured						
25 to <30 years	-0.04	-0.16, 0.08	-0.67	-0.01	-0.25, 0.25	-0.01
≥30 to <40 years	0.02	-0.09, 0.13	0.36	-0.05	-0.29, 0.19	-0.41
\geq 40 years	-0.16 ^b	-0.31, -0.01	-2.06	-0.33ª	-0.66, 0.01	-1.93
Baseline Episodic Memory Baseline Overall Cognition	0.30ª	0.28, 0.32	25.22	0.55ª	0.46, 0.83	44.95

Urban ^e	0.25ª	0.16, 0.34	5.60	0.65ª	0.46, 0.83	6.68
Education ^f						
Primary	0.70 ^a	0.58, 0.80	12.42	1.77 ^a	1.53, 2.02	14.28
Secondary or Above	0.97ª	0.86, 1.08	17.29	2.00ª	1.74, 2.26	15.24
Hypertension ^g						
With Treatment	0.04	-0.16, 0.23	0.35	0.13	-0.29, 0.56	0.62
Without Treatment	0.06	-0.06, 0.17	0.95	0.12	-0.14, 0.38	0.93
Missing Group	0.07	-0.12, 0.25	0.70	0.10	-0.27, 0.47	0.52
Diabetesh						
With Treatment	-0.20 ^b	-0.38, 0.02	-2.20	-0.04	-0.43, 0.36	0.62
Without Treatment	-0.07	-0.25, 0.11	-0.77	0.08	-0.30, 0.47	0.43
Missing Group	0.32	-0.16, 0.80	1.30	0.87	-0.11, 1.84	1.75
Baseline CES-D Score	-0.01 ^b	-0.01, 0.00	-1.59	-0.01	-0.03, 0.00	-2.57
year = 2	-0.24	-0.33, -0.15	-5.21	-0.17	-0.37, 0.03	-1.70

 35 / 36

BMJ Open

Constant	0.63	0.53, 0.74	11.54	6.48ª	5.59, 7.37	14.28
Abbreviations: CI, confidence interval; SH	S, secondhand smoke.					
a. p<0.01						
b. p<0.05						
c. p<0.1						
d. Referent: No SHS exposure or Less than 3	25 years.					
e. Expenditure is expressed as the natural	log of the annual house	hold expenditure	e			
f. Referent: Illiterate	Ur l					
g. Referent: Without hypertension						
h. Referent: Without diabetes						
I. This model adjusted for age, expenditure	e, living area, educatio	n baseline hype	ertension. d	liabetes, der	pression status	and hase
		n, baseline hype				
	For peer review only - http	36 / 36 p://bmjopen.bmj	i.com/site/ab	oout/guidelir	nes.xhtml	

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1-3
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			•
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-9
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7-9
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	9-10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6
1		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	10-
1		and information on exposures and potential confounders	11
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	11

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

The impact of secondhand smoke exposure on cognitive function among middle-aged and older women in China: Findings from 3-waves of the China Health and Retirement Longitudinal Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039824.R3
Article Type:	Original research
Date Submitted by the Author:	30-Sep-2020
Complete List of Authors:	Bai, Anying; Peking University Health Science Centre, School of Public Health; Jin, Yinzi; Peking University, School of Public Health Huang, Yangmu; Peking University Health Science Centre, School of Public Health;
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Smoking and tobacco, Public health, Mental health
Keywords:	EPIDEMIOLOGY, Dementia < NEUROLOGY, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

2		
3		
4 5	1	Title
6		
7	2	The impact of secondhand smoke exposure on cognitive
8		
9	3	function among middle-aged and older women in China:
10		
11 12	4	Findings from 3-waves of the China Health and Retirement
13		
14	5	Longitudinal Study
15	5	longicuathar beday
16	6	Anuing Doi 1 (Vingi Jin Dh D 1 Vongrup Huong Dh D 1
17 18	6	Anying, Bai ¹ , Yinzi Jin Ph.D. ¹ , Yangmu Huang Ph.D. ¹
19	_	
20	7	¹ School of Public Health, Peking University Health and
21		
22	8	Science Centre
23 24	9	
25		
26	10	
27	11	
28 29	12	
30	13	
31	14	
32	15	
33 34	16	
35	17	
36	18	
37	19	
38	20	
39 40	21	
41	22	
42	23	
43	24	
44 45	25	
46	26	
47		
48	27	
49	28	
50 51	29	Corresponding Author:
52	30	Yangmu Huang, Ph.D.
53	31	Peking University Health and Science Centre, School of
54	32	Public Health
55 56	33	Xueyuan Road No.38, Haidian Distreet, BeiJing, China
50 57	34	Tel: 15010376131
58	35	Fax: 010-62755782
59	36	Email: ymhuang@bjmu.edu.cn
60		

BMJ Open

2 3		
3 4	37	
5	38	
6	39	
7 8	40	
9 10	41	
11 12 13	42	Abstract
14 15	43	Objectives: To examine the association between secondhand
16 17 18	44	smoke and women's global cognitive function and cognitive
19 20 21	45	subdomains.
21 22 23	46	Design: Cohort study
24 25 26	47	Participants: Data for this study were obtained from the
27 28	48	China Health and Retirement Longitudinal Study (CHARLS,
29 30 31	49	2011-2013-2015), and pooled analysis was applied to wave
32 33	50	1 and wave 2 (2011-2013), wave 2 and wave 3 (2013-2015)
34 35 36	51	and wave 1 and wave 3 (2011-2015). Data from a total of
37 38 39	52	6875 Chinese women with normal cognitive function at
40 41	53	baseline were selected for analysis, including 2981 who
42 43 44	54	were interviewed in 2011, 2471 in 2013, and 1894 in 2015.
45 46 47	55	Main outcome measures and methods: Secondhand smoke (SHS) was
48 49	56	classified based on the number of exposed years
50 51 52	57	(<25years, ≥25 to <30 years, ≥30 to <40 years, ≥40
53 54	58	years). Global cognitive function, visuospatial ability,
55 56 57	59	orientation and attention, as well as episodic memory
58 59 60	60	function were used as measures of cognitive function.

Page 4 of 39

BMJ Open

61	Three waves of data were pooled by using a dummy variable
62	to differentiate between 2-year and 4-year groups. Lagged
63	dependent variable models were used to examine
64	independent associations between secondhand smoke and
65	cognitive function. Demographic factors, socioeconomic
66	factors, baseline cognitive functioning and health
67	conditions were controlled for in our models.
68	Results: Secondhand smoke was found to be inversely and
69	significantly associated with cognitive function.
70	Compared with those had not been exposed to household
71	secondhand smoke, women who had lived with a smoking
72	husband had a significantly faster cognition decline,
73	especially in global cognitive function (β =-0.33, 95%CI=
74	-0.66 to -0.01, P < 0.01), visuospatial ability (β =-0.04,
75	95%CI=-0.08 to -0.01 P < 0.05) and episodic memory
76	function (β =-0.16, 95%CI= -0.31 to -0.01 P = 0.031).
77	Conclusions: Household secondhand smoke exposure for more
78	than 40 years was associated with a more significant
79	decline in global cognitive function, visuospatial
80	ability and episodic memory function, but not in
81	orientation and attention function among older Chinese
82	women.

