

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

New diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – Nationwide cross-sectional study of construct validity assessing associations with generic health-related quality of life and clinical variables

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038966
Article Type:	Original research
Date Submitted by the Author:	31-Mar-2020
Complete List of Authors:	Svedbo Engström, Maria; Dalarna University School of Education Health and Social Studies; University of Gothenburg Sahlgrenska Academy, Department of Molecular and Clinical Medicine, Institute of Medicine Leksell, Janeth; Dalarna University, School of Education, Health and Social Studies; Uppsala University, Clinical Diabetology and Metabolism Department of Medical Sciences Johansson, Unn-Britt; Sophiahemmet University College; Karolinska Institutet, Department of Clinical Sciences and Education, Södersjukhuset Borg, Sixten; Lund University, Department of Clinical Sciences in Malmö Health Economics Unit, Medicon Village, Lund Palaszewski, Bo; Västra Götalandsregionen, Department of Data Management and Analysis Franzén, Stefan; Västra Götalandsregionen, Register Center Västra Götaland Gudbjörnsdottir, Soffia; University of Gothenburg Sahlgrenska Academy Department of Molecular and Clinical Medicine, Institute of Medicine; Västra Götalandsregionen, Register Götaland Eeg-Olofsson, Katarina; University of Gothenburg Sahlgrenska Academy Department of Molecular and Clinical Medicine, Institute of Medicine; Sahlgrenska University Hospital
Keywords:	General diabetes < DIABETES & ENDOCRINOLOGY, Clinical audit < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in healt care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Title:

New diabetes questionnaire to add patients' perspectives to diabetes care for adults with

type 1 and type 2 diabetes - Nationwide cross-sectional study of construct validity assessing

associations with generic health-related quality of life and clinical variables

Authors:

Maria Svedbo Engström^{a,b}; Janeth Leksell^{b,c}; Unn-Britt Johansson^{d,e}; Sixten Borg^f, Bo Palaszewski^g; Stefan Franzén^h; Soffia Gudbjörnsdottir^{a,h}; Katarina Eeg-Olofsson^{a,i}

Author affiliations:

^a Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

^b Dalarna University, School of Education, Health and Social Studies, Falun, Sweden

^c Uppsala University, Clinical Diabetology and Metabolism, Department of Medical Sciences, Uppsala, Sweden

- ^d Sophiahemmet University, Stockholm, Sweden
- ^e Karolinska Institutet, Department of Clinical Sciences and Education, Södersjukhuset, Stockholm, Sweden

^f Lund University, Department of Clinical Sciences in Malmö, Health Economics Unit, Medicon Village, Lund, Sweden

^g Region Västra Götaland, Department of Data Management and Analysis, Gothenburg, Sweden

^h Register Center Västra Götaland, Gothenburg, Sweden

ⁱ Sahlgrenska University Hospital, Gothenburg, Sweden

Corresponding author:

Maria Svedbo Engström Postal address: Dalarna University, School of Education, Health and Social Studies, SE-79188 Falun, Sweden E-mail: msd@du.se Telephone: +46(0)70 191 86 05

ORCID iDs:

Borg: 0000-0001-6292-7002; Eeg-Olofsson: 0000-0002-3376-4707; Johansson: 0000-0003-3309-136X; Leksell: 0000-0001-8682-2045; Palaszewski: 0000-0002-4854-2701; Svedbo Engström: 0000-0002-8267-592X

Word Count: 4387

Abstract

Objectives: To study evidence for construct validity, the aim was to describe the outcome from the recently developed Diabetes Questionnaire, assess the associations of that outcome with clinical variables and generic health-related quality of life, and study the sensitivity to differences between clinically relevant groups of glycaemic control in adults with type 1 and type 2 diabetes in a nationwide setting.

Design: Cross-sectional survey.

Setting, participants, and outcome measures: From the Swedish National Diabetes Register, 2,479 adults with type 1 diabetes and 2,469 adults with type 2 diabetes were selected at random among those 18-80 years of age with at least one registered test of glycated haemoglobin (HbA_{1c}) during the last 12 months. The Diabetes Questionnaire and the generic 36-item Short Form version 2 (SF-36v2) health survey were completed by 1373 (55.4%) adults with type 1 diabetes and 1353 (54.8%) with type 2 diabetes.

Results: Related to the pre-specified assumptions, supporting evidence for construct validity for the Diabetes Questionnaire was found. The statistically significant correlations with the clinical variables were few and weak. In relation to the SF-36v2, the strongest correlations were seen in the Diabetes Questionnaire scales General Well-being and Mood and Energy. In those scales, machine learning analyses showed that about 40-45% of the variance was explained by the SF-36v2 results and clinical variables. In multiple regression analyses among three groups with differing levels of HbA_{1c} adjusted for demographics, other risk factors, and diabetes complications, the high-risk group had statistically significant lower scores than the well-controlled group in most Diabetes Questionnaire scales.

Conclusions: This nation-wide study shows that the Diabetes Questionnaire captures some generic health-related quality-of-life dimensions, in addition to adding diabetes-specific information not covered by the SF-36v2 and clinical variables. The Diabetes Questionnaire is also sensitive to differences between clinically relevant groups of glycaemic control.

Keywords: Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Patient-reported outcome; Cross-Sectional Study; Construct validity

Article Summary

Strengths and limitations of this study

- The cross-sectional study used a large, heterogeneous nationwide sample of adults with type 1 diabetes and adults with type 2 diabetes selected at random.
- Respondents were representative of the 2015 population in the Swedish National Diabetes Register.
- The Diabetes Questionnaire scales scores were related to relevant clinical variables and a well-known and often recommended measure of generic health-related quality of life.
- The analyses were limited to the respondents and might reflect a group with greater motivation for participation.
- The questionnaires were only offered in Swedish.

Main text: INTRODUCTION

Everyday life with diabetes as an adult is a complex challenge. Diabetes makes individuals responsible for self-management to avoid serious short-term and long-term complications, while balancing self-perceived health and well-being in the present as well as in the future.[1-6] To support skills for self-management is a central task of diabetes care, and the individual patient's prerequisites, wishes, and available evidence must be taken into account.[1, 4-6] An important step for the Swedish National Diabetes Register (NDR) has therefore been to broaden health-care provider perspectives and enable a systematic collection of adults' perspectives of living with diabetes care.[7-10] The newly developed Diabetes Questionnaire is intended to support meetings with individuals and provide a means for quality improvement at the local, regional, and national levels.[7-9]

The Diabetes Questionnaire has a sound basis and was developed from interviews with adults with type 1 or type 2 diabetes that identified a broad range of aspects important to the target group, such as well-being, impact on daily life, capabilities to manage diabetes, and support from diabetes care.[9] In line with Sen's capability approach,[11, 12] the Diabetes Questionnaire focuses on the individual's opportunities, prerequisites, and possible barriers to live a good life with diabetes.[7-9] Supporting evidence for content validity, face validity, and ease of items understandability and answerability has been presented.[8, 9] In addition, supporting evidence for test-retest reliability and that the scales can be used for comparison between men and women, between different age groups, and, for most scales, between type 1 and type 2 diabetes have been provided.[7, 8] Furthermore, the scales can detect differences between clinically relevant subgroups, such as diabetes type, diabetes treatment, age group, and gender.[7] We have also begun to study the associations with clinical variables by showing low individual-level correlations with glycated haemoglobin (HbA_{1c}), systolic blood pressure (SBP), and LDL cholesterol.[7]

This study reports on an extended analysis of the evidence for construct validity by studying pre-specified assumptions of relationships to other measures and differences between relevant groups.[13] For this work, we chose to focus on differences between subgroups of glycaemic control and the relations to clinical variables relevant for diabetes care and an often-recommended generic measure of health-related quality of life, the 36-item Short Form

(SF-36v2) health survey. To study evidence for construct validity, the aim was to describe the outcome from the Diabetes Questionnaire, to assess the associations of that outcome with clinical variables and generic health-related quality of life, and to study the sensitivity to differences between clinically relevant groups of glycaemic control in adults with type 1 and type 2 diabetes in a nationwide setting.

METHODS

Sample and data-collection

In this cross-sectional survey, 2,479 adults with type 1 diabetes and 2,469 with type 2 diabetes were selected at random without replacement from the Swedish NDR. Eligibility criteria were being alive, 18-80 years of age, and recorded in the NDR during the period from September 30th 2014 to October 1st 2015 with at least one recorded test of HbA_{1c} level during the previous 12 months. With these criteria, 29,245 adults with type 1 diabetes at hospital outpatient clinics and 208,852 adults with type 2 diabetes at primary health care centres were eligible for recruitment. The sample size was estimated to enable subgroup analyses. No formal sample size-calculation was conducted as there was a lack of data on the variation in standard deviations for the Diabetes Questionnaire prior to this data-collection effort.

The Diabetes Questionnaire, the SF-36v2 survey, and a prepaid return envelope were sent by mail in October 2015 to survey selectees and again to non-respondents after 30 days.[7, 14] Both questionnaires were answered by 1,373 (55.4%) individuals with type 1 diabetes and 1,353 (54.8%) with type 2 diabetes[14]. With small differences in response rate depending on the questionnaires in question, the sample has been described as previously focusing on the scale development of the Diabetes Questionnaire[7] and separate analyses of the SF-36v2 data[14]. Age, sex, and clinical variables (diabetes type defined by clinical diagnosis, diabetes duration, HbA_{1c} level, cardiovascular risk factors, complications, physical activity level, and receipt of medical treatment) recorded because of their relevance to high-quality diabetes care were collected from the NDR.

Diabetes Questionnaire

The Diabetes Questionnaire is a 33-item self-reporting questionnaire having a total of 12 scales divided into 2 main parts.[7, 8] Part 1 has 22 items on 8 scales and acts as a patient-reported outcome measure (PROM). These scales are General Wellbeing (GenW), Mood and Energy (MoE), Free of Worries about blood sugar (FreW), Capabilities to Manage your

BMJ Open

Svedbo Engström et al. Manuscript

Diabetes (ManD), Diet and Exercise (DiEx), Not Limited by Diabetes (NLD), Not Limited by Blood Sugar (NLBS), and Support from Others (SuO). Part 2 is an 11-item patient-reported experience measure (PREM) with 4 scales. Those scales are Support from Diabetes Care (SuDC), Access to Diabetes Care (AcDC), Continuity in Diabetes Care (CoDC), and Medical Devices and Medical Treatment (MDMT). All scales are scored from 0 to 100, with higher scores representing the more desirable outcome. The scales ManD, NLBS, and MDMT are specific to diabetes type.[7]

SF-36v2 survey

The SF-36v2 survey is a self-reporting questionnaire for generic health-related quality of life with support for its validity and reliability in overall populations, such as people with diabetes.[3, 15-19] We used the self-administered standard form in Swedish and software from QualityMetric Inc. The eight domains produced are physical functioning (PF); role-physical (RP), that is role limitations due to physical health problems; bodily pain (BP); general health (GH); vitality (VT); social functioning (SF); role-emotional (RE), that is role limitations due to mental health problems; and mental health (MH). The domains are scored from 0 to 100. Higher scores indicate a better general health-related quality of life.[15, 16]

Pre-specified assumptions

As the Diabetes Questionnaire is intended to measure patient perspectives on how they feel, how their diabetes treatment is going, and their experiences of support from diabetes care, the pre-specified assumptions for correlations with clinical variables and the SF-36v2 were as follows:

- A small number of negative and weak correlations would be found between the Diabetes Questionnaire scales and the clinical variables, mostly related to the HbA_{1c} level. There would be no correlations with SBP and LDL cholesterol.
- The Diabetes Questionnaire PROM scales GenW, MoE, FreW, ManD, DiEx, NLD, and NLBS would have more and stronger correlations to the SF-36v2 domains, as compared to the PROM scale SuO and the PREM scales (SuDC, AcDC, CoDC, and MDMT). Observed correlations would be positive, with the strongest in GenW and MoE. Across the other scales, strong correlations were not expected. Correlations ≥0.60 were considered as very strong, 0.50 to <0.60 as strong, 0.40 to <0.50 as moderate, and <0.40 as weak.

Statistical Analysis

 The data for participants with type 1 and type 2 diabetes were analysed separately. The descriptive statistics for each variable are based on non-missing observations. The continuous variables are given as means and standard deviations for normal distributions and as medians and interquartile ranges for skewed distributions. The categorical variables are presented as numbers and percentages. The generation of scale scores from the Diabetes Questionnaire is described in detail elsewhere.[7] The SF-36v2 domain scores were generated using the manual and licensed software from QualityMetric.[16]

Spearman's rank correlation was used to study the associations between the Diabetes Questionnaire scale scores and the clinical variables age, diabetes duration, HbA_{1c} level, body mass index (BMI), LDL cholesterol, and SBP, as well as between the scores from the Diabetes Questionnaire scales and the SF-36v2 domains. With machine learning using random forests, non-linear associations were investigated between the Diabetes Questionnaire scales and the SF-36v2 domains together with clinical variables (age, sex, diabetes duration, HbA_{1c} level, BMI, LDL cholesterol, and SBP). First, the variance in all Diabetes Questionnaire scales was examined in relation to the SF-36v2 domains and the clinical variables together. Next, the variable importance of the SF-36v2 domains and the clinical variables as predictors of the PROM scales GenW and MoE were examined. We also examined the percent variance in HbA_{1c} explained by another clinical variable, the Diabetes Questionnaire scales, and the SF-36v2 domains together. The results are given as percent of the total variance. Each model contained 1000 trees.