BMJ Open

2		
3 4 5	83	Key words: ageing; passive smoking; panel analysis;
6 7	84	visuospatial ability; memory
8 9 10	85	Strengths and limitations of this study:
11 12 13	86	\succ This is the first study to investigate the association
14 15	87	between secondhand smoke exposure and different domains
16 17 18	88	of women's cognitive function in China by using 4-year
19 20 21	89	of longitudinal national representative data.
22 23	90	> This study addressed the issue of reverse causation in observational cohort studies
24 25 26	91	by used lagged dependent variable models and adjust for baseline cognition scores
27 28	92	> The exposure to secondhand smoke was evaluated based on
29 30 31	93	self-reported measures.
32 33 34	94	> The analyses only contained household SHS exposure and
35 36	95	excluded environmental exposure.
37 38 39	96	
40 41	97	Word Count: 3352
42 43 44	98	Number of references:32
45 46 47	99	Number of data elements:1
48 49	100	
50 51 52	101	Introduction
53 54	102	China's population has been ageing rapidly. By 2050,
55 56 57	103	there will be 400 million Chinese citizens aged over 65
58 59 60	104	years old, 150 million of whom will be older than 80 years
00		

105	old ^[1] . It will become increasingly important to understand
106	the cognitive changes that accompany ageing ^[2] . Cognitive
107	impairment, described as a decline in intellectual
108	function ^[3] , ranges from mild forms of forgetfulness to
109	severe and debilitating dementia $^{[4]}$. The prevalence of
110	cognitive impairment is rising, with national figures
111	estimating that over 9.4% of older persons in China had
112	cognitive impairment in 2011 ^[4] .
113	Numerous determinants such as environmental, individual,
114	and genetic factors could favor evolution toward cognitive
115	impairment, and both age and late-life hypertension
116	increase the risk of dementia over time ^[5] . The mechanism
117	lies in age-related functional and structural changes in
118	cerebrovascular small and large blood vessels ^[6] . Besides
119	chronic diseases factors, depression has long been known
120	to affect memory and other neurocognitive domains. Previous
121	studies have emphasized that depression could increase the
122	risk of developing mild cognitive impairment (MCI) in
123	cognitively normal elderly people ^[7] .
124	Exposure to secondhand smoke (SHS), also known as
125	"passive smoking," refers to a situation where a never-
	106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

58 59 60

126

57

1 2

5/37

smoker inhales another person's smoke either by exposure

BMJ Open

1		
2		
3 4 5	127	to sidestream smoke or mainstream smoke $^{\left[8 ight] }$. Current smoking
6 7 8	128	prevalence in China has decreased from 31.1% in 2002 to
8 9 10	129	28.1% in 2010; however, the number of adults exposed to SHS
11 12 13	130	during this period still increased from 540 million to 556
14 15	131	million due to population growth $\ensuremath{^{[2]}}$. The negative health
16 17 18	132	effects of high levels of exposure to SHS may be close to
19 20	133	those of active smoking, including inferior performance on
21 22 23	134	measures of general intelligence, visuospatial learning and
24 25 26	135	memory and fine motor dexterity $^{[9]}$. Given the association
27 28	136	between exposure to SHS and risk factors for cognitive
29 30 31	137	impairment such as cardiovascular disease ^[10] ,
32 33	138	hypertension ^[11] , and stroke $^{[12]}$, it is possible that a high
34 35 36	139	level of exposure may be a preventable risk factor for
37 38 39	140	cognitive impairment or dementia ^[11, 13] .
40 41	141	There is some evidence to suggest that older current
42 43 44	142	smokers (ages \geq 63) ^[14] or those being exposed to SHS (aged
45 46 47	143	55-64) ^[13-16] were more likely to develop cognitive
47 48 49	144	impairment compared with never-smokers. However, much less
50 51 52	145	is known about whether and to what extent, SHS is associated
53 54	146	with global and subdomains of cognitive function among
55 56 57	147	elder women in China. Previous studies in China indicated
58 59 60	148	that SHS exposure increased the risk of cognitive

impairment in older adults^[17, 18]. Nevertheless, both of these studies only used 2-wave longitudinal data and did not control for baseline cognition^[17, 18]. Therefore, the primary aim of this study was to investigate the relationship between SHS and cognitive function among older non-smoking Chinese women, using a 3-wave longitudinal national representative data. Through the classification of respondents by different years of SHS exposure in a 4-year panel, we identified whether certain high SHS exposure groups were at higher risk of cognitive decline than others after controlling for confounders. Besides, we aimed to examine the association between SHS exposure and cognitive subdomains. This is especially important given the growing and ageing population, and increasing prevalence of SHS exposure in China. Methods

Data

 166 CHARLS had passed the ethical review before field investigation and we used data 167 from 3 waves of the China Health and Retirement Longitudinal Study (CHARLS,2011-168 2013-2015), which was publicly available at <u>http://charls.pku.edu.cn</u>.CHARLS 169 involved participants with a nationally representative 170 survey of adults aged 45 years or older, as well as their

BMJ Open

1		
2 3		
4 5	171	spouses when possible, and included assessments of social,
6 7	172	economic, and health circumstances of community-residents.
8 9 10	173	The national baseline survey was conducted between June
11 12	174	2011 and March 2012 and samples were chosen through
13 14 15	175	multistage probability sampling. After excluding empty or
16 17 18	176	non-resident dwellings, final interviews were conducted on
19 20	177	17,708 respondents from 10,257 households, which completed
21 22 23	178	at least one module of the survey beyond the cover screening
24 25	179	for age eligibility. CHARLS respondents were followed every
26 27 28	180	2 years, using a face-to-face computer-assisted personal
29 30 31	181	interview (CAPI) ^[14] . SHS mainly affects married women in
32 33	182	China. Though unmarried or cohabiting women can possibly
34 35 36	183	be affected by household SHS, this kind of influence
37 38 39	184	remains scarce. At baseline, there were 3381 married women
40 41	185	who never smoked cigarettes and lived with spouses who had
42 43 44	186	either smoked cigarettes in the past or smoked at the time
45 46	187	of interview. Data for each variable was therefore
47 48 49	188	collected for those respondents. Our final sample was
50 51 52	189	composed of 6875 respondents. Among them, 2802 were
53 54	190	interviewed again during the second wave of data collection
55 56 57	191	in 2013, and 2247 were interviewed again during the third
58 59 60	192	wave in 2015. The similar sample selection process was

conducted for participants in the second wave in 2013 as a baseline. The final sample consisted of 1799 women who were investigated again in 2015 as participants. Measures Secondhand Smoke In this study, the exposure to SHS among Chinese women assessed through several surveys based on the was standardized CHARLS questionnaire. Questions about the participant's current marital status, the year they got married, and the year the husband in each household has begun or ceased smoking at home were asked. The smoking status section contained four questions: "Have you ever chewed tobacco, smoked a pipe, smoked self-rolled cigarettes, or smoked cigarettes/cigars?", "Do you still have the habit or have you totally quit?", "At what age did you totally quit smoking?" and "At what age did you start to smoke on a regular basis?". If the answer to the first question was "yes", they were defined as "current smokers" or "ex-smokers". Our analysis of SHS exposure focused only on never smokers excluding the "current smokers" and "ex-smokers", because of the difficulty to differentiate the negative effects of active smoking on

9/37

BMJ Open

1		
2 3 4 2	215	health condition from that of SHS exposure. The length of
5	213	hearth condition from that of 5h5 exposure. The rength of
6 7 2 8	216	SHS exposure was calculated and expressed as the total
	217	number of years that never-smoking women spent living with
11 12 2 13	218	their spouses who smoked cigarettes at home.
14 2 15	219	Categorical classification of SHS was used because the
16 17 2 18	220	impact of SHS might be neglected if we only used a
19 20 2	221	continuous variable to represent exposure. Similarly
21 22 2 23	222	compared with continuous variables categorical variables
24 25 2 26	223	have greater public health significance. Based on the
27 2 28 2	224	constructed SHS exposure variable, participants were
29 30 2 31	225	classified into four different groups: Never or being
32 33 2 34	226	exposed to SHS for less than 25 years, more than 25 years
35 2 36	227	and less than 30 years, more than 30 years and less than
37 38 2 39	228	40 years and over 40 years. The cut-off boundaries of SHS
40 2 41 42	229	exposure were decided to realize the relatively balanced
43 2 44	230	population distribution frequency among different levels
45 46 2 47	231	of exposure year.
48 2 49	232	Cognitive function
50 51 2 52	233	The cognitive function of the respondents in CHARLS
54	234	questionnaires was measured through a question-and-answer
57	235	interview instrument, and the respondents were followed
58 59 2 60	236	every two years using a face-to-face, computer-aided

10/37

3	
4	
5 6 7	
6	
7	
8	
9	
9 10	
11	
12	
13	
14	
15	
 11 12 13 14 15 16 17 	
17	
18 19	
19	
20	
21	
20 21 22 23	
23 24 25 26 27	
24	
25	
26	
2/	
28	
29 30 31 32 33 34 35 36	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

> 237 personal interview (CAPI). The various sections of the questionnaire could assess cognitive subdomains including visuospatial ability, orientation and attention, 238 239 and episodic memory. Figure drawing was tested by asking the participants to reproduce a picture of two overlapped pentagons in CHARLS questionnaires^[18]. It was 240 241 used to measure a person's ability to identify visual and spatial relationships among objects. The Telephone Interview of Cognitive Status (TICS) 242 was a screening test, including serial subtractions of 7 243 from 100 (up to 5 times), date (month, day, and year and 244 245 season), and the day of the week. In order to assess orientation and attention function, the number of correct answers to the above questions in TICS was 246 scored and summed up (range 0 to 10). Participants who successfully completed the 247 248 task received a score of 1, and those who failed received $0^{[19]}$.

addition, the word recall test consisted of 249 In 2 immediate recall and delayed recall, 250 components, and evaluated episodic memory. Participants were required to 251 252 repeat 10 Chinese nouns just read to them, and then after 20 questions concerning Center for Epidemiologic Studies 253 Depression Scale (CES-D, approximately 4 to 10 minutes) 254 255 they were again asked to recall as many of the original words as possible. The item was coded as 1 if recalled by 256 the respondent, and as 0 if not. Scores for immediate and 257 258 delayed recall both varied from 0 to 10. An evaluated

11 / 37

BMJ Open

3 4 5	259	episodic memory score was calculated using the mean of
6 7	260	scores in immediate and delayed word recall (range 0 to 10)
8 9 10	261	[19]
11 12 13	262	The overall cognition scores were the sum of the three
14 15	263	different domains (range 0 to 21).
16 17 18	264	Control variables
19 20 21	265	Given that cognitive function may vary across
22 23	266	demographic and socioeconomic status, we thus included age,
24 25 26	267	urban/rural residence, education, annual household
27 28	268	expenditures, chronic diseases and depressive symptoms as
29 30 31	269	control variables. Education was categorized into 3 groups:
32 33	270	"illiterate", "primary education" and "secondary education
34 35 36	271	or above". Arterial hypertension and diabetes mellitus are
37 38 39	272	separately strong independent risk factors for the
40 41	273	development of cognitive impairment and dementia ^{[20] [21]} .
42 43 44	274	Thus, the baseline chronic disease of hypertension and
45 46	275	diabetes were classified as three types based on self-
47 48 49	276	reported conditions on whether the participants were being
50 51	277	treated: having hypertension/diabetes with treatment,
52 53 54	278	having hypertension/diabetes without treatment and not
55 56 57	279	having hypertension/diabetes. The measure of depressive
58 59 60	280	symptoms was based on the 10-item version of the CES-D

12/37

short form, and each of the 4-option response to the item was scored ranging from 0 to 3. The total score is the sum of points for all 10 items, and a score of 10 or higher suggests the presence of depressive symptoms [6]. Patient and Public Involvement No patient involved. Analysis All analyses were conducted with STATA, version 14.0 (Stata, College Station, TX, USA). The lagged dependent-regression models with ordinary least variable (LDV) squares estimation were used during analysis. LDV models were superior for analyzing the effects of predictor variables on an outcome with 2-wave panel data while influence of controlling for the time-invariant variables^[22]. It adjusted for baseline cognitive conditions for all participants, therefore provided more robust estimates of the effects of independent variables. After pooling the three sets of panel data into one through using the "year" dummy variable to differentiate between a change in 2 years or in 4 years, we have 6875 respondents who have complete data on all variables. The overall cognitive