To study group-level associations between the Diabetes Questionnaire scales and glycaemic control as measured by HbA_{1c}, unadjusted and adjusted multiple regression analyses were conducted in the same manner as previously described for the SF-36v2 data[14]. HbA_{1c} was considered as a categorical variable divided into three clinically relevant groups corresponding to differing levels of glycaemic control and consequently differing levels of the risk of diabetes complications according to international and Swedish treatment guidelines. The three groups were well-controlled (<52 mmol/mol), sub-optimal (52-69 mmol/mol), and high-risk (\geq 70 mmol/mol). For the three HbA_{1c} groups, the least square mean estimates and 95% confidence intervals were calculated for each scale. The scale observations were modelled with a linear model with fixed effects for the HbA_{1c} group (exposure), age, sex, diabetes duration, BMI, SBP, LDL-cholesterol, micro- and macro-albuminuria, estimated

BMJ Open

Svedbo Engström et al. Manuscript

glomerular filtration rate, retinopathy, smoking status, physical activity level, previous coronary heart disease, previous stroke, and receipt of antihypertensive and lipid lowering treatments. The analyses were performed separately for each imputed data set, and the results were subsequently combined using Rubin's rules. The results are presented as least square mean estimates with 95% confidence intervals.

The extent of missing data was 0% for age and sex, 7.2% for clinical variables (range 0-36.5%), 1.7% for the SF-36v2 domains (range 0-3.3% for individual dimensions), and 4.8% for the Diabetes Questionnaire scales (range 0.3-34.7% for individual scales). For the Diabetes Questionnaire, the higher extent of missing data is likely related to having "not applicable" as a response alternative in some scales, which at this stage was treated as missing data. For scales without "not applicable" as a response alternative, the range for missing data was 0.3-2.8%. Missing data were imputed 10 times, using multiple chained equations.

The standardized mean difference was used to examine the data balance between the HbA_{1c} groups and the deviation from the means in the clinical and demographic data. A significance level of 5% was used throughout; no allowance was made for multiplicity of statistical tests. The analyses were conducted using SAS 9.4 and R 3.4.4.

Patient and public involvement statement

The Diabetes Questionnaire was based on qualitative interviews with adults living with diabetes.[8, 9] Adults with diabetes and representatives from patient organizations participated in expert reviews during the development and initial testing.[8] Adults with diabetes were involved in the pre-testing phase by participating in cognitive interviews and being consulted to comment on questionnaire revisions.[8] The analyses presented here as the previous scale development and evaluation of reliability and validity relied on the contributions from those adults with diabetes who responded to the questionnaires.[7, 8] The Swedish Diabetes Foundation, the national patient organization, has expressed their support for the project.

Ethical considerations

The study conforms to the Declaration of Helsinki and was approved by the Regional Ethical Review Board in Gothenburg, Sweden (No. 029-15, T600-15). Participants gave their informed consent. The letter to the participants contained information about the study's

purpose, the voluntary nature of their participation, and their right to end participation. The letter also disclosed information about the NDR, methods of handling personal data, confidentiality measures, and contact details.

RESULTS

Among respondents with type 1 diabetes, 50.3% were men. The averages of key statistics were 48.6 years for age, 24.7 years for diabetes duration, and 62 mmol/mol for HbA_{1c} level. Among respondents with type 2 diabetes, 60.8% were men. Corresponding averages were 66.6 years for age, 9.4 years for diabetes duration, and 53 mmol/mol for HbA_{1c} level (Table 1). The crude means and standard deviations for the Diabetes Questionnaire scales are given in Table S1. The clinical characteristics of non-respondents are given in Table S2.

Linear correlations between the Diabetes Questionnaire scale scores and the clinical variables

In line with the assumptions, there were few statistically significant linear correlations between the Diabetes Questionnaire scales and the clinical variables. Observed correlations were weak, and most were negative. The results are shown as heat maps in Figs. S1-S2 with details provided in Tables S3-S4.

As assumed, the HbA_{1c} level was the variable with most statistically significant correlations across the Diabetes Questionnaire scales. Statistically significant but weak correlations between having a lower and better HbA_{1c} level and higher and better scores were seen in several Diabetes Questionnaire scales. For participants with type 1 diabetes, significant weak negative correlations (-0.12 to -0.25) were seen in the five Diabetes Questionnaire PROM scales GenW, FreW, ManD, DiEx, and NLBS. The strongest correlations were seen in ManD and DiEx. Among participants with type 2 diabetes, statistically significant but weak negative correlations (-0.13 to -0.24) were seen in the seven Diabetes Questionnaire PROM scales GenW, MoE, FreW, ManD, DiEx, NLD, and NLBS and in the two PREM scales SuDC and AcDC. The strongest correlations were seen in MoE, FreW, and ManD, with generally stronger correlations in the PROM scales than in the PREM scales (Figs. S1-S2, Tables S3-S4).

Svedbo Engström et al. Manuscript

BMJ Open

Table 1. Clinical and demographic characteristics of the respondents separated by diabetes type and glycated haemoglobin (HbA_{1c}) level

Variable	Type 1 diabetes					Type 2 diabetes				
	All	HbA _{1c} <52 mmol/mol	HbA _{1c} 52-69 mmol/mol	HbA _{1c} ≥70 mmol/mol	Standardized mean difference, SMD	All	HbA _{1c} <52 mmol/mol	HbA _{1c} 52-69 mmol/mol	HbA _{1c} ≥70 mmol/mol	Standardized mean difference, SMD
Number (%)	1373	284 (20.7%)	781 (56.9%)	308 (22.4%)		1353	725 (53.6%)	503 (37.2%)	125 (9.2%)	
Men, n (%)	690 (50.3)	152 (53.5)	391 (50.1)	147 (47.7)	0.077	822 (60.8)	444 (61.2)	302 (60.0)	76 (60.8)	0.016
Age, years (SD)	48.6 (16.4)	46.9 (17.0)	49.6 (16.1)	47.8 (16.3)	0.113	66.6 (9.1)	66.5 (9.1)	66.9 (9.0)	65.5 (9.7)	0.103
Diabetes duration, years (IQR)	22.0 (12.0- 36.0)	19.0 (7.0- 32.0)	23.0 (13.0- 37.0)	24.0 (13.0- 37.0)	0.150	8.0 (4.0- 14.0)	6.0 (3.0- 11.0)	10.0 (6.0-16.0)	13.0 (6.0- 17.0)	0.443
HbA _{1c} mmol/mol (SD)	62 (12.7)					53 (12.5)				
BMI, kg/m ² (SD)	26.0 (4.2)	25.2 (3.8)	26.0 (4.2)	26.7 (4.6)	0.239	29.9 (5.3)	29.3 (5.2)	30.3 (5.4)	32.0 (5.5)	0.332
Systolic blood pressure, mmHg (SD)	127.0 (14.0)	124.8 (14.0)	127.5 (13.8)	127.8 (14.2)	0.145	134.3 (14.3)	134.0 (14.4)	134.5 (13.7)	135.1 (16.5)	0.046
Antihypertensive medication, n (%)	589 (44.7)	99 (36.9)	341 (45.3)	149 (50.2)	0.179	1070 (80.1)	572 (79.6)	404 (81.9)	94 (76.4)	0.091
LDL-cholesterol, mmol/L (SD)	2.4 (0.8)	2.5 (0.8)	2.4 (0.8)	2.5 (0.8)	0.077	2.5 (0.9)	2.5 (0.9)	2.4 (0.9)	2.5 (1.0)	0.026
Lipid-lowering medication, n (%)	642 (48.4)	94 (34.6)	378 (49.8)	170 (57.6)	0.315	900 (68.1)	472 (66.6)	344 (70.1)	84 (69.4)	0.050
Micro- albuminuria, n (%)	132 (10.3)	12 (4.6)	70 (9.5)	50 (17.6)	0.285	194 (18.0)	80 (13.9)	83 (20.1)	31 (34.1)	0.323
Macro- albuminuria, n (%)	31 (2.6)	5 (2.1)	12 (1.8)	14 (5.2)	0.126	52 (5.0)	27 (4.8)	20 (5.1)	5 (6.1)	0.037
Estimated Glomerular Filtration Rate,	90.0 (23.5)	90.6 (20.7)	89.1 (22.6)	91.6 (27.7)	0.071	82.3 (23.5)	82.5 (22.3)	81.9 (24.0)	83.4 (27.9)	0.038

Variable	Type 1 diabetes					Type 2 diabetes					
	All	HbA _{1c} <52 mmol/mol	HbA _{1c} 52-69 mmol/mol	HbA _{1c} ≥70 mmol/mol	Standardized mean difference, SMD	All	HbA _{1c} <52 mmol/mol	HbA _{1c} 52-69 mmol/mol	HbA _{1c} ≥70 mmol/mol	Standardized mean difference, SMD	
eGFR, mL/min (SD)											
Retinopathy, n (%)	875 (65.9)	137 (50.6)	520 (68.2)	218 (74.1)	0.333	327 (29.4)	128 (21.7)	153 (36.3)	46 (47.0)	0.366	
Coronary heart disease, n (%)	83 (6.3)	9 (3.3)	53 (7.0)	21 (7.1)	0.113	279 (22.4)	136 (20.2)	111 (24.0)	32 (28.6)	0.130	
Stroke, n (%)	48 (3.6)	5 (1.9)	32 (4.2)	11 (3.7)	0.093	96 (7.8)	48 (7.2)	40 (8.9)	8 (7.1)	0.043	
Smoker, n (%)	135 (10.1)	14 (5.1)	78 (10.2)	43 (14.4)	0.214	162 (12.9)	79 (11.7)	58 (12.3)	25 (23.1)	0.203	
Physical activity, daily, n (%)	359 (27.6)	90 (33.5)	203 (27.2)	66 (23.2)	0.334	426 (34.9)	251 (38.7)	157 (33.9)	18 (16.7)	0.410	
Diabetes treatment				The second se	0.136					0.813	
Diet alone, n (%)						195 (14.4)	172 (23.7)	19 (3.8)	4 (3.3)		
Oral hypoglycaemic agent alone, n (%)					6	718 (53.1)	419 (57.8)	261 (52.0)	38 (30.9)		
Insulin alone, n (%)	1335 (97.2)	271 (95.4)	764 (97.8)	300 (97.4)		130 (9.6)	46 (6.3)	63 (12.5)	21 (17.1)		
Insulin and oral agent, n (%)	32 (2.3)	9 (3.2)	15 (1.9)	8 (2.6)		266 (19.7)	76 (10.5)	140 (27.9)	50 (40.7)		
Insulin pump users, n (%)	356 (26.2)	66 (23.8)	221 (28.5)	69 (22.5)	0.091	2 (0.5)	1 (0.9)	1 (0.5)	0 (0.0)	0.093	

The descriptive statistics are presented as the means and standard deviations (SD) for normally distributed continuous variables, the median and interquartile range (IQR) for skewed distributions, or number and percentages for categorical variables.

BMJ Open

Svedbo Engström et al. Manuscript

For age, statistically significant positive correlations showed that a higher age was weakly associated with higher and better scores in several Diabetes Questionnaire scales. For participants with type 1 diabetes, statistically significant weak positive correlations (0.11 to 0.19) were seen in the four PROM scales MoE, FreW, ManD, and DiEx, and in the two PREM scales AcDC and MDMT. The highest correlations were seen in MoE, FreW, and MDMT. Among participants with type 2 diabetes, statistically significant weak positive correlations (0.12 to 0.16) were seen in the six PROM scales GenW, MoE, FreW, ManD, and DiEx. The highest correlations were seen in MoE, FreW, and DiEx. For LDL cholesterol and SBP, the results came up to the expectations of no statistically significant correlations. However, for participants with type 1 diabetes, a statistically significant negative correlation showed that a lower SBP was weakly associated with better scores in MoE. A lower BMI showed statistically significant weak negative correlations with higher scores in DiEx in both diabetes types as with GenW and MoE in type 2 diabetes. For diabetes duration, statistically significant positive correlations showed that a longer duration was weakly associated with higher scores in FreW and ManD for participants with type 1 diabetes. For those with type 2 diabetes, statistically significant negative correlations showed that a longer duration was associated with lower scores in FreW and NLBS (Figs. S1-S2, Tables S3-S4).

Linear correlations between scores in the Diabetes Questionnaire scales and the SF-36v2 domains

In line with the assumptions, the statistically significant linear correlations between the Diabetes Questionnaire scales and the SF-36v2 domains were stronger in seven of the PROM scales as compared to the PROM scale SuO and the PREM scales. As expected, the observed statistically significant correlations were all positive, showing an association between higher scores in both questionnaires. The results are shown in Figs. 1-2 and Tables S5-S6.

As assumed, the strongest correlations were seen in the Diabetes Questionnaire PROM scales GenW and MoE. Statistically significant positive correlations showed that higher scores in GenW and MoE were strongly associated with higher scores in about half of the SF-36v2 domains. In GenW, statistically significant positive correlations were seen with the SF-36v2 domains PF, GH, VT, and MH. The correlations were very strong with VT (0.60), strong with GH and MH (0.51 to 0.56), and weak with PF. Among those with type 2 diabetes, there were also statistically significant positive correlations between GenW and SF (0.51). In MoE, statistically significant positive correlations were seen with the SF-36v2 domains GH,

VT, SF, and MH. The correlations were very strong with MH (0.60) and strong with GH, VT, and SF (0.51 to 0.58). Among those with type 2 diabetes, statistically significant strong positive correlations were also seen between MoE and RF (0.51). For both diabetes types, statistically significant strong positive correlations were also seen between the PROM scale DiEx and the VT domain (0.51). Statistically significant moderate positive correlations were also seen between the PROM scales also seen between the PROM scales and SF-36v2 domains. In NLD and NLBS, statistically significant moderate positive correlations were more common in type 2 diabetes than in type 1 diabetes. In the PROM scale SuO and the PREM scales, statistically significant correlations were weak (0.11 to 0.32) or absent (Figs. 1-2, Tables S5-S6).