13 / 37

BMJ Open

1		
2 3 4	303	scores, episodic memory scores, visuospatial ability scores
5 6 7	304	and orientation and attention scores were 4 separate
8		
9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23 24 25 26	305	outcome variables. The different groups of SHS exposure
	306	years were the predictor variable, and other independent
	307	variables included all demographic and socioeconomic
	308	characteristics. Prior to fitting the regression models,
	309	descriptive analyses were conducted to estimate the mean
	310	and standard deviations for continuous data and frequencies
	311	and percentages for categorical data.
26 27	312	
28 29 30 31 32 33 34 35 36 37 38 39 40	313	Results
	314	Table 1 provides a descriptive summary of all the
	315	variables for participants from each panel of three
	316	different waves: 2011-2013, 2011-2015 and 2013-2015. High
	317	prevalence of SHS exposure between 30 to 40 years was seen
41 42 43	318	in different panels, accounting for 32.51%, 35.18% and
43 44 45	319	42.69% respectively.
46 47 48	320	The participants were over 45 years old, with the mean
49 50	321	age of 56, 56 and 58 years old, respectively in those waves.
51 52 53	322	Participants were more likely to live in a rural area, have
54 55	323	a lower education background and not to have hypertension
56 57 58	324	or diabetes diagnoses at baseline. In addition, our results
59 60	325	indicated that the mean baseline cognition scores were

higher than cognition scores after 2 or 4 years. The mean scores of CES-D suggested that the prevalence of depression among Chinese middle-aged and old-aged women increased in those years. Other socio-demographic characteristics of the respondents are shown in Table 1 Results from the regression models for the relationship between SHS exposure and each domain of the cognitive function and overall cognition scores are reported in Table 2 and Table 3. Scores of episodic memory, orientation and attention and visuospatial among respondents at baseline were strong predictors of their corresponding cognitive function measures after 2 or 4 years. Based on the analysis adjusted for age, annual household expenditure, education, baseline cognitive function and another chronic health status, we found that only being exposed to SHS for more than 40 years was significantly associated with a decline in visuospatial abilities, episodic memory and overall cognition scores for all respondents. Compared with respondents who were not exposed to SHS or exposed to it for less than 25 years, those who have been exposed to SHS for more than 40 years was associated with a 0.04-point decline in

15/37

BMJ Open

2		
3 4 5	348	visuospatial abilities (95%CI, -0.08 to -0.01 P <0.1), a
6 7	349	0.16-point decline in episodic memory (95%CI, -0.31 to -
8 9 10	350	0.01 P <0.05), and a 0.33-point decline in overall
11 12 13	351	cognition function (95%CI, -0.66 to -0.01 P <0.01). In
14 15	352	addition, age was also negatively associated with
16 17 18	353	cognitive function. Each one-year older was associated
19 20	354	with 0.01-point, 0.01-point, 0.03-point, and 0.05-point
21 22 23	355	decrease in visuospatial (95%CI, -0.01 to -0.00 P <0.01),
24 25 26	356	orientation (95%CI, -0.03 to -0.01 P <0.01), memory
20 27 28	357	(95%CI, -0.31 to-0.01 $P < 0.05$) and overall cognition
29 30 31	358	scores (95%CI, -0.66 to -0.01 P <0.01), respectively.
32 33	359	High education level was associated with better cognitive
34 35 36	360	performance, especially in orientation and attention. In
37 38 39	361	addition, a one-point increase in CESD scores was
40 41	362	associated with 0.02-point decrease in scores of
42 43 44	363	orientation and attention (95%CI, -0.03 to 0.00 P <0.05),
45 46	364	showing that respondents with depressive symptoms were
47 48 49	365	more likely to demonstrate a cognitive decline in
50 51 52	366	specific functions.
52 53 54	367	Discussion
55 56 57	368	Results from this longitudinal study with a large,
58 59	369	representative sample of middle-aged and older women in

59 60

3 4 5	370	China indicated that exposure to SHS for over 40 years was
6 7 8	371	significantly associated with declining performance of
9 10	372	global cognition and cognitive subdomains. It is the first
11 12 13	373	examination of cognitive subdomains concerning household
14 15	374	SHS exposure using a 4-year longitudinal data in China. The
16 17 18	375	inferior performance of SHS on visuospatial abilities,
19 20 21	376	episodic memory and orientation and attention abilities are
22 23	377	novel because these domains were not specifically evaluated
24 25 26	378	in earlier studies among middle-aged and older women who
27 28	379	never smoke. This study builds on previous findings that
29 30 31	380	SHS was associated with poor cognitive performance,
32 33 34	381	especially in children, adolescents and adults $^{[18]}$. We found
35 36	382	that having a high educational level, living in an urban
37 38 39	383	area and having better baseline cognitive function would
40 41 42	384	improve their cognitive performance. The episodic memory
43 44	385	score of participants with diabetes at baseline decreased
45 46 47	386	by 0.172 points compared with those without diabetes, which
48 49	387	is similar to previous findings ^[9] .
50 51 52	388	Moreover, our results showed that compared with women
53 54	389	who have never been exposed to SHS or have been exposed for

more than years have significant decline in а

17/37

less than 20 years, those who have been exposed to SHS for

BMJ Open

2		
3 4 5	392	visuospatial function (0.04-point), episodic memory (0,16-
6 7	393	point) and overall cognitive scores (0.33-point). These
8 9 10	394	findings were similar in magnitude to prior research on the
11 12 13	395	relationship between SHS and cognitive function $^{\left[14 ight] }$. Moheet
13 14 15	396	and colleagues (2015) conducted a cross-sectional study in
16 17 18	397	the North East of England to explore the impact of diabetes
19 20	398	on cognitive function and brain structure (N=150). Research
21 22 23	399	suggested that compared with non-exposed people,
24 25	400	participants who had no history of smoking and being
26 27 28	401	averagely exposed to SHS for around 6 years showed
29 30 31	402	significantly reduced performance in processing speed (i.e.
32 33	403	how quickly one can process information and perform tasks)
34 35 36	404	and executive function (i.e. the ability to organize memory,
37 38	405	cognitive flexibility, and problem-solving ability) ^[22] .
39 40 41	406	Another longitudinal ageing study in China (N=4809, ages
42 43	407	\geq 50) found that never smokers exposed to the highest levels
44 45 46	408	of SHS (salivary cotinine concentrations 0.8-13.5 ng/ml)
47 48 49	409	were more likely to be cognitively impaired (odds ratio
50 51	410	=1.70) than those exposed to little or no SHS ^[18] .
52 53 54	411	Attention referred to the ability to concentrate and
55	410	forme en entri fin etimuli elimbtle declined in leter life

58 59 60

56

57

412

413

18/37

focus on specific stimuli slightly declined in later life

 $^{\left[13\right] }.$ Orientation was one's ability to identify the exact

3 4 5	414	date, month, day and season of the year $^{\left[23\right] }.$ Our results
6 7	415	suggested that for each one-year increase in age, there
8 9 10	416	were additional 0.01-point, 0.02-point, 0.04-point and
11 12 13	417	0.06-point decline in visuospatial, orientation, memory and
14 15	418	overall cognition scores, respectively. SHS seems to be
16 17 18	419	more strongly associated with cognitive decline than ageing,
19 20	420	since the magnitude of signitificant coefficient between
21 22 23	421	SHS and cognitive decline was almost four times the one in
24 25 26	422	ageing. However, the relationship between SHS and
27 28	423	orientation and attention ability was not observed. This
29 30 31	424	may since the size of the sample is relatively small, plus
32 33	425	the period of cohort study after controlling for all
34 35 36	426	demographic and socioeconomic confounders is relatively
37 38 39	427	short.
40 41	428	Visuospatial abilities involve the ability to understand
42 43 44	429	space in two and three dimensions. In our study, an inversed
45 46	430	relationship between SHS exposure and visuospatial
47 48 49	431	abilities among middle-aged and older adults was observed,
50 51 52	432	showing a 0.04-point decline in their visuospatial scores.
53 54	433	Such an inversed relationship between SHS exposure and
55 56 57	434	visuospatial reasoning skills was also reported among
58 59	435	American children (N=5683; ages 6-16), showing that years

19/37

BMJ Open

1		
2		
3 4 5	436	of SHS exposure was significantly associated with lower
6 7	437	scores for reading, math, and visuospatial skills, after
8 9 10	438	adjusting for covariates $^{[15]}$. As one of the most common
11 12	439	cognitive complaints among elders, episodic memory refers
13 14 15	440	to personally experienced events which could be measured
16 17 18	441	by stories, word lists or figures. Previous research has
19 20	442	indicated that the onset of memory decline may vary among
21 22 23	443	different memory types, with episodic memory decline
24 25	444	possibly being lifelong ^[24] . Our study could not explore
26 27 28	445	the onset age of memory decline without doing regression
29 30 31	446	among different age groups. The significant coefficient may
32 33	447	indicate memory decline associated with SHS exposure.
34 35 36	448	The inconsistent conclusions between our studies and
37 38	449	prior ones may be due to the relatively simplified version
39 40 41	450	of the cognition test procedure in CHARLS questionnaires
42 43	451	compared with the Montreal Congnitive Assessment (MoCA) $^{\left[14 ight] }$
44 45 46	452	and Mini-Mental State Examination (MMSE) ^[25] . Some studies
47 48 49	453	also used clinical or magnetic resonance imaging (MRI)
50 51	454	evidence of neurologic damage to detect cognitive
52 53 54	455	impairment. The MoCA functions best as a screening test,
55 56 57	456	having exhibited excellent sensitivity in identifying MCI
57 58 59 60	457	and AD (Alzheimer's disease) at 90% and 100%, respectively

20/37

458 [26].

most popular hypothesis about mechanisms The the underlying the links between SHS exposure and more unsatisfactory cognitive performance lies in the notion that the carbon monoxide (CO) in tobacco smoke may interfere with the oxygen being delivered to the brain via the blood. However, the reasons behind the different effect on various domains of brain function are far from clear. One possible explanation derives from research on laboratory animals. Exposing animals to varying degrees of toxic mixtures of chemicals found in tobacco smoke may lead to reduced neuronal mass in specific regions of the brain associated with learning and memory. Since the hippocampal region of the brain is known to be involved in the mediation of memory ^[27] and learning, further research should be conducted in other regions dominating visuospatial and orientation ability. Another possible mechanism is that prolonged exposure to SHS may be a significant risk factor for cardiovascular disease (CVD) $^{[28]}$, which may therefore lead to a range of health and cognitive problems in later life. In the future, a longitudinal design may elucidate any associations by

21/37

BMJ Open

1		
2		
3 4 5	480	observing long-term exposure to SHS and the incidence of
6 7 8	481	CVD, and whether this CVD may mediate or interact with SHS
9 10	482	exposure to impact cognitive function.
11 12 13	483	Several limitations need to be considered when interpreting
14 15	484	this study and designing future studies. Firstly, exposure
16 17 18	485	to SHS was evaluated based on self-report measures. This
19 20 21	486	might be subject to recall bias and lead to over-or-
22 23	487	underestimation of exposure ^[29] . Therefore, further studies
24 25 26	488	could include more biological assays, for example, cotinine
27 28	489	residue levels or nicotine residue in saliva or hair
29 30 31	490	samples ^[30] . Previous research using serum cotinine as a
32 33 34	491	biomarker of exposure to SHS found that higher levels of
35 36	492	serum cotinine were associated with significantly worse
37 38 39	493	performance in reading, mathematics, and visual and spatial
40 41	494	abilities in children and adolescents [8]. However, no
42 43 44	495	studies have used a combination of biomarker and self-
45 46 47	496	reporting yet ^[31] . Some validated biomarkers could be used
48 49	497	as proxies for AD neuropathological changes, such as
50 51 52	498	cerebrospinal fluid (CSF) amyloid-beta (Aβ)42
53 54	499	concentrations or A β 42/ A β 40 ratio and amyloid load on
55 56 57	500	positron emission tomography (PET) scans. These biomarkers
58 59 60	501	could provide more reliable measures of cognitive

22 / 37

502	impairment ^[32] . Secondly, it may be impossible to control
503	for all potentially confounding variables. After adjusting
504	for age, household expenditure, education, area, chronic
505	health condition and depressive symptoms, some other
506	demographic or socioeconomic confounders may still have
507	been neglected. However, this did not appear to affect the
508	magnitude of the association between SHS exposure and
509	cognition ^[14] . Besides, the analyses only contained
510	household SHS exposure, which precluded the analyses of the
511	influence of environmental smoke inhalation on smoking
512	proclivity. Whether exposure to household SHS can hasten
513	the onset of cognitive impairment for older Chinese women
514	could be further proved by running regression models in
515	different age groups.
516	Acknowledgments :

We would like to thank the professor Yaohui Zhao at Centre for Chinese Economic
Research, Peking University and Mr Benjamin Martin at Birmingham Women's and
Children's Hospital for their thoughtful contributions to this study.

- **Conflict of Interest**
- 521 The authors have no conflicts of interest to declare.
- 522 Author's Contribution

1		
2		
3 4 5	523	Anying Bai wrote and participated in all aspects of this research, including the field
6 7	524	investigation. Dr Yangmu Huang reviewed and supervised this research. Yinzi Jin
8 9 10	525	participated in the statistical analysis of this work and reviewed the final article.
11 12 13	526	Data sharing statement
13 14 15	527	CHARLS data is available to the public online: http://charls.pku.edu.cn
16 17 18	528	Funding Resources
19 20	529	This is a self-funded research.
21	530	
22 23	531	Reference
24	532	
25		
26 27 28	533	1 Fang EF, Scheibye-Knudsen M, Jahn HJ, et al. A research agenda for aging in China in the
28 29 30	534	21st century. Ageing research reviews 2015;24(Pt B):197-205. doi:
31 32	535	10.1016/j.arr.2015.08.003 [published Online First: 2015/08/26]
33 34 35	536	2 Harada CN, Natelson Love MC, Triebel KL. Normal Cognitive Aging. Clinics in Geriatric
36 37	537	Medicine 2013;29(4):737-52. doi: 10.1016/j.cger.2013.07.002
38 39 40	538	3 Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairmenta review of the
41 42	539	evidence and causal mechanisms. <i>Ageing Res Rev</i> 2013;12(4):840-51. doi:
43 44 45	540	10.1016/j.arr.2013.06.004 [published Online First: 2013/07/09]
46 47 48	541	4 Yin P, Ma Q, Wang L, et al. Chronic obstructive pulmonary disease and cognitive
49 50	542	impairment in the Chinese elderly population: a large national survey. International
51 52 53	543	Journal of Chronic Obstructive Pulmonary Disease 2016 doi: 10.2147/copd.S96237
54 55	544	5 Bernardin F, Maheut-Bosser A, Paille Fo. Cognitive Impairments in Alcohol-Dependent
56 57 58	545	Subjects. Frontiers in Psychiatry 2014;5 doi: 10.3389/fpsyt.2014.00078
59 60	546	6 Tadic M, Cuspidi C, Hering D. Hypertension and cognitive dysfunction in elderly: blood