Non-linear associations

The results from the machine learning analysis are shown in Figs. 3 and S3. Similar results were seen for type 1 and type 2 diabetes. Among the PROM scales, the variance was explained by the SF-36v2 domains and the clinical variables to almost 40% in GenW and to around 45% in MoE. In FreW, ManD, DiEx, NLD, and NLBS, the variance was explained to about 25-30% and in SuO to about 10%. Among the PREM scales, SuDC, AcDC, and MDMT were explained to about 10% or below. In CoDC, almost no variance was explained (Fig. 3). As predictors of the Diabetes Questionnaire PROM scales GenW and MoE, the variables with the highest importance were the SF-36v2 domains GH, VT, and MH. LDL cholesterol and SBP had low variable importance (Fig. S3). The percent variance in HbA_{1c} explained by other clinical variables, the SF-36v2 domains, and the Diabetes. Consequently, the importance of the other clinical variables, the SF-36v2 domains, and the Diabetes.

Regression analyses of the Diabetes Questionnaire scales by HbA_{1c} level

The results from the adjusted regression analyses of the Diabetes Questionnaire scales and the HbA_{1c} groups are presented separately for participants with type 1 and type 2 diabetes in Fig. 4. The least square mean estimates and confidence intervals from the unadjusted and adjusted analyses are given in detail in Table S7.

Among those with type 1 diabetes, the adjusted analysis of the HbA_{1c} groups showed significantly lower scores for the high-risk group than the well-controlled group in the eight PROM scales GenW, MoE, FreW, ManD, DiEx, NLD, NLBS, and SuO as in the PREM scale

Page 15 of 46

BMJ Open

Svedbo Engström et al. Manuscript

SuDC. The largest between-group differences were seen in the PROM scales ManD and DiEx, where the well-controlled group had the significantly highest means, followed by the sub-optimal group and the high-risk group. Among those with type 2 diabetes, the adjusted analysis showed that the high-risk group had significantly lower scores than the well-controlled group in all scales but CoDC. In the five PROM scales MoE, FreW, ManD, NLD, and NLBS, the well-controlled group had the significantly highest means, followed by the sub-optimal and high-risk groups. The largest between-group differences were seen in MoE, FreW, NLD, and NLBS (Fig. 4, Table S7).

DISCUSSION

From a nationwide setting with a large sample of adults with type 1 and type 2 diabetes selected at random, we present the outcome from the Diabetes Questionnaire. To study construct validity, we assess the associations of that outcome with clinical variables and generic health-related quality of life, as measured by the SF-36v2 and assess the sensitivity to differences between clinically relevant groups of glycaemic control. We found supporting evidence for construct validity in both type 1 and type 2 diabetes. As expected, there were few statistically significant correlations with the clinical variables. The observed correlations were weak, and most were negative. Also as expected, the correlations with the SF-36v2 domains were positive; the strongest correlations were found in the Diabetes Questionnaire PROM scales GenW and MoE. Furthermore, either weak or no correlations were seen in the PREM scales. In machine learning analyses, the SF-36v2 domains and the clinical variables together explained the variance in the PROM scales GenW and MoE to about 40-45%. In the other scales, the variance explained was low. In regression analyses among three groups with differing levels of HbA_{1c} adjusted for demographics, other risk factors, and diabetes complications, the high-risk group had statistically significantly lower scores than the wellcontrolled group in most Diabetes Questionnaire scales for participants with type 1 diabetes and in almost all scales for those with type 2 diabetes. Statistically significant differences between all three groups of glycaemic control were seen in two scales for type 1 diabetes and in five scales for type 2 diabetes.

Findings and implications

Evaluating the measurement qualities of a questionnaire is a complex and cumulative effort.[13, 20] In this study, we continue the evaluation of the Diabetes Questionnaire by addressing its construct validity. The results show supporting evidence that the Diabetes

 Questionnaire targets different concepts than the clinical variables for diabetes care traditionally covered by the NDR. Thus, the central aspects covered by the Diabetes Questionnaire including patient perspectives on how they feel, how their diabetes treatment is going, or their experiences of support from diabetes care cannot be measured by HbA_{1c} or other tested clinical variables. Nor can the clinical variables be estimated through the Diabetes Questionnaire. We need the combination. There is a growing emphasis that the perspectives of those living with diabetes should be part of clinical meetings and be given priority among outcomes in diabetes care assessments.[1, 5, 6, 21-23] Supplementing decision-making by adding the patient's perspective is suggested to increase the focus on these aspects in clinical meetings[2, 24] and to enhance the quality of care.[24-26] In Sweden, the Patient Act strengthens the patient's position and possibilities for shared decision-making and states that the individual patient's prerequisites and wishes should be taken into account.[27] There is also a growing movement towards person-centred care aiming for partnership that is centred on the patient's experience and individual prerequisites, resources, and barriers. An important basis is the patient's story. [28] We hope that the Diabetes Questionnaire can support the patient story if used in the clinical meetings together with the clinical variables.

The Diabetes Questionnaire is unique in being developed to support clinical meetings with individuals and to be used as a means for quality improvement through longitudinal assessment at a local, regional, and national levels within the frame of a nationwide healthcare quality register.[7-9] Many other questionnaires for diabetes were developed to target a specific aspect within intervention studies.[3, 17, 18] The Diabetes Questionnaire has a broad approach with aspects identified as important to adults with diabetes.[8, 9] The Diabetes Questionnaire is also developed using the vocabulary and phrasing of people with diabetes,[8] unlike many other questionnaires that often use academic or professional jargon. In this study, we found supporting evidence that the Diabetes Questionnaire is sensitive to statistically significant differences between clinically relevant subgroups with differing levels of glycaemic control. The Diabetes Questionnaire was also found to capture some aspects of generic health-related quality of life, while also adding aspects that are not covered by the often-recommended SF-36v2. For routine use within clinical diabetes care, the Diabetes Questionnaire is likely more relevant than the generic SF-36v2. A limitation of the Diabetes Questionnaire is, however, the currently limited opportunity for international comparisons. The opportunities and barriers related to clinical use of the Diabetes Questionnaire are currently being studied from the perspectives of professionals and adults with diabetes.

Strengths and weaknesses

Among the strengths of this study are the large and heterogeneous sample of adults with type 1 and type 2 diabetes selected at random from the nationwide NDR. The respondents were representative of the 2015 population in the NDR (data on file). The results can be considered representative of the Swedish adult population with diabetes related to the coverage rate of about 90% in 2015 when around 40,000 adults with type 1 diabetes and 347,000 with type 2 diabetes were registered in the NDR. Through the NDR, we had access to clinical variables relevant for diabetes care and background data for the non-respondents. Another strength is the use of a well-known measure of health-related quality of life. As there is a lack of agreed-upon benchmarks for how strong positive correlations between questionnaires addressing subjective aspects should be to support convergent construct validity, [29, 30] this study based the division of the correlation strength on reports that such correlations generally are low, [30, 31] often within the range 0.20-0.40[31] or 0.40-0.60[30]. A correlation of 0.60 has been suggested to be extremely strong, as the random error of measurement of the two questionnaires impede perfect correlations.[30] As the Diabetes Questionnaire and the SF-36v2 do not measure the exact same construct, there were no prerequisites for broad strong correlations.[13, 30, 31]

Our study also has limitations. The analyses were limited to the respondents and might reflect a group that is more motivated to participate. Another limitation is that the questionnaires were only offered in Swedish, potentially resulting in a higher proportion of foreign-born individuals among the non-responders than among the respondents. Furthermore, the crosssectional design means that it is not possible to make causal conclusions.

Future perspectives

The evaluation of construct validity is a work of putting the pieces together.[13, 20] Consequently, more studies are needed to relate the Diabetes Questionnaire to different concepts and measures. An important task for diabetes care is to identify suitable interventions that adequately can support individuals with diabetes. The Diabetes Questionnaire can be an important contribution to identify the need and focus for targeted interventions, especially for adults with low scores. In future studies, it is important to evaluate the potential of using scores from the Diabetes Questionnaire scales as the primary selection base or in combination with, for example, HbA_{1c} levels or BMI. It is also essential to evaluate whether the Diabetes Questionnaire scales are responsive to actual changes and can be used as an evaluative tool adding patient perspectives to both nursing and medical interventions, longitudinal assessments, and quality improvement. The NDR is established as a clinical and a national assessment tool in Swedish diabetes care.[4, 32-34] By now, the Diabetes Questionnaire is digitally and freely available for use by all clinics in Sweden connected to the NDR. The Diabetes Questionnaire is also included as the basis for developmental quality indicators in the Swedish national guidelines for diabetes care.[4] In the future, the Diabetes Questionnaire can be amongst the established quality indicators bringing patient perspectives to the fore for diabetes care.

Conclusion

This nationwide study shows that the Diabetes Questionnaire captures some generic healthrelated quality of life dimensions as well as adds diabetes-specific information not covered by the SF-36v2 and clinical variables. The Diabetes Questionnaire is also sensitive to differences between clinically relevant groups of glycaemic control.

List of abbreviations

Abbreviations related to the Diabetes Questionnaire GenW: General Well-being MoE: Mood and Energy FreW: Free of Worries about blood sugar ManD: Capabilities to Manage your Diabetes DiEx: Diet and Exercise NLD: Not Limited by Diabetes NLBS: Not Limited by Blood Sugar SuO: Support from Others SuDC: Support from Diabetes Care AcDC: Access to Diabetes Care CoDC: Continuity in Diabetes Care MDMT: Medical Devices and Medical Treatment PREM: Patient-reported experience measure PROM: Patient-reported outcome measure

 Abbreviations related to the SF-36v2 survey PF: Physical functioning RP: Role-physical BP: Bodily pain GH: General health VT: Vitality SF: Social functioning RE: Role-emotional MH: Mental health

Acknowledgements

The authors wish to thank Ebba Linder for facilitating data collection, Mervete Miftaraj for data management, and Ann-Marie Svensson for intellectual advice and support during the processes of design and ethical approval. Parts of the presented data have been published in an abstract and were presented at the Annual Meeting of the European Association for the Study of Diabetes (EASD) in 2019 and within a doctoral thesis at Gothenburg university, Sweden, in 2019.

Competing interests

Dr. Eeg-Olofsson reports grants from the ALF agreement (ALFGBG 698991), during the conduct of the study; personal fees from Abbott, personal fees from Lilly, personal fees from Novo Nordisk, personal fees from Bayer, outside the submitted work; Dr. Gudbjörnsdottir reports grants from the ALF-agreement (ALFGBG 725311), during the conduct of the study; grants and personal fees from AstraZeneca, grants and personal fees from Boehringer Ingelheim, grants and personal fees from Eli Lilly, grants and personal fees from Merck Sharp & Dohme, grants and personal fees from Novo Nordisk, grants and personal fees from Sanofi, outside the submitted work; the other authors declare that they have nothing to disclose.

Funding

This work was supported by Dalarna University, Falun; Uppsala University, Uppsala; the Sahlgrenska University Hospital, Gothenburg; the Swedish Diabetes Foundation; and the Sophiahemmet Foundation, Stockholm. Unrestricted grants were provided by Astra Zeneca, MSD, Novo Nordisk, and the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (Nos. ALFGBG-725311 and ALFGBG-698991). None of the funding providers have influenced the design of the study; the collection, analysis, or interpretation of data; the writing of the manuscript, or any publication decision at any stage.

Author Contributions

MSE made substantial contributions to the design of the work, applying for ethical approval and funding, interpreting the data, and drafting and revising the manuscript (major contributor). JL and UBJ supervised and made substantial contributions to the design of the work, applied for funding, made intellectual contributions in the interpretation of the data, critically revised the manuscript for important intellectual content, and contributed experience and knowledge from diabetes care and research in diabetes and health-related quality of life. SB made substantial contributions to the design of the work, made intellectual contributions in the interpretation of the data, and critically revised the manuscript for important intellectual content. BP made substantial contributions to the design of the work; performed the selection of the random sample; made intellectual contributions in the interpretation of the data; critically revised the manuscript for important intellectual content, and contributed statistical advice, experience, and knowledge in the research of generic health-related quality of life and patient-reported outcome. SF made substantial contributions to the design of the work, contributed substantial statistical advice, was the major contributor in analysing the data, made substantial intellectual contributions in the interpretation of the data, and critically revised the manuscript for important intellectual content. SG supervised and made substantial contributions to the design of the work; applied for ethical approval and funding; made intellectual contributions in interpretation of the data; critically revised the manuscript for important intellectual content, and contributed medical experience and knowledge from diabetes care, diabetes research, and research using health-care quality registers. KEO supervised and made substantial contributions to the design of the work; applied for ethical approval and funding; generated the SF-36v2 data; interpreted the data; critically revised the manuscript for important intellectual content, and contributed medical experience and knowledge from diabetes care, diabetes research, and research using health-care quality registers. All authors read and approved the final manuscript as well as consented to be on the author list.

Data sharing statement

The data that support the findings of this study are not publicly available. The study presented here has been subject to review by an ethical board and approved for publication related to the specific aim of our research project. With reference to the European General Data Protection Regulation, the data are personal and therefore confidential.