1		
2		
3 4 5	547	pressure management for this global burden. BMC Cardiovasc Disord
6 7 8	548	2016;16(1):208. doi: 10.1186/s12872-016-0386-0 [published Online First:
9 10	549	2016/11/05]
11 12 13	550	7 Modrego PJ, Ferrández J. Depression in Patients With Mild Cognitive Impairment Increases
14 15	551	the Risk of Developing Dementia of Alzheimer Type: A Prospective Cohort Study.
16 17 18	552	Archives of Neurology 2004;61(8):1290-93. doi: 10.1001/archneur.61.8.1290
19 20 21	553	8 Ling J, Heffernan T. The Cognitive Deficits Associated with Second-Hand Smoking.
22 23	554	Frontiers in Psychiatry 2016;7 doi: 10.3389/fpsyt.2016.00046
24 25 26	555	9 Durazzo TC, Meyerhoff DJ, Nixon SJ. A comprehensive assessment of neurocognition in
27 28	556	middle-aged chronic cigarette smokers. Drug Alcohol Depend 2012;122(1-2):105-11.
29 30 31	557	doi: 10.1016/j.drugalcdep.2011.09.019 [published Online First: 2011/10/14]
32 33 34	558	10 Teo KK, Ounpuu S, Hawken S, et al. Tobacco use and risk of myocardial infarction in 52
35 36	559	countries in the INTERHEART study: a case-control study. Lancet (London, England)
37 38 39	560	2006;368(9536):647-58. doi: 10.1016/s0140-6736(06)69249-0 [published Online
40 41	561	First: 2006/08/22]
42 43 44	562	11 Kim BJ, Kang JG, Kim JH, et al. Association between Secondhand Smoke Exposure and
45 46 47	563	Hypertension in 106,268 Korean Self-Reported Never-Smokers Verified by Cotinine.
48 49	564	Journal of clinical medicine 2019;8(8) doi: 10.3390/jcm8081238 [published Online
50 51 52	565	First: 2019/08/21]
53 54	566	12 Teo KK, Ounpuu S, Hawken S, et al. Tobacco use and risk of myocardial infarction in 52
55 56 57	567	countries in the INTERHEART study: a case-control study. The Lancet
58 59 60	568	2006;368(9536):647-58. doi: 10.1016/s0140-6736(06)69249-0

BMJ Open

1		
2		
3 4 5	569	13 Heffernan TM, O'Neill TS. Everyday prospective memory and executive function deficits
6 7 8	570	associated with exposure to second-hand smoke. Journal of addiction
9 10	571	2013;2013:160486. doi: 10.1155/2013/160486 [published Online First: 2013/01/01]
11 12 13	572	14 Yolton K, Dietrich K, Auinger P, et al. Exposure to environmental tobacco smoke and
14 15	573	cognitive abilities among U.S. children and adolescents. Environ Health Perspect
16 17 18	574	2005;113(1):98-103. doi: 10.1289/ehp.7210 [published Online First: 2005/01/01]
19 20	575	15 Llewellyn DJ, Lang IA, Langa KM, et al. Exposure to secondhand smoke and cognitive
21 22 23	576	impairment in non-smokers: national cross sectional study with cotinine
24 25 26	577	measurement. <i>Bmj</i> 2009;338(feb12 2):b462-b62. doi: 10.1136/bmj.b462
27 28	578	16 Malek AM, Cushman M, Lackland DT, et al. Secondhand Smoke Exposure and Stroke:
29 30 31	579	The Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study.
32 33	580	American journal of preventive medicine 2015;49(6):e89-97. doi:
34 35 36	581	10.1016/j.amepre.2015.04.014 [published Online First: 2015/06/29]
37 38 39	582	17 He F, Li T, Lin J, et al. Passive Smoking Exposure in Living Environments Reduces
40 41	583	Cognitive Function: A Prospective Cohort Study in Older Adults. International journal
42 43 44	584	of environmental research and public health 2020;17(4) doi: 10.3390/ijerph17041402
45 46	585	[published Online First: 2020/02/27]
47 48 49	586	18 Pan X, Luo Y, Roberts AR. Secondhand Smoke and Women's Cognitive Function in
50 51 52	587	China. American Journal of Epidemiology 2018;187(5):911-18. doi:
53 54	588	10.1093/aje/kwx377
55 56 57	589	19 Zhao Y, Hu Y, Smith JP, et al. Cohort Profile: The China Health and Retirement
58 59	590	Longitudinal Study (CHARLS). International Journal of Epidemiology 2012;43(1):61-
60		

3		
4 5	591	68. doi: 10.1093/ije/dys203
6 7 8	592	20 Ge S, Wei Z, Liu T, et al. Alcohol Use and Cognitive Functioning Among Middle-Aged and
9 10	593	Older Adults in China: Findings of the China Health and Retirement Longitudinal
11 12 13	594	Study Baseline Survey. Alcohol Clin Exp Res 2018;42(10):2054-60. doi:
14 15	595	10.1111/acer.13861 [published Online First: 2018/08/07]
16 17 18	596	21 Li J, Cacchione PZ, Hodgson N, et al. Afternoon Napping and Cognition in Chinese Older
19 20	597	Adults: Findings from the China Health and Retirement Longitudinal Study Baseline
21 22 23	598	Assessment. J Am Geriatr Soc 2017;65(2):373-80. doi: 10.1111/jgs.14368 [published
24 25	599	Online First: 2016/12/21]
26 27 28	600	22 Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain
29 30 31	601	structure. Annals of the New York Academy of Sciences 2015;1353(1):60-71. doi:
32 33	602	10.1111/nyas.12807
34 35 36	603	23 Peters-Founshtein G, Peer M, Rein Y, et al. Mental-orientation: A new approach to
37 38	604	assessing patients across the Alzheimer's disease spectrum. Neuropsychology
39 40 41	605	2018;32(6):690-99. doi: 10.1037/neu0000463 [published Online First: 2018/05/22]
42 43 44	606	24 Burk JA, Blumenthal SA, Maness EB. Neuropharmacology of attention. European journal
45 46	607	of pharmacology 2018;835:162-68. doi: 10.1016/j.ejphar.2018.08.008 [published
47 48 49	608	Online First: 2018/08/10]
50 51	609	25 Lövdén M, Rönnlund M, Wahlin A, et al. The extent of stability and change in episodic and
52 53 54	610	semantic memory in old age: demographic predictors of level and change. The
55 56	611	journals of gerontology Series B, Psychological sciences and social sciences
57 58 59	612	2004;59(3):P130-4. doi: 10.1093/geronb/59.3.p130 [published Online First:
60		

1		
2		
3 4 5	613	2004/05/01]
6 7	614	26 Li X, Jia S, Zhou Z, et al. The role of the Montreal Cognitive Assessment (MoCA) and its
8 9 10	615	memory tasks for detecting mild cognitive impairment. Neurol Sci 2018;39(6):1029-
11 12 13	616	34. doi: 10.1007/s10072-018-3319-0 [published Online First: 2018/03/20]
14 15	617	27 Trzepacz PT, Hochstetler H, Wang S, et al. Relationship between the Montreal Cognitive
16 17 18	618	Assessment and Mini-mental State Examination for assessment of mild cognitive
19 20 21	619	impairment in older adults. BMC Geriatr 2015;15(107):107. doi: 10.1186/s12877-015-
22 23	620	0103-3 [published Online First: 2015/09/09]
24 25 26	621	28 Ziad S. Nasreddine M. The Montreal Cognitive Assessment (MoCA)- Concept and Clinical
27 28	622	Review. the American Geriatrics Society 2005;53(4):695-99.
29 30 31	623	29 Staples MC, Mandyam CD. Thinking after Drinking: Impaired Hippocampal-Dependent
32 33 34	624	Cognition in Human Alcoholics and Animal Models of Alcohol Dependence. Frontiers
35 36	625	<i>in Psychiatry</i> 2016;7 doi: 10.3389/fpsyt.2016.00162
37 38 39	626	30 Yankelevitz DF, Henschke CI, Yip R, et al. Second-Hand Tobacco Smoke in Never
40 41 42	627	Smokers Is a Significant Risk Factor for Coronary Artery Calcification. JACC:
42 43 44	628	Cardiovascular Imaging 2013;6(6):651-57. doi: 10.1016/j.jcmg.2013.02.004
45 46 47	629	31 Akhtar WZ, Andresen EM, Cannell MB, et al. Association of blood cotinine level with
48 49	630	cognitive and physical performance in non-smoking older adults. Environmental
50 51 52	631	<i>Research</i> 2013;121:64-70. doi: 10.1016/j.envres.2012.10.013
53 54	632	32 Banning LCP, Ramakers I, Deckers K, et al. Affective symptoms and AT(N) biomarkers in
55 56 57	633	mild cognitive impairment and Alzheimer's disease: A systematic literature review.
58 59 60	634	Neuroscience and biobehavioral reviews 2019;107:346-59. doi:

3		
4	635	10.1016/j.neubiorev.2019.09.014 [published Online First: 2019/09/17]
5 6 7	636	
8 9	637	
10 11 12	638	
13 14	639	
15 16 17	640	
18 19		
20 21 22		
23		
24 25		
26 27		
28		
29 30		
31 32		
33		
34 35		
36 37		
38		
39 40		
41 42		
43		
44 45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56		
57 58		
59 60		
00		

 BMJ Open

Table1.Characteristics of the Participants from 3 waves of CHARLS, 2011-2013-2015

	2011-2013		2011-2015		2013-2015	
	(N=2802)		(N=2274)		(N=1799)	
Variable	Count	Frequency	Count	Frequency	Count	Frequency
Area						
Urban	981	35.01%	730	32.10%	556	30.91%
Rural	1821	64.99%	1544	67.90%	1243	69.09%
SHS						
Less than 25 years	759	27.09%	531	23.35%	262	14.56%
More than 25 years and less	634	22.63%	573	25.20%	385	21.40%
than 30 years	034	22.038	513	20.20%	383	∠⊥.4∪≈
More than 30 years and less	911	32.51%	800	35.18%	768	42.69%
than 40 years	911	32.31%	800	55.10%	/00	42.00%
More than 40 years	498	17.77%	370	16.27%	384	21.35%
Education						
Illiterate	1552	55.39%	1309	57.56%	1004	55.81%
Primary education	512	18.27%	414	18.21%	336	18.68%
Secondary or above	738	26.34%	551	24.23%	459	25.51%
Hypertension						
No hypertension	2124	75.80%	1720	75.64%	1365	75.88%
Hypertension with treatment	522	18.63%	1720	75.64%	358	19.90%
Hypertension without	156	5.57%	130	5.72%	76	4.22%
treatment	дСТ	J.J/₹	130	3.128	/ 0	4.228
Diabetes						
No Diabetes in baseline	2643	94.33%	2140	94.11%	1704	94.72%

30 / 37

	143	5.10%	120	5.28%	86	4.78%	
Have Diabetes without	16	0.57%	14	0.62%	0	0.50%	
treatment	10	0.57%	14	0.62%	9	0.50%	
	Count	Mean(SD)		Count	Mean(SD)	Count	Mean(SD)
Age	2802	55.84(8.22)		2274	56.19(7.75)	1799	57.90(7.43)
Annual Household Expenditure,	2802	12706 00/1/10	7 20)	2274	13060.14(13639.	1700	16632.84(18568.2
yuan ^a	2802	13786.99(14197.29)		2274	33)	1799)
Visuospatial ability $^{\rm b}$	2802	0.51(0.50)		2274	0.48(0.50)	1799	0.49(0.50)
Orientation and attention $^{\circ}$	2802	5.87(3.29)		2274	5.84(3.19)	1799	5.97(3.14)
Memory Scores ^d	2802	3.33(1.96)		2274	3.04(1.93)	1799	3.15(1.91)
Baseline Visuospatial ability	2802	0.57(0.50)		2274	0.55(0.50)	1799	0.54(0.50)
Baseline Orientation and	2802	6.39(2.92)		2274	6.25(2.90)	1799	6.16(3.00)
attention	2002	0.33(2.32)			0.23(2.90)	1755	0.10(3.00)
Baseline Memory Scores	2802	3.27(1.98)		2274	3.23(1.92)	1799	3.50(1.78)
Baseline CES-D Score ^e	2802	12.09(5.38)		2274	12.13(5.45)	1799	10.90(5.14)

 d The score range for episodic memory was 0-10. Higher scores indicate better memory function.

e A score of 10 or greater indicated the presence of depressive symptoms.