REFERENCES

1. Young-Hyman D, de Groot M, Hill-Briggs F, Gonzalez JS, Hood K, Peyrot M. Psychosocial Care for People With Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016;39(12):2126-40. doi: 10.2337/dc16-2053.

2. Polonsky WH. Emotional and quality-of-life aspects of diabetes management. Curr Diab Rep. 2002;2(2):153-9.

3. Speight J, Reaney, M. D. & Barnard, K. D. Not all roads lead to Rome—a review of quality of life measurement in adults with diabetes. Diabetic Medicine. 2009;26:315–27. doi: DOI: 10.1111/j.1464-5491.2009.02682.x.

4. National Board of Health and Welfare (Socialstyrelsen). National guidelines for diabetes care. [In Swedish]. Nationella riktlinjer för diabetesvård: Stöd för styrning och ledning. www.socialstyrelsen.se; 2018 October. Report No.: 2018-10-25. [Cited 2019 October 16]. Available from: https://www.socialstyrelsen.se/regler-och-riktlinjer/nationella-riktlinjer/diabetes/

5. American Diabetes A. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S37-S47. doi: 10.2337/dc20-S004.

6. American Diabetes A. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S48-S65. doi: 10.2337/dc20-S005.

7. Borg S, Eeg-Olofsson K, Palaszewski B, Svedbo Engstrom M, Gerdtham UG, Gudbjornsdottir S. Patient-reported outcome and experience measures for diabetes: development of scale models, differences between patient groups and relationships with cardiovascular and diabetes complication risk factors, in a combined registry and survey study in Sweden. BMJ Open. 2019;9(1):e025033. doi: 10.1136/bmjopen-2018-025033.

8. Svedbo Engstrom M, Leksell J, Johansson U-B, Eeg-Olofsson K, Borg S, Palaszewski B, et al. A disease-specific questionnaire for measuring patient-reported outcomes and experiences in the Swedish National Diabetes Register: Development and evaluation of content validity, face validity, and test-retest reliability. Patient Educ Couns. 2018;101(1):139-46. doi: 10.1016/j.pec.2017.07.016.

9. Svedbo Engström M, Leksell J, Johansson U-B, Gudbjörnsdottir S. What is important for you? A qualitative interview study of living with diabetes and experiences of diabetes care to establish a basis for a tailored Patient-Reported Outcome Measure for the Swedish National Diabetes Register. BMJ Open. 2016;6(3):e010249. doi: 10.1136/bmjopen-2015-010249.
10. Borg S, Palaszewski B, Gerdtham UG, Fredrik O, Roos P, Gudbjornsdottir S. Patient-reported outcome measures and risk factors in a quality registry: a basis for more patient-centered diabetes care in Sweden. Int J Environ Res Public Health. 2014;11(12):12223-46. doi: 10.3390/ijerph111212223.

11. Sen AK, Nussbaum MC. The quality of life. Oxford: Clarendon Press; 1993.

12. Robeyns I. Sen's capability approach and gender inequality: selecting relevant
capabilities. Feminist Economics. 2003;9 (2-3):61-92. doi: 10.1080/1354570022000078024.

 13. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737-45. doi: 10.1016/j.jclinepi.2010.02.006.

14. Svedbo Engström M, Leksell J, Johansson U-B, Borg S, Palaszewski B, Franzén S, et al. Health-related quality of life and glycaemic control among adults with type 1 and type 2 diabetes – a nationwide cross-sectional study. Health and Quality of Life Outcomes. 2019;17(141):1-11. doi: 10.1186/s12955-019-1212-z.

15. Ware JE, Jr. SF-36 health survey update. Spine. 2000;25(24):3130-9. doi:

16. Maruish ME, editor. User's manual for the SF-36v2 Health Survey. 3rd ed. ed: Lincoln, RI: QualityMetric Incorporated; 2011.

17. Fitzpatrick R, Bowling A, Gibbons E, Haywood K, Jenkinson C, Mackintosh A, et al. A structured review of patient-reported measures in relation to selected chronic conditions, perceptions of quality of care and carer impact National Centre for Health Outcomes Development (Oxford site): Unit of Health-Care Epidemiology, Department of Public Health, University of Oxford; 2006. Available from: http://phi.uhce.ox.ac.uk/

18. Gibbons E, Fitzpatrick R, Patient Reported Outcome Measurement Group. A structured review of patient-reported outcome measures (PROMs) for diabetes. University of Oxford 2009.

19. Norris SL, McNally TK, Zhang X, Burda B, Chan B, Chowdhury FM, et al. Published norms underestimate the health-related quality of life among persons with type 2 diabetes. J Clin Epidemiol. 2011;64(4):358-65. doi: 10.1016/j.jclinepi.2010.04.016.

20. Fayers PM, Machin D. Quality of life: the assessment, analysis, and reporting of patient-reported outcomes. Third ed. Chichester, West Sussex, UK; Hoboken, NJ: John Wiley & Sons Inc.; 2016.

21. Jones A, Vallis M, Pouwer F. If it does not significantly change HbA1c levels why should we waste time on it? A plea for the prioritization of psychological well-being in people with diabetes. Diabet Med. 2015;32(2):155-63. doi: 10.1111/dme.12620.

22. Glasgow RE, Peeples M, Skovlund SE. Where is the patient in diabetes performance measures? The case for including patient-centered and self-management measures. Diabetes Care. 2008;31(5):1046-50. doi: 10.2337/dc07-1845.

23. IDF Clinical Guidelines Task Force. Global Guideline for Type 2 Diabetes: recommendations for standard, comprehensive, and minimal care. Diabet Med. 2006;23(6):579-93. doi: 10.1111/j.1464-5491.2006.01918.x.

24. Kotronoulas G, Kearney N, Maguire R, Harrow A, Di Domenico D, Croy S, et al. What is the value of the routine use of patient-reported outcome measures toward improvement of patient outcomes, processes of care, and health service outcomes in cancer care? A systematic review of controlled trials. J Clin Oncol. 2014;32(14):1480-501. doi: 10.1200/JCO.2013.53.5948

10.1200/JCO.2013.53.5948.

25. Reay N. How to measure patient experience and outcomes to demonstrate quality in care. Nurs Times. 2010;106(7):12-4.

26. Snyder CF, Aaronson NK, Choucair AK, Elliott TE, Greenhalgh J, Halyard MY, et al. Implementing patient-reported outcomes assessment in clinical practice: a review of the options and considerations. Qual Life Res. 2012;21(8):1305-14. doi: 10.1007/s11136-011-0054-x.

27. Patient Act [Swedish]. Patientlag (2014:821).

28. Ekman I, Swedberg K, Taft C, Lindseth A, Norberg A, Brink E, et al. Person-centered care--ready for prime time. Eur J Cardiovasc Nurs. 2011;10(4):248-51. doi: 10.1016/j.ejcnurse.2011.06.008.

 29. Post MW. What to Do With "Moderate" Reliability and Validity Coefficients? Arch Phys Med Rehabil. 2016;97(7):1051-2. doi: 10.1016/j.apmr.2016.04.001.
 30. McDowell I. Measuring health : a guide to rating scales and questionnaires. 3rd ed. Oxford ; New York: Oxford University Press; 2006. xvi, 748 p. p.
 31. Polit DF, Beck CT. Nursing research : generating and assessing evidence for nursing practice. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.
 32. Svensson AM, Gudbjörnsdottir, S., Samuelsson, P., Miftaraj, M., Eliasson, B., Cederholm, J., Rawshani, A. 20 years of successful improvements. Gothenburg, Sweden; 2016. Available from: www.ndr.nu
 33. Eliasson B, Gudbjornsdottir S. Diabetes care - improvement through measurement. Diabetes Res Clin Pract. 2014;106 Suppl 2:S291-4. doi: 10.1016/S0168-8227(14)70732-6.
 34. Gudbjornsdottir S, Cederholm J, Nilsson PM, Eliasson B. The National Diabetes Register in Sweden: an implementation of the St. Vincent Declaration for Quality Improvement in Diabetes Care. Diabetes Care. 2003;26(4):1270-6.

Figure Legends

Fig. 1. Spearman's rank correlation between the Diabetes Questionnaire scales and the SF-36v2 domains in type 1 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment. SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health.

Fig. 2. Spearman's rank correlation between the Diabetes Questionnaire scales and the SF-36v2 domains in type 2 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment. SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health. Fig. 3. Percent variance in the Diabetes Questionnaire scales explained by the SF-36v2 domains and clinical variables in type 1 (A) and type 2 diabetes (B)

GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Fig. 4. Adjusted least square mean estimates with 95% confidence intervals for the Diabetes Questionnaire scales in type 1 diabetes (A) and type 2 diabetes (B) separated by glycated haemoglobin (HbA_{1c}) level

Adjusted for age, sex, diabetes duration, body mass index, systolic blood pressure, LDL cholesterol level, micro- and macro-albuminuria, estimated glomerular filtration rate, retinopathy, smoking status, physical activity level, receipt of antihypertensive and lipid lowering treatments, previous coronary heart disease and previous stroke.

GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Supplementary material

Supplementary figures

Fig. S1. Spearman's rank correlation between the Diabetes Questionnaire scales and clinical variables in type 1 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

BMJ Open

Svedbo Engström et al. Manuscript

Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

Fig. S2. Spearman's rank correlation between the Diabetes Questionnaire scales and clinical variables in type 2 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment. Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

Fig. S3. Variable importance of clinical variables and the SF-36v2 domains as predictors of the Diabetes Questionnaire scales GenW (General Wellbeing) and MoE (Mood and Energy) in type 1 (A and B) and type 2 diabetes (C and D)

Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role-emotional; MH: mental health.

Supplementary tables

Table S1. Crude means and standard deviations for the Diabetes Questionnaire scales and the SF-36v2 domains for participants with type 1 diabetes and those with type 2 diabetes

Table S2. Clinical and demographic characteristics for non-respondents separated for type 1 and type 2 diabetes

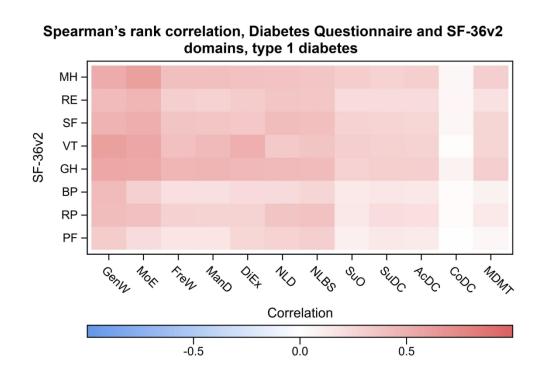
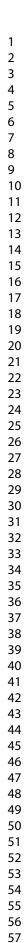
Table S3. Spearman's rank correlations with p-values between the Diabetes Questionnaire scale scores and clinical variables in type 1 diabetes

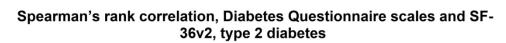
Table S4. Spearman's rank correlations with p-values between the Diabetes Questionnaire scale scores and clinical variables in type 2 diabetes

Table S5. Spearman's rank correlations with p-values between the Diabetes Questionnaire scales and the SF-36v2 domains in type 1 diabetes

Table S6. Spearman's rank correlations with p-values between the Diabetes Questionnaire scales and the SF-36v2 domains in type 2 diabetes

Table S7. Least square mean estimates and 95% confidence intervals for the Diabetes Questionnaire scales in three glycated haemoglobin (HbA_{1e}) groups for type 1 and type 2 diabetes

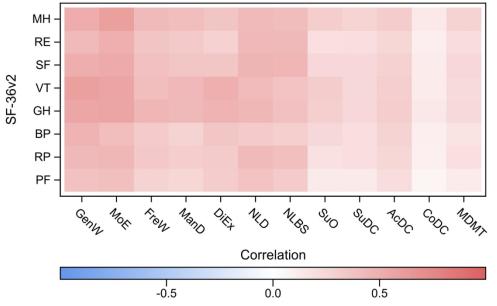
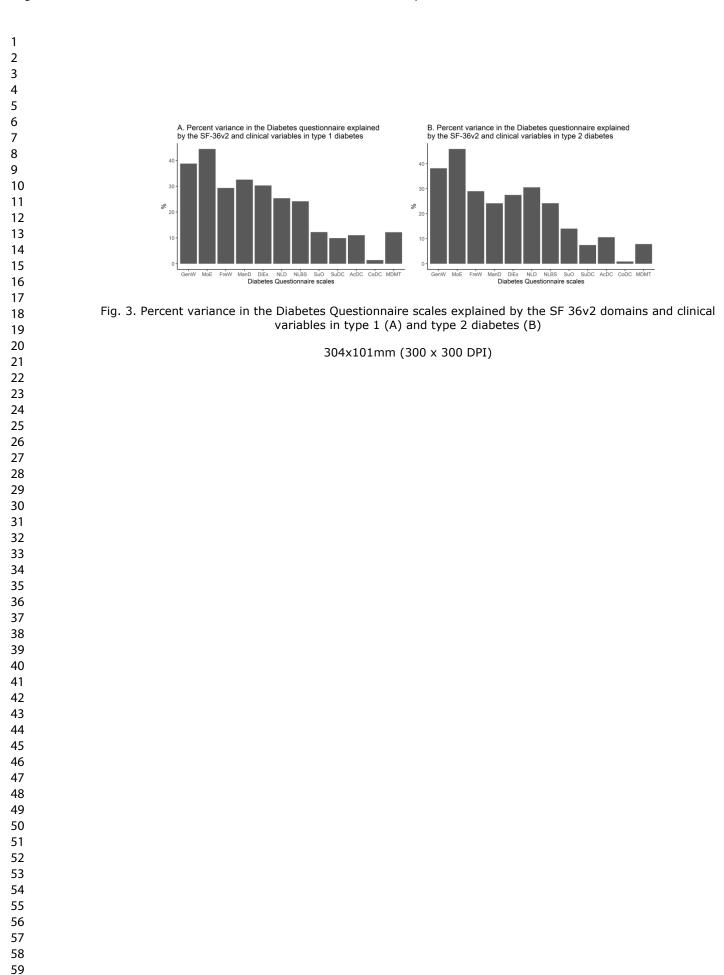
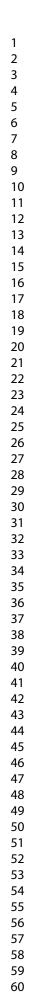
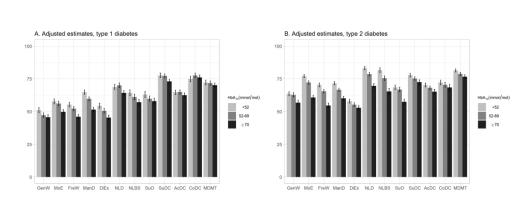



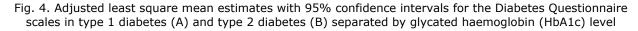

Fig. 1. Spearman's rank correlation between the Diabetes Questionnaire scales and the SF 36v2 domains in type 1 diabetes

127x88mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60


Fig. 2. Spearman's rank correlation between the Diabetes Questionnaire scales and the SF 36v2 domains in type 2 diabetes

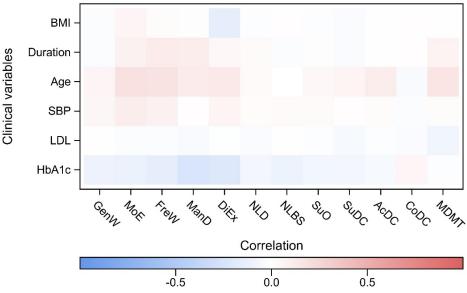
127x88mm (300 x 300 DPI)

349x119mm (300 x 300 DPI)

SUPPLEMENTARY MATERIAL

To the article titled

New diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – Nationwide cross-sectional study of construct validity assessing associations with generic health-related quality of life and clinical variables


By

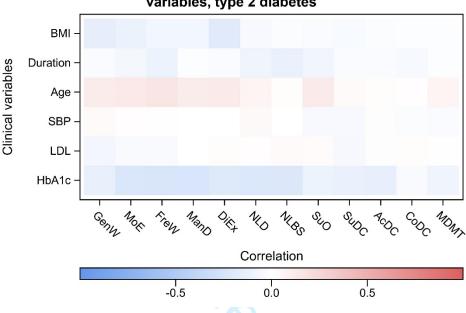
Maria Svedbo Engström; Janeth Leksell; Unn-Britt Johansson; Sixten Borg, Bo Palaszewski; Stefan Franzén; Soffia Gudbjörnsdottir; Katarina Eeg-Olofsson

Submitted to BMJ Open

Supplementary figures

Fig. S1. Spearman's rank correlation between the Diabetes Questionnaire scales and clinical variables in type 1 diabetes

Spearman's rank correlation, Diabetes Questionnaire and clinical variables, type 1 diabetes


Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

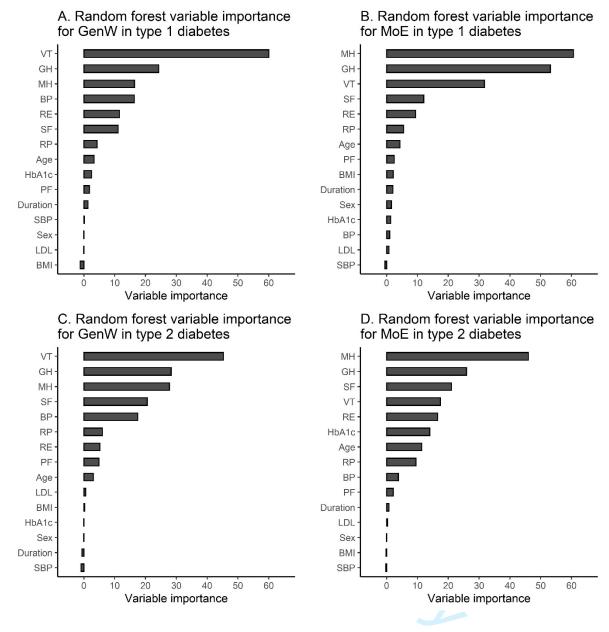
Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Fig. S2. Spearman's rank correlation between the Diabetes Questionnaire scales and clinical variables in type 2 diabetes

Spearman's rank correlation, Diabetes Questionnaire and clinical variables, type 2 diabetes


Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A nationwide cross-sectional study of life and clinical variables - A na

Fig. S3. Variable importance of clinical variables and the SF-36v2 domains as predictors of the Diabetes Questionnaire scales GenW (General Wellbeing) and MoE (Mood and Energy) in type 1 (A and B) and type 2 diabetes (C and D)

Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role-emotional; MH: mental health.

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Supplementary tables

 Table S1. Crude means and standard deviations for the Diabetes Questionnaire scales and the SF-36v2 domains for participants with type 1 diabetes and those with type 2 diabetes

Diabetes	Type 1 diabetes	Type 2 diabetes	p-value	Standardized mean
Questionnaire scale				difference, SMD
GenW	59.69 (23.81)	63.76 (24.71)	< 0.001	0.168
MoE	64.07 (23.60)	75.19 (22.25)	< 0.001	0.485
FreW	54.89 (21.91)	69.03 (22.29)	< 0.001	0.640
ManD	63.20 (20.16)	70.48 (19.89)	< 0.001	0.364
DiEx	56.66 (24.36)	58.88 (24.08)	0.018	0.092
NLD	75.33 (23.47)	84.14 (21.70)	< 0.001	0.390
NLBS	69.97 (26.94)	80.94 (26.84)	< 0.001	0.408
SuO	62.32 (23.46)	66.26 (23.71)	< 0.001	0.167
SuDC	78.35 (20.29)	77.89 (22.61)	0.574	0.022
AcDC	67.80 (20.73)	71.31 (22.61)	< 0.001	0.162
CoDC	80.04 (23.29)	71.42 (27.39)	< 0.001	0.339
MDMT	75.40 (21.78)	80.47 (18.39)	< 0.001	0.252

Diabetes questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Variable	Type 1 diabetes (n=1106)	Type 2 diabetes (n=1116)
Men, %	60.7	58.1
Age, years (SD)	41.2 (15.5)	62.8 (10.9)
Diabetes duration, years (SD)	21.7 (14.0)	8.7 (7.0)
HbA _{1c} , mmol/mol (SD)	65.2 (15.1)	54.7 (14.3)
BMI, kg/m^2 (SD)	26.1 (4.6)	30.9 (5.9)
Systolic blood pressure, mmHg (SD)	126.1 (14.0)	134.7 (15.8)
Antihypertensive medication, %	34.6	77.5
LDL-cholesterol, mmol/L (SD)	2.53 (0.79)	2.64 (0.93)
Lipid-lowering medication, %	37.1	60.5
Micro-albuminuria, %	11.4	18.4
Macro-albuminuria, %	5.6	5.0
Retinopathy, %	66.2	30.5
Smoker, %	15.7	18.4
Physical activity, daily, %	20.3	27.1
Diabetes treatment		
Diet alone, %	-	20.1
Oral hypoglycaemic agent alone, %	5	52.5
Insulin alone, %	97.2	8.1
Insulin and oral agent, %	2.3	16.7
Insulin pump users, %	19.9	_

Table S2. Clinical and demographic characteristics for non-responders separated for type 1 and type 2 diabetes

The descriptive statistics are presented as the means and standard deviations (SD) for continuous variables or number and percentages for categorical variables.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic healthrelated quality of life and clinical variables

Clinical variable	GenW	МоЕ	FreW	ManD	DiEx	NLD	NLBS	SuO	SuDC	AcDC	CoDC	MDMT
Age	0.06	0.19	0.18	0.13	0.14	0.03	0.01	0.05	0.07	0.11	-0.04	0.17
	(0.0184)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(0.2050)	(0.8445)	(0.0875)	(0.0093)	(<.0001)	(0.1635)	(<.0001)
Diabetes	-0.02	0.09	0.13	0.11	0.05	0.04	-0.02	-0.01	-0.03	-0.00	0.01	0.08
duration	(0.4673)	(0.0006)	(<.0001)	(<.0001)	(0.0456)	(0.1981)	(0.4678)	(0.6936)	(0.2024)	(0.9883)	(0.6045)	(0.0027)
HbA _{1c}	-0.12	-0.12	-0.16	-0.25	-0.21	-0.07	-0.12	-0.08	-0.07	-0.05	0.06	-0.02
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(0.0073)	(<.0001)	(0.0101)	(0.0070)	(0.0542)	(0.0356)	(0.5485)
BMI	-0.02	0.07	0.03	-0.01	-0.15	-0.01	0.02	-0.01	-0.03	-0.00	0.02	0.01
	(0.4601)	(0.0151)	(0.2763)	(0.6738)	(<.0001)	(0.6239)	(0.5767)	(0.6620)	(0.2568)	(0.9175)	(0.5998)	(0.7292)
SBP	0.06	0.12	0.09	0.02	0.07	0.03	0.03	0.03	0.01	0.03	-0.03	0.03
	(0.0231)	(<.0001)	(0.0005)	(0.5036)	(0.0072)	(0.3393)	(0.2152)	(0.3092)	(0.6002)	(0.2773)	(0.3239)	(0.2610)
LDL	-0.00	-0.02	-0.02	-0.04	-0.01	-0.03	-0.00	-0.02	-0.06	-0.02	-0.03	-0.09
	(0.9452)	(0.4805)	(0.4380)	(0.1549)	(0.8077)	(0.2406)	(0.9780)	(0.5905)	(0.0474)	(0.5275)	(0.2873)	(0.0023)

Table S3. Spearman's rank correlations with p-values between the Diabetes Questionnaire scale scores and clinical variables in type 1 diabetes

 Diabetes questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Clinical variables: BMI: body mass index; SBP: systolic blood pressure; LDL: LDL cholesterol; HbA_{1c}: glycated haemoglobin level.

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Clinical variable	GenW	MoE	FreW	ManD	DiEx	NLD	NLBS	SuO	SuDC	AcDC	CoDC	MDMT
Age	0.12	0.14	0.16	0.12	0.14	0.07	0.02	0.13	0.04	0.02	0.01	0.07
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(0.0061)	(0.3646)	(0.0002)	(0.1926)	(0.3657)	(0.6265)	(0.0089)
Diabetes	-0.03	-0.07	-0.11	-0.02	-0.04	-0.10	-0.13	-0.09	-0.04	-0.03	-0.06	-0.01
duration	(0.2226)	(0.0202)	(<.0001)	(0.5662)	(0.1868)	(0.0007)	(<.0001)	(0.0184)	(0.2043)	(0.2353)	(0.0570)	(0.6150)
HbA _{1c}	-0.14	-0.24	-0.24	-0.24	-0.21	-0.23	-0.22	-0.11	-0.13	-0.15	-0.04	-0.09
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(0.0015)	(<.0001)	(<.0001)	(0.1270)	(0.0012)
BMI	-0.15	-0.12	-0.08	-0.08	-0.20	-0.05	-0.03	-0.03	-0.05	-0.03	-0.01	-0.02
	(<.0001)	(<.0001)	(0.0046)	(0.0037)	(<.0001)	(0.0752)	(0.3242)	(0.4203)	(0.0854)	(0.3238)	(0.6580)	(0.5507)
SBP	0.03	0.02	0.01	0.00	0.00	0.04	0.01	-0.05	-0.05	-0.01	-0.02	-0.03
	(0.2195)	(0.5649)	(0.7496)	(0.9131)	(0.8954)	(0.1082)	(0.8433)	(0.1746)	(0.0781)	(0.6444)	(0.4327)	(0.2736)
LDL	-0.07 (0.0151)	-0.04 (0.1773)	-0.04 (0.1310)	0.00 (0.9813)	0.02 (0.4793)	0.02 (0.5751)	0.04 (0.2250)	0.03 (0.4554)	-0.06 (0.0504)	-0.01 (0.7171)	0.02 (0.5061)	0.01 (0.8070)

Table S4. Spearman's rank correlations with p-values between the Diabetes Questionnaire scale scores and clinical variables in type 2 diabetes

Diabetes questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Clinical variables: BMI: body mass index; SBP: systolic blood pressure; LDL: LDL cholesterol; HbA_{1c}: glycated haemoglobin level.

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Table S5. Spearman's rank correlations with p-values between the Diabetes Questionnaire scales and the SF-36v2 domains in type 1 diabetes

				SF-36v2	domain			
Diabetes Questionnaire scale	PF	RP	BP	GH	VT	RF	SF	МН
GenW	0.33	0.43	0.43	0.56	0.60	0.43	0.48	0.53
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
MoE	0.23	0.40	0.30	0.55	0.57	0.46	0.52	0.60
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
FreW	0.17	0.29	0.21	0.46	0.40	0.31	0.38	0.41
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
ManD	0.18	0.28	0.20	0.47	0.44	0.29	0.37	0.41
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
DiEx	0.26	0.28	0.23	0.45	0.51	0.32	0.35	0.39
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
NLD	0.29	0.37	0.24	0.44	0.34	0.37	0.42	0.38
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
NLBS	0.31	0.39	0.27	0.43	0.37	0.35	0.41	0.36
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
SuO	0.10	0.15	0.14	0.29	0.30	0.23	0.29	0.32
	(0.0017)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
SuDC	0.15	0.22	0.16	0.31	0.29	0.23	0.27	0.29
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
AcDC	0.13	0.20	0.15	0.30	0.28	0.23	0.26	0.31
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
CoDC	0.01	0.03	0.03	0.08	0.02	0.06	0.06	0.06
	(0.8176)	(0.3182)	(0.3309)	(0.0027)	(0.3822)	(0.0375)	(0.0297)	(0.0335)
MDMT	0.06	0.14	0.09	0.30	0.27	0.19	0.26	0.30
	(0.0240)	(<.0001)	(0.0006)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role-emotional; MH: mental health.

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Table S6. Spearman's rank correlations with p-values between the Diabetes Questionnaire scales and the SF-36v2 domains in type 2 diabetes

	SF-36v2 domain												
Diabetes Questionnaire scale	PF	RP	BP	GH	VT	RF	SF	МН					
GenW	0.39	0.44	0.48	0.56	0.60	0.44	0.51	0.53					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
MoE	0.41	0.45	0.42	0.57	0.58	0.51	0.54	0.60					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
FreW	0.28	0.35	0.34	0.47	0.42	0.38	0.40	0.43					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
ManD	0.26	0.32	0.28	0.44	0.45	0.34	0.37	0.42					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
DiEx	0.32	0.33	0.36	0.48	0.51	0.30	0.36	0.38					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
NLD	0.38	0.44	0.34	0.46	0.43	0.45	0.47	0.43					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
NLBS	0.34	0.40	0.31	0.40	0.38	0.44	0.46	0.42					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
SuO	0.14	0.19	0.25	0.31	0.32	0.20	0.26	0.32					
	(0.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
SuDC	0.14	0.21	0.21	0.26	0.25	0.21	0.26	0.28					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
AcDC	0.22	0.26	0.28	0.32	0.31	0.26	0.29	0.32					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					
CoDC	0.07	0.10	0.11	0.16	0.13	0.11	0.13	0.14					
	(0.0130)	(0.0006)	(0.0001)	(<.0001)	(<.0001)	(0.0002)	(<.0001)	(<.0001)					
MDMT	0.13	0.20	0.18	0.24	0.24	0.22	0.26	0.28					
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)					

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role-emotional; MH: mental health.

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic healthrelated quality of life and clinical variables

Table S7. Least square mean estimates and 95% confidence intervals for the Diabetes Questionnaire scales in three glycated haemoglobin (HbA_{1c}) groups for type 1 and type 2 diabetes

Diabetes			Type 1	diabetes					Type 2	diabetes		
Questionn	Un	adjusted analy	vsis	A	djusted analys	is	Un	adjusted analy	vsis	А	djusted analys	sis
aire scale	HbA _{1c}											
	<52	52-69	≥70	<52	52-69	≥ 70	<52	52-69	≥70	<52	52-69	≥70
	mmol/mol											
GenW	64.33	59.27	56.34	51.11	47.23	45.66	65.97	62.92	54.26	63.63	62.81	56.81
	(63.46-	(58.74-	(55.49-	(49.14-	(45.44-	(43.80-	(65.41-	(62.24-	(52.90-	(62.10-	(61.29-	(54.85-
	65.20)	59.79)	57.19)	53.07)	49.01)	47.53)	66.54)	63.60)	55.62)	65.15)	64.32)	58.78)
MoE	67.15	65.14	58.32	57.77	56.14	49.75	79.24	72.75	61.02	77.12	72.23	60.73
	(66.29-	(64.62-	(57.48-	(55.87-	(54.41-	(47.96-	(78.74-	(72.15-	(59.80-	(75.78-	(70.91-	(58.99-
	68.01)	65.66)	59.16)	59.66)	57.86)	51.54)	79.74)	73.35)	62.25)	78.46)	73.56)	62.46)
FreW	58.21	56.09	48.72	55.28	52.22	46.09	73.07	66.72	54.82	70.39	65.51	54.66
	(57.41-	(55.61-	(47.96-	(53.51-	(50.61-	(44.42-	(72.57-	(66.12-	(53.62-	(69.03-	(64.16-	(52.90-
	59.01)	56.58)	49.49)	57.05)	53.82)	47.75)	73.57)	67.32)	56.03)	71.75)	66.86)	56.42)
ManD	70.05	63.88	55.09	64.84	59.71	51.49	74.12	67.74	60.35	71.53	66.65	60.07
	(69.33-	(63.45-	(54.40-	(63.20-	(58.23-	(49.95-	(73.67-	(67.20-	(59.26-	(70.33-	(65.46-	(58.51-
	70.78)	64.32)	55.79)	66.47)	61.19)	53.03)	74.56)	68.28)	61.43)	72.74)	67.85)	61.63)
DiEx	63.95	56.52	50.18	54.44	50.59	45.40	62.48	55.86	50.13	57.97	55.31	52.85
	(63.07-	(55.98-	(49.32-	(52.50-	(48.83-	(43.57-	(61.92-	(55.20-	(48.80-	(56.54-	(53.91-	(51.02-
	64.84)	57.06)	51.04)	56.37)	52.35)	47.23)	63.03)	56.52)	51.47)	59.40)	56.72)	54.68)
NLD	76.79	76.59	70.75	68.78	70.09	64.26	87.94	81.82	71.54	83.17	78.57	69.61
	(75.93-	(76.07-	(69.92-	(66.84-	(68.33-	(62.44-	(87.46-	(81.23-	(70.37-	(81.79-	(77.21-	(67.83-
	77.66)	77.11)	71.58)	70.71)	71.85)	66.09)	88.43)	82.40)	72.71)	84.55)	79.94)	71.38)
NLBS	74.54	70.33	64.60	64.39	61.14	57.16	85.59	77.91	65.85	81.69	75.53	65.42
	(73.54-	(69.73-	(63.63-	(62.08-	(59.05-	(54.98-	(84.98-	(77.18-	(64.37-	(79.96-	(73.81-	(63.19-
	75.54)	70.93)	65.58)	66.69)	63.23)	59.33)	86.20)	78.64)	67.33)	83.43)	77.25)	67.65)
SuO	66.33	61.93	59.61	63.01	59.84	58.00	68.56	65.70	57.12	68.47	66.84	57.40
	(65.31-	(61.32-	(58.63-	(60.74-	(57.79-	(55.86-	(67.83-	(64.89-	(55.49-	(66.77-	(65.20-	(55.25-
	67.35)	62.54)	60.59)	65.28)	61.88)	60.14)	69.29)	66.51)	58.74)	70.16)	68.48)	59.56)
SuDC	79.87	79.34	74.41	77.71	77.27	73.04	80.06	76.49	70.89	77.76	75.23	72.46
	(79.13-	(78.89-	(73.70-	(76.01-	(75.73-	(71.44-	(79.54-	(75.87-	(69.64-	(76.38-	(73.86-	(70.69-
	80.61)	79.79)	75.13)	79.41)	78.81)	74.64)	80.58)	77.11)	72.14)	79.14)	76.59)	74.24)
AcDC	69.08	68.52	64.78	64.69	64.90	62.54	73.64	69.68	64.39	70.33	68.12	65.20
	(68.32-	(68.06-	(64.05-	(62.96-	(63.33-	(60.91-	(73.12-	(69.06-	(63.14-	(68.92-	(66.72-	(63.37-
	69.84)	68.98)	65.51)	66.42)	66.47)	64.17)	74.16)	70.30)	65.64)	71.75)	69.52)	67.02)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 41 of 46

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Diabetes			Type 1	diabetes		Type 2 diabetes						
Questionn	Un	adjusted analy	vsis	Adjusted analysis			Unadjusted analysis			Adjusted analysis		
aire scale	HbA _{1c}	HbA _{1c}	HbA _{1c}	HbA _{1c}	HbA _{1c}	HbA _{1c}						
	<52	52-69	≥ 70	<52	52-69	≥70	<52	52-69	≥ 70	<52	52-69	≥70
	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol						
CoDC	78.03	80.76	80.05	74.89	77.58	76.08	72.45	70.90	67.72	72.22	70.45	68.43
	(77.13-	(80.22-	(79.20-	(72.88-	(75.75-	(74.18-	(71.77-	(70.11-	(66.11-	(70.34-	(68.59-	(66.01-
	78.92)	81.29)	80.90)	76.90)	79.41)	77.97)	73.12)	71.70)	69.33)	74.09)	72.31)	70.84)
MDMT	77.14	75.78	72.81	72.21	71.74	70.14	82.46	78.80	76.45	81.42	78.79	76.64
	(76.34-	(75.30-	(72.04-	(70.41-	(70.11-	(68.45-	(82.02-	(78.29-	(75.41-	(80.23-	(77.62-	(75.11-
	77.94)	76.26)	73.58)	74.01)	73.38)	71.84)	82.90)	79.31)	77.48)	82.62)	79.96)	78.17)

Table S7 continued. GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Reporting Item Page Number Title and

abstract

Title

#1a Indicate the study's design with a commonly

used term in the title or the abstract

1 2	Abstract	<u>#1b</u>	Provide in the abstract an informative and	2
3 4			balanced summary of what was done and	
5 6 7			what was found	
, 8 9 10 11	Introduction			
12 13	Background /	<u>#2</u>	Explain the scientific background and	4-5
14 15 16	rationale		rationale for the investigation being reported	
17 18	Objectives	<u>#3</u>	State specific objectives, including any	5
19 20 21			prespecified hypotheses	
22 23 24	Methods			
25 26 27	Study design	<u>#4</u>	Present key elements of study design early in	5
27 28 29 30			the paper	
31 32	Setting	<u>#5</u>	Describe the setting, locations, and relevant	5
33 34			dates, including periods of recruitment,	
35 36 37			exposure, follow-up, and data collection	
38 39	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources	5
40 41 42			and methods of selection of participants.	
43 44 45		<u>#7</u>	Clearly define all outcomes, exposures,	5-8
46 47			predictors, potential confounders, and effect	
48 49 50			modifiers. Give diagnostic criteria, if	
50 51 52			applicable	
53 54 55	Data sources /	<u>#8</u>	For each variable of interest give sources of	5-7
56 57	measurement		data and details of methods of assessment	
58 59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

			BMJ Open	Page 44 of 46
1			(measurement). Describe comparability of	
2 3			assessment methods if there is more than	
4 5 6			one group. Give information separately for for	
7 8			exposed and unexposed groups if applicable.	
9 10 11	Bias	<u>#9</u>	Describe any efforts to address potential	5,8,16
12 13 14			sources of bias	
15 16 17	Study size	<u>#10</u>	Explain how the study size was arrived at	5
18 19 20	Quantitative	<u>#11</u>	Explain how quantitative variables were	5-8
20 21 22	variables		handled in the analyses. If applicable,	
23 24			describe which groupings were chosen, and	
25 26 27			why	
28 29	Statistical	<u>#12a</u>	Describe all statistical methods, including	7-8
30 31 32	methods		those used to control for confounding	
33 34 25	Statistical	<u>#12b</u>	Describe any methods used to examine	7-8
35 36 37	methods		subgroups and interactions	
38 39 40	Statistical	<u>#12c</u>	Explain how missing data were addressed	8
41 42	methods			
43 44 45	Statistical	<u>#12d</u>	If applicable, describe analytical methods	5
46 47 48	methods		taking account of sampling strategy	
49 50	Statistical	#12e	Describe any sensitivity analyses	n/a
51 52 53	methods			
54 55	Results			
56 57 58	างธอนแอ			
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Participants	<u>#13a</u>	Report numbers of individuals at each stage	5
3 4			of study—eg numbers potentially eligible,	
5 6 7			examined for eligibility, confirmed eligible,	
7 8 9			included in the study, completing follow-up,	
10 11			and analysed. Give information separately for	
12 13			for exposed and unexposed groups if	
14 15			applicable.	
16 17				
18 19 20	Participants	<u>#13b</u>	Give reasons for non-participation at each	n/a With reference to
20 21 22			stage	ethical guidelines we did
22 23 24				not ask potential
25 26				participants to give their
27 28				reasons for non-
29 30				participation.
31 32	Participants	#13c	Consider use of a flow diagram	n/a
33 34 25	i antoipanto	<u>// 100</u>		n/a
35 36 37	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	9-11
38 39			demographic, clinical, social) and information	
40 41			on exposures and potential confounders.	
42 43			Give information separately for exposed and	
44 45			unexposed groups if applicable.	
46 47	Descriptive data	#4.46	Indicate sumber of participants with mission	0
48 49	Descriptive data	<u>#14b</u>	Indicate number of participants with missing	8
50 51 52			data for each variable of interest	
52 53 54	Outcome data	<u>#15</u>	Report numbers of outcome events or	9
55 56			summary measures. Give information	
57 58				
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guideline	s.xhtml

	BMJ Open
	separately for exposed and unexposed
	groups if applicable.
<u>#16a</u>	Give unadjusted estimates and, if applicable,
	confounder-adjusted estimates and their

-				
10 11			precision (eg, 95% confidence interval). Make	
12 13			clear which confounders were adjusted for	
14 15 16 17			and why they were included	
17 18 19	Main results	<u>#16b</u>	Report category boundaries when continuous	7,10-11,13-14
20 21 22			variables were categorized	
23 24	Main results	<u>#16c</u>	If relevant, consider translating estimates of	n/a
25 26			relative risk into absolute risk for a meaningful	
27 28 29 30			time period	
31 32	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses	9,12-13
33 34			of subgroups and interactions, and sensitivity	
35 36			analyses	
37 38 39 40	Discussion			
41 42 43	Key results	<u>#18</u>	Summarise key results with reference to	14
ΛΛ			atudu akiaatiyaa	

Main results

39 40	Discussion						
41							
42	Key results	<u>#18</u>	Summarise key results with reference to	14			
43 44 45 46			study objectives				
47	Limitations	<u>#19</u>	Discuss limitations of the study, taking into	16			
48 49							
50			account sources of potential bias or				
51			improvision. Discuss both direction and				
52			imprecision. Discuss both direction and				
53							

magnitude of any potential bias.

7-8,13-14

1 2	Interpretation	<u>#20</u>	Give a cautious overall interpretation	15-17				
3 4			considering objectives, limitations, multiplicity					
5 6 7			of analyses, results from similar studies, and					
7 8 9 10			other relevant evidence.					
11 12	Generalisability	<u>#21</u>	Discuss the generalisability (external validity)	16				
13 14 15			of the study results					
16 17	Other							
18 19 20	Information							
21 22 23	Funding	<u>#22</u>	Give the source of funding and the role of the	18-19				
23 24 25			funders for the present study and, if					
26 27			applicable, for the original study on which the					
28 29 30			present article is based					
31 32 33	Notes:							
34 35	• 13b: n/a With reference to ethical guidelines we did not ask potential participants to give their							
36 37 38 39	reasons for non-participation.							
39 40 41	16b: 7,10-11,13-14 The STROBE checklist is distributed under the terms of the Creative							
42 43	Commons Attribution License CC-BY. This checklist was completed on 27. March 2020 using							
44 45 46	https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with							
40 47 48	Penelope.ai							
49 50								
51 52 53								
55 54 55								
56 57								
58 59 60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

BMJ Open

New diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – Nationwide cross-sectional study of construct validity assessing associations with generic health-related quality of life and clinical variables

Journal:	BMJ Open				
Manuscript ID	bmjopen-2020-038966.R1				
Article Type:	Original research				
Date Submitted by the Author:	13-Jul-2020				
Complete List of Authors:	Svedbo Engström, Maria; Dalarna University School of Education Health and Social Studies; University of Gothenburg Sahlgrenska Academy, Department of Molecular and Clinical Medicine, Institute of Medicine Leksell, Janeth; Dalarna University, School of Education, Health and Social Studies; Uppsala University, Clinical Diabetology and Metabolism, Department of Medical Sciences Johansson, Unn-Britt; Sophiahemmet University College; Karolinska Institutet, Department of Clinical Sciences and Education, Södersjukhuset Borg, Sixten; Lund University, Department of Clinical Sciences in Malmö, Health Economics Unit, Medicon Village, Lund Palaszewski, Bo; Västra Götalandsregionen, Department of Data Management and Analysis Franzén, Stefan; Västra Götalandsregionen, Register Center Västra Götaland Gudbjörnsdottir, Soffia; University of Gothenburg Sahlgrenska Academy, Department of Molecular and Clinical Medicine, Institute of Medicine; Västra Götalandsregionen, Register Götaland Eeg-Olofsson, Katarina; University of Gothenburg Sahlgrenska Academy, Department of Molecular and Clinical Medicine, Institute of Medicine; Sahlgrenska University Hospital				
Primary Subject Heading :	Diabetes and endocrinology				
Secondary Subject Heading:	Health services research				
Keywords:	General diabetes < DIABETES & ENDOCRINOLOGY, Clinical audit < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT				
	·				

1	
2	
3	
4	SCHOLAR ONE [™]
5	Manuscripts
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review on

Title:

New diabetes questionnaire to add patients' perspectives to diabetes care for adults with

type 1 and type 2 diabetes – Nationwide cross-sectional study of construct validity assessing

associations with generic health-related quality of life and clinical variables

Authors:

Maria Svedbo Engström^{a,b}; Janeth Leksell^{b,c}; Unn-Britt Johansson^{d,e}; Sixten Borg^f, Bo Palaszewski^g; Stefan Franzén^h; Soffia Gudbjörnsdottir^{a,h}; Katarina Eeg-Olofsson^{a,i}

Author affiliations:

^a Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

^b Dalarna University, School of Education, Health and Social Studies, Falun, Sweden

^c Uppsala University, Clinical Diabetology and Metabolism, Department of Medical Sciences, Uppsala, Sweden

- ^d Sophiahemmet University, Stockholm, Sweden
- ^e Karolinska Institutet, Department of Clinical Sciences and Education, Södersjukhuset, Stockholm, Sweden
- ^f Lund University, Department of Clinical Sciences in Malmö, Health Economics Unit, Medicon Village, Lund, Sweden
- ^g Region Västra Götaland, Department of Data Management and Analysis, Gothenburg, Sweden
- ^h Register Center Västra Götaland, Gothenburg, Sweden
- ⁱ Sahlgrenska University Hospital, Gothenburg, Sweden

Corresponding author:

Maria Svedbo Engström Postal address: Dalarna University, School of Education, Health and Social Studies, SE-79188 Falun, Sweden E-mail: msd@du.se Telephone: +46(0)70 191 86 05

ORCID iDs:

Borg: 0000-0001-6292-7002; Eeg-Olofsson: 0000-0002-3376-4707; Johansson: 0000-0003-3309-136X; Leksell: 0000-0001-8682-2045; Palaszewski: 0000-0002-4854-2701; Svedbo Engström: 0000-0002-8267-592X

Word Count: 4662

Abstract

Objectives: To study evidence for construct validity, the aim was to describe the outcome from the recently developed Diabetes Questionnaire, assess the associations of that outcome with clinical variables and generic health-related quality of life, and study the sensitivity to differences between clinically relevant groups of glycaemic control in adults with type 1 and type 2 diabetes in a nationwide setting.

Design: Cross-sectional survey.

Setting: Swedish diabetes care clinics connected to the National Diabetes Register (NDR). **Participants:** Among 2,479 adults with type 1 diabetes and 2,469 with type 2 diabetes selected at random from the NDR, 1373 (55.4%) with type 1 and 1353 (54.8%) with type 2 diabetes chose to participate.

Outcome measures: The Diabetes Questionnaire, the generic 36-item Short Form version 2 (SF-36v2) health survey and clinical variables.

Results: Related to the pre-specified assumptions, supporting evidence for construct validity for the Diabetes Questionnaire was found. Supporting divergent validity, the statistically significant correlations with the clinical variables were few and weak. In relation to the SF-36v2 and in support of convergent validity, the strongest correlations were seen in the Diabetes Questionnaire scales General Well-being and Mood and Energy. In those scales, machine learning analyses showed that about 40-45% of the variance was explained by the SF-36v2 results and clinical variables. In multiple regression analyses among three groups with differing levels of HbA_{1c} adjusted for demographics, other risk factors, and diabetes complications, the high-risk group had, in support of sensitivity to clinically relevant groups, statistically significant lower scores than the well-controlled group in most Diabetes Questionnaire scales.

Conclusions: This nation-wide study shows that the Diabetes Questionnaire captures some generic health-related quality-of-life dimensions, in addition to adding diabetes-specific information not covered by the SF-36v2 and clinical variables. The Diabetes Questionnaire is also sensitive to differences between clinically relevant groups of glycaemic control.

Keywords: Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Patient-reported outcome; Cross-Sectional Study; Construct validity

Article Summary

Strengths and limitations of this study

- The cross-sectional study used a large, heterogeneous nationwide sample of adults with type 1 diabetes and adults with type 2 diabetes selected at random.
- Respondents were representative of the 2015 population in the Swedish National Diabetes Register.
- The Diabetes Questionnaire scales scores were related to relevant clinical variables and a well-known and often recommended measure of generic health-related quality of life.
- The analyses were limited to the respondents and might reflect a group with greater motivation for participation.
- The questionnaires were only offered in Swedish.

Main text: INTRODUCTION

 Everyday life with diabetes as an adult is a complex challenge. Diabetes makes individuals responsible for self-management to avoid serious short-term and long-term complications, while balancing self-perceived health and well-being in the present as well as in the future.[1-6] To support skills for self-management is a central task of diabetes care, and the individual patient's prerequisites, wishes, and available evidence must be taken into account.[1, 4-6] An important step for the Swedish National Diabetes Register (NDR) has therefore been to broaden health-care provider perspectives and enable a systematic collection of adults' perspectives of living with diabetes and their experiences of whether they are offered adequate support from diabetes care.[7-10] The newly developed Diabetes Questionnaire is intended to support meetings with individuals and provide a means for quality improvement at the local, regional, and national levels.[7-9]

The Diabetes Questionnaire was developed from interviews with adults with type 1 or type 2 diabetes that identified a broad range of aspects important to the target group, such as wellbeing, impact on daily life, capabilities to manage diabetes, and support from diabetes care.[9] In line with Sen's capability approach,[11, 12] the Diabetes Questionnaire focuses on the individual's opportunities, prerequisites, and possible barriers to live a good life with diabetes.[7-9] Supporting evidence for content validity, face validity, and ease of items understandability and answerability has been presented.[8, 9] In addition, supporting evidence for test-retest reliability and that the scales can be used for comparison between men and women, between different age groups, and, for most scales, between type 1 and type 2 diabetes have been provided.[7, 8] Furthermore, the scales can detect differences between clinically relevant subgroups, such as diabetes type, diabetes treatment, age group, and gender.[7] We have also begun to study the associations with clinical variables by showing low individual-level correlations with glycated haemoglobin (HbA_{1c}), systolic blood pressure (SBP), and LDL cholesterol.[7]

This study adds to previous work and reports on an extended analysis of the evidence for construct validity. Construct validity concerns the confidence that a questionnaire captures the construct it was intended to measure[13]. It is a measurement property that involves a complex process using a variety of techniques studying differences between relevant groups and pre-specified assumptions of logical relationships to scores of a range of other measures

BMJ Open

Svedbo Engström et al. Manuscript, revised version

and patient characteristics[13, 14]. The assumptions can postulate which aspects are expected to be related to each other, presenting evidence for convergent validity, and which aspects are expected to be relatively unrelated, supporting evidence for divergent, also known as discriminant, validity[13] For this work, we chose to focus on differences between subgroups of glycaemic control as measured by HbA_{1c} and the relations to clinical variables relevant for diabetes care and an often-recommended generic measure of health-related quality of life, the 36-item Short Form (SF-36v2) health survey. To study evidence for construct validity, the aim was to describe the outcome from the Diabetes Questionnaire, to assess the associations of that outcome with clinical variables and generic health-related quality of life, and to study the sensitivity to differences between clinically relevant groups of glycaemic control in adults with type 1 and type 2 diabetes in a nationwide setting.

METHODS

Sample and data-collection

In this cross-sectional survey, 2,479 adults with type 1 diabetes and 2,469 with type 2 diabetes were selected at random without replacement from the Swedish NDR. Eligibility criteria were being alive, 18-80 years of age, and recorded in the NDR during the period from September 30th 2014 to October 1st 2015 with at least one recorded test of HbA_{1c} level during the previous 12 months. With these criteria, 29,245 adults with type 1 diabetes at hospital outpatient clinics and 208,852 adults with type 2 diabetes at primary health care centres were eligible for recruitment. In the data collection phase, we aimed at a sample size allowing for subgroup analyses.

The Diabetes Questionnaire, the SF-36v2 survey, and a prepaid return envelope were sent by mail in October 2015 to survey selectees and again to non-respondents after 30 days.[7, 15] Both questionnaires were answered by 1,373 (55.4%) individuals with type 1 diabetes and 1,353 (54.8%) with type 2 diabetes[15]. With small differences in response rate depending on the questionnaires in question, the sample has been described as previously focusing on the scale development of the Diabetes Questionnaire[7] and separate analyses of the SF-36v2 data[15]. Age, sex, and clinical variables (diabetes type defined by clinical diagnosis, diabetes duration, HbA_{1c} level, cardiovascular risk factors, complications, physical activity level, and receipt of medical treatment) recorded because of their relevance to high-quality diabetes care were collected from the NDR.

Diabetes Questionnaire

The Diabetes Questionnaire is a 33-item self-reporting questionnaire having a total of 12 scales divided into 2 main parts.[7, 8] Part 1 has 22 items on 8 scales and acts as a patient-reported outcome measure (PROM). These scales are General Wellbeing (GenW), Mood and Energy (MoE), Free of Worries about blood sugar (FreW), Capabilities to Manage your Diabetes (ManD), Diet and Exercise (DiEx), Not Limited by Diabetes (NLD), Not Limited by Blood Sugar (NLBS), and Support from Others (SuO). Part 2 is an 11-item patient-reported experience measure (PREM) with 4 scales. Those scales are Support from Diabetes Care (SuDC), Access to Diabetes Care (AcDC), Continuity in Diabetes Care (CoDC), and Medical Devices and Medical Treatment (MDMT). All scales are scored from 0 to 100, with higher scores representing the more desirable outcome. The scales ManD, NLBS, and MDMT are specific to diabetes type.[7]

SF-36v2 survey

The SF-36v2 survey is a self-reporting questionnaire for generic health-related quality of life with support for its validity and reliability in overall populations, such as people with diabetes.[3, 16-20] We used the self-administered standard form in Swedish and software from QualityMetric Inc. The eight domains produced are physical functioning (PF); role-physical (RP), that is role limitations due to physical health problems; bodily pain (BP); general health (GH); vitality (VT); social functioning (SF); role-emotional (RE), that is role limitations due to mental health problems; and mental health (MH). The domains are scored from 0 to 100. Higher scores indicate a better general health-related quality of life.[16, 17]

Pre-specified assumptions

As the Diabetes Questionnaire is intended to measure patient perspectives on how they feel, how their diabetes treatment is going, and their experiences of support from diabetes care, the pre-specified assumptions for correlations with clinical variables and the SF-36v2 were as follows:

- Based on clinical experience, it was proposed that, in support of divergent validity, a small number of negative and weak correlations would be found between the Diabetes Questionnaire scales and the clinical variables, mostly related to the HbA_{1c} level. There would be no correlations with SBP and LDL cholesterol.
- Based on examinations of the content in the two questionnaires, it was proposed that in support of convergent validity, the Diabetes Questionnaire PROM scales GenW,

 BMJ Open

MoE, FreW, ManD, DiEx, NLD, and NLBS would have more and stronger correlations to the SF-36v2 domains, as compared to the PROM scale SuO and the PREM scales (SuDC, AcDC, CoDC, and MDMT). Observed correlations would be positive, with the strongest in GenW and MoE. In support of divergent validity strong correlations were not expected across the other scales. Correlations \geq 0.60 were considered as very strong, 0.50 to <0.60 as strong, 0.40 to <0.50 as moderate, and <0.40 as weak.

Statistical Analysis

The data for participants with type 1 and type 2 diabetes were analysed separately. The descriptive statistics for each variable are based on non-missing observations. The continuous variables are given as means and standard deviations for normal distributions and as medians and interquartile ranges for skewed distributions. The categorical variables are presented as numbers and percentages. The generation of scale scores from the Diabetes Questionnaire is described in detail elsewhere.[7] The SF-36v2 domain scores were generated using the manual and licensed software from QualityMetric.[17]

In relation to the pre-specified assumptions, Spearman's rank correlation was used to study the monoton associations between the Diabetes Questionnaire scale scores and the clinical variables age, diabetes duration, HbA_{1c} level, body mass index (BMI), LDL cholesterol, and SBP, as well as between the scores from the Diabetes Questionnaire scales and the SF-36v2 domains. To broaden the analysis, machine learning using random forests was conducted to investigate non-linear associations between the Diabetes Questionnaire scales and the SF-36v2 domains together with clinical variables (age, sex, diabetes duration, HbA_{1c} level, BMI, LDL cholesterol, and SBP). Random forest is a general tree-based regression and classification method that uses bootstrapping to create a large number of regressions of classification trees that are combined to produce a model prediction.[21] The use of a large number of trees allows the model to depict non-linear associations without the need to prespecify these in a model, while at the same time guarding against overfit.[21] First, the variance in all Diabetes Questionnaire scales was examined in relation to the SF-36v2 domains and the clinical variables together. Next, the variable importance of the SF-36v2 domains and the clinical variables as predictors of the PROM scales GenW and MoE were examined. We also examined the percent variance in HbA_{1c} explained by another clinical

Svedbo Engström et al. Manuscript, revised version

variable, the Diabetes Questionnaire scales, and the SF-36v2 domains together. The results are given as percent of the total variance. Each model contained 1000 trees.

To study the sensitivity of the Diabetes Ouestionnaire scales to clinically relevant groups of glycaemic control, group-level associations between the Diabetes Questionnaire scales and glycaemic control as measured by HbA_{1c}, unadjusted and adjusted multiple regression analyses were conducted in the same manner as previously described for the SF-36v2 data.[15] HbA_{1c} was considered as a categorical variable divided into three clinically relevant groups corresponding to differing levels of glycaemic control and consequently differing levels of the risk of diabetes complications according to international and Swedish treatment guidelines.[4, 22] The three groups were well-controlled (<52 mmol/mol), sub-optimal (52-69 mmol/mol), and high-risk (\geq 70 mmol/mol). For the three HbA_{1c} groups, the least square mean estimates and 95% confidence intervals were calculated for each scale. The scale observations were modelled with a linear model with fixed effects for the HbA_{1c} group (exposure), age, sex, diabetes duration, BMI, SBP, LDL-cholesterol, micro- and macroalbuminuria, estimated glomerular filtration rate, retinopathy, smoking status, physical activity level, previous coronary heart disease, previous stroke, and receipt of antihypertensive and lipid lowering treatments. Missing data were imputed 10 times, using multiple chained equations. The analyses were performed separately for each imputed data set, and the results were subsequently combined using Rubin's rules. The results are presented as least square mean estimates with 95% confidence intervals.

The extent of missing data was 0% for age and sex, 7.2% for clinical variables (range 0-36.5%), 1.7% for the SF-36v2 domains (range 0-3.3% for individual dimensions), and 4.8% for the Diabetes Questionnaire scales (range 0.3-34.7% for individual scales). For the Diabetes Questionnaire, the higher extent of missing data is likely related to having "not applicable" as a response alternative in some scales, which at this stage was treated as missing data. For scales without "not applicable" as a response alternative in some scales, which at this stage for missing data was 0.3-2.8%.

The standardized mean difference was used to examine the data balance between the HbA_{1c} groups and the deviation from the means in the clinical and demographic data. A significance level of 5% was used throughout; no allowance was made for multiplicity of statistical tests. The analyses were conducted using SAS 9.4 and R 3.4.4.

Patient and public involvement statement

The Diabetes Questionnaire was based on qualitative interviews with adults living with diabetes.[8, 9] Adults with diabetes and representatives from patient organizations participated in expert reviews during the development and initial testing.[8] Adults with diabetes were involved in the pre-testing phase by participating in cognitive interviews and being consulted to comment on questionnaire revisions.[8] The analyses presented here as the previous scale development and evaluation of reliability and validity relied on the contributions from those adults with diabetes who responded to the questionnaires.[7, 8] The Swedish Diabetes Foundation, the national patient organization, has expressed their support for the project.

Ethical considerations

The study conforms to the Declaration of Helsinki and was approved by the Regional Ethical Review Board in Gothenburg, Sweden (No. 029-15, T600-15). Participants gave their informed consent. The letter to the participants contained information about the study's purpose, the voluntary nature of their participation, and their right to end participation. The letter also disclosed information about the NDR, methods of handling personal data, confidentiality measures, and contact details.

RESULTS

Among respondents with type 1 diabetes, 50.3% were men. The averages of key statistics were 48.6 years for age, 24.7 years for diabetes duration, and 62 mmol/mol for HbA_{1c} level. Among respondents with type 2 diabetes, 60.8% were men. Corresponding averages were 66.6 years for age, 9.4 years for diabetes duration, and 53 mmol/mol for HbA_{1c} level (Table 1). The crude means and standard deviations for the Diabetes Questionnaire scales are given in Table S1. The clinical characteristics of non-respondents are given in Table S2.

Svedbo Engström et al. Manuscript, revised version

Table 1. Clinical and demographic characteristics of the respondents separated by diabetes type and glycated haemoglobin (HbA_{1c}) level

Variable	Type 1 diabetes						Type 2 diabetes				
	All	HbA _{1c} <52 mmol/mol	HbA _{1c} 52-69 mmol/mol	HbA _{1c} ≥70 mmol/mol	Standardized mean difference, SMD	All	HbA _{1c} <52 mmol/mol	HbA _{1c} 52-69 mmol/mol	HbA _{1c} ≥70 mmol/mol	Standardized mean difference, SMD	
Number (%)	1373	284 (20.7%)	781 (56.9%)	308 (22.4%)		1353	725 (53.6%)	503 (37.2%)	125 (9.2%)		
Men, n (%)	690 (50.3)	152 (53.5)	391 (50.1)	147 (47.7)	0.077	822 (60.8)	444 (61.2)	302 (60.0)	76 (60.8)	0.016	
Age, years (SD)	48.6 (16.4)	46.9 (17.0)	49.6 (16.1)	47.8 (16.3)	0.113	66.6 (9.1)	66.5 (9.1)	66.9 (9.0)	65.5 (9.7)	0.103	
Diabetes duration, years (IQR)	22.0 (12.0- 36.0)	19.0 (7.0- 32.0)	23.0 (13.0- 37.0)	24.0 (13.0- 37.0)	0.150	8.0 (4.0- 14.0)	6.0 (3.0- 11.0)	10.0 (6.0-16.0)	13.0 (6.0- 17.0)	0.443	
HbA _{1c} mmol/mol (SD)	62 (12.7)			0		53 (12.5)					
BMI, kg/m ² (SD)	26.0 (4.2)	25.2 (3.8)	26.0 (4.2)	26.7 (4.6)	0.239	29.9 (5.3)	29.3 (5.2)	30.3 (5.4)	32.0 (5.5)	0.332	
Systolic blood pressure, mmHg (SD)	127.0 (14.0)	124.8 (14.0)	127.5 (13.8)	127.8 (14.2)	0.145	134.3 (14.3)	134.0 (14.4)	134.5 (13.7)	135.1 (16.5)	0.046	
Antihypertensive medication, n (%)	589 (44.7)	99 (36.9)	341 (45.3)	149 (50.2)	0.179	1070 (80.1)	572 (79.6)	404 (81.9)	94 (76.4)	0.091	
LDL-cholesterol, mmol/L (SD)	2.4 (0.8)	2.5 (0.8)	2.4 (0.8)	2.5 (0.8)	0.077	2.5 (0.9)	2.5 (0.9)	2.4 (0.9)	2.5 (1.0)	0.026	
Lipid-lowering medication, n (%)	642 (48.4)	94 (34.6)	378 (49.8)	170 (57.6)	0.315	900 (68.1)	472 (66.6)	344 (70.1)	84 (69.4)	0.050	
Micro- albuminuria, n (%)	132 (10.3)	12 (4.6)	70 (9.5)	50 (17.6)	0.285	194 (18.0)	80 (13.9)	83 (20.1)	31 (34.1)	0.323	
Macro- albuminuria, n (%)	31 (2.6)	5 (2.1)	12 (1.8)	14 (5.2)	0.126	52 (5.0)	27 (4.8)	20 (5.1)	5 (6.1)	0.037	
Estimated Glomerular Filtration Rate,	90.0 (23.5)	90.6 (20.7)	89.1 (22.6)	91.6 (27.7)	0.071	82.3 (23.5)	82.5 (22.3)	81.9 (24.0)	83.4 (27.9)	0.038	

Page 13 of 47

40 41

42 43

44 45 46

BMJ Open

Svedbo Engström et al. Manuscript, revised version

Variable			Type 1 diabetes	Type 2 diabetes				
	All	HbA _{1c} <52 mmol/mol	HbA _{1c} 52-69 mmol/mol	HbA _{1c} ≥70 mmol/mol	Standardized mean difference, SMD	All	HbA _{1c} <52 mmol/mol	HbA _{1c} 52-69 mmol/mol
eGFR, mL/min (SD)								
Retinopathy, n (%)	875 (65.9)	137 (50.6)	520 (68.2)	218 (74.1)	0.333	327 (29.4)	128 (21.7)	153 (36.3)
Coronary heart disease, n (%)	83 (6.3)	9 (3.3)	53 (7.0)	21 (7.1)	0.113	279 (22.4)	136 (20.2)	111 (24.0)
Stroke, n (%)	48 (3.6)	5 (1.9)	32 (4.2)	11 (3.7)	0.093	96 (7.8)	48 (7.2)	40 (8.9)
Smoker, n (%)	135 (10.1)	14 (5.1)	78 (10.2)	43 (14.4)	0.214	162 (12.9)	79 (11.7)	58 (12.3)
Physical activity, daily, n (%)	359 (27.6)	90 (33.5)	203 (27.2)	66 (23.2)	0.334	426 (34.9)	251 (38.7)	157 (33.9)
Diabetes treatment				The second se	0.136			
Diet alone, n (%)						195 (14.4)	172 (23.7)	19 (3.8)
Oral hypoglycaemic agent alone, n (%)					6	718 (53.1)	419 (57.8)	261 (52.0)
Insulin alone, n (%)	1335 (97.2)	271 (95.4)	764 (97.8)	300 (97.4)		130 (9.6)	46 (6.3)	63 (12.5)
Insulin and oral agent, n (%)	32 (2.3)	9 (3.2)	15 (1.9)	8 (2.6)		266 (19.7)	76 (10.5)	140 (27.9)
Insulin pump users, n (%)	356 (26.2)	66 (23.8)	221 (28.5)	69 (22.5)	0.091	2 (0.5)	1 (0.9)	1 (0.5)
The descriptive statis kewed distributions,	-			· /	ormally distribute	d continuous v	ariables, the me	dian and interqu

HbA_{1c}≥70 mmol/mol

46 (47.0)

32 (28.6)

8 (7.1)

25 (23.1)

18 (16.7)

4 (3.3) 38 (30.9)

21 (17.1)

50 (40.7)

0 (0.0)

Standardized mean difference, SMD

0.366

0.130

0.043

0.203

0.410

0.813

0.093

Monoton correlations related to the proposed assumptions between the Diabetes Questionnaire scale scores and the clinical variables

In line with the assumptions and in support for divergent validity, there were few statistically significant monoton correlations between the Diabetes Questionnaire scales and the clinical variables. Observed correlations were weak, and most were negative. The results are shown as heat maps in Figs. S1-S2 with details provided in Tables S3-S4.

As assumed, the HbA_{1c} level was the variable with most statistically significant correlations across the Diabetes Questionnaire scales. Statistically significant but weak correlations between having a lower and better HbA_{1c} level and higher and better scores were seen in several Diabetes