12

13 14

15 16

17 18

19 20

21 22 23

24 25

26 27

28 29

30 31 32

33 34

35

36

42 43

44 45 46 BMJ Open

Table2.Adjusted Multivariable linear regression analysis of the relationship between smoking exposure and Visuospatial function and Orientation and Attention among older Chinese women (N = 6875), 2011-2013-2015 Visuospatial Function Orientation and Attention VARIABLES 95%CI ß coefficient t 95%CI t coefficient -0.01^a -0.01,-0.00 -6.73 -0.02^a -0.03, -0.01 -4.34 Age Expenditure 0.00 0.00, 0.00 0.01 0.00^a 0.00, 0.00 0.77 SHS Exposured 25 to <30 years -0.01 -0.04, 0.02 -0.72 0.05 -0.12, 0.21 0.56 ≥30 to <40 years -0.02 -0.05, 0.02 -0.95 -0.03 -0.20, 0.13 -0.38 \geq 40 years -0.04^c -0.08, 0.01 -1.67 -0.15 -0.38, 0.09 -1.24 **Baseline Visuospatial Function** 0.23^a 17.93 0.21, 0.26 **Baseline Orientation and Attention** 0.55^a 0.53, 0.57 44.86

Urban ^e	0.06ª	0.04, 0.09	5.27	0.38 ^a	0.25, 0.51	5.72
Education ^f						
Primary	0.23ª	0.20, 0.26	14.00	1.11ª	0.94, 1.27	12.91
Secondary or Above	0.29ª	0.26, 0.32	18.51	1.18ª	1.01, 1.36	13.44
Hypertension ^g						
With Treatment	-0.03	-0.09, 0.02	-1.20	0.06	-0.24, 0.35	-0.38
Without Treatment	-0.02	-0.06, 0.03	-0.69	0.06	-0.11, 0.24	0.04
Missing Group	-0.05°	-0.12, 0.01	-1.67	0.06	-0.19, 0.30	-0.01
Diabetes ^h						
With Treatment	0.02	-0.03, 0.07	0.90	0.25°	-0.03, 0.52	-1.77
Without Treatment	0.03	-0.04, 0.09	0.82	0.21	-0.06, 0.48	-0.23
Missing Group	0.07	-0.08, 0.21	0.88	0.50	-0.22, 1.23	0.67
~ .						
Baseline CES-D Score	-0.00°	-0.00, 0.00	-1.71	-0.02 ^b	-0.03, -0.00	-2.57
year = 2	-0.02	-0.04, 0.01	-1.58	0.09	-0.05, 0.22	1.29

b. p<0.05	
c. p<0.1	
d. Referent: No SHS exposure or Less than	n 25 years.
e. Expenditure is expressed as the natura	al log of the annual household expenditure
f. Referent: Illiterate	
g. Referent: Without hypertension	
h. Referent: Without diabetes	
I. This model adjusted for age, expenditu	ure, living area, education, baseline hypertension, diabetes, depression status and baseline cognitive f
	ure, living area, education, baseline hypertension, diabetes, depression status and baseline cognitive f
	34 / 37
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Table3. Adjusted Multivariable linear regression analysis of the relationship between smoking exposure and Episodic memory and Overall cognitive function among older Chinese women (N = 6875), 2011-2013-2015

	6		Oursell Cognition				
		Episodic Memory	Overall Cognition				
VARIABLES	β	95%CI	t	β coefficie	ent 95%CI	t	
	coefficient	h					
Age	-0.04ª	-0.05,-0.03	-11.37	-0.06 ^a	-0.07, -0.04	-7.87	
Expenditure	0.00	0.00, 0.00	1.30	0.00ª	0.00, 0.00	0.32	
-							
SHS Exposured							
- 25 to <30 years	-0.04	-0.16, 0.08	-0.67	-0.01	-0.25, 0.25	-0.01	
	0.01	0.10, 0.00	0.07	0.01	0.23, 0.23	0.01	
>20 to <40 month	0.02	-0.09, 0.13	0.36	-0.05	-0.29, 0.19	-0.41	
≥30 to <40 years	0.02	-0.09, 0.13	0.36	-0.05	-0.29, 0.19	-0.41	
\geq 40 years	-0.16 ^b	-0.31, -0.01	-2.06	-0.33ª	-0.66, 0.01	-1.93	
Baseline Episodic Memory	0.30ª	0.28, 0.32	25.22				
Baseline Overall Cognition				0.55ª	0.46, 0.83	44.95	

42 43

44 45 46 BMJ Open

Urban ^e	0.25ª	0.16, 0.34	5.60	0.65 ^a	0.46, 0.83	6.68
Education ^f						
Primary	0.70 ^a	0.58, 0.80	12.42	1.77ª	1.53, 2.02	14.28
Secondary or Above	0.97ª	0.86, 1.08	17.29	2.00 ^a	1.74, 2.26	15.24
Hypertension ^g						
With Treatment	0.04	-0.16, 0.23	0.35	0.13	-0.29, 0.56	0.62
Without Treatment	0.06	-0.06, 0.17	0.95	0.12	-0.14, 0.38	0.93
without Treatment	0.00	-0.00, 0.17	0.95	0.12	-0.14, 0.38	0.93
Missing Group	0.07	-0.12, 0.25	0.70	0.10	-0.27, 0.47	0.52
Diabetesh						
With Treatment	-0.20 ^b	-0.38, 0.02	-2.20	-0.04	-0.43, 0.36	0.62
Without Treatment	-0.07	-0.25, 0.11	-0.77	0.08	-0.30, 0.47	0.43
Missing Group	0.32	-0.16, 0.80	1.30	0.87	-0.11, 1.84	1.75
Baseline CES-D Score	-0.01 ^b	-0.01, 0.00	-1.59	-0.01	-0.03, 0.00	-2.57
year = 2	-0.24	-0.33, -0.15	-5.21	-0.17	-0.37, 0.03	-1.70

Constant	0.63	0.53, 0.74	11.54	6.48 ^a	5.59, 7.37	14.28
Abbreviations: CI, confidence interval; S	HS, secondhand smoke.					
a. p<0.01						
b. p<0.05						
c. p<0.1						
d. Referent: No SHS exposure or Less than	25 years.					
e. Expenditure is expressed as the natura	l log of the annual ho	ousehold expenditur	e			
f. Referent: Illiterate						
g. Referent: Without hypertension						
h. Referent: Without diabetes						
I. This model adjusted for age, expenditu	re, living area, educa	ation, baseline hyp	ertension, d	liabetes, dep	ression status	and baseline cognitive fu
		ation, baseline hyp				

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1-3
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			1
Background/rationale	2	Explain the scientific background and rationale for the investigation being	4
		reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			6
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	(
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	7.0
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-9
		effect modifiers. Give diagnostic criteria, if applicable	7.0
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	9
Bias	9	Describe any efforts to address potential sources of bias	-
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7-9
		describe which groupings were chosen and why	0.10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	9-10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<i>e</i>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	10-
		and information on exposures and potential confounders	11
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
		Report numbers of outcome events or summary measures over time	11

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	11
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	11-
		analyses	12
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations 19		Discuss limitations of the study, taking into account sources of potential bias or imprecision.	15-
		Discuss both direction and magnitude of any potential bias	16
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	13-
-		multiplicity of analyses, results from similar studies, and other relevant evidence	15
Generalisability	21	Discuss the generalisability (external validity) of the study results	12
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	17
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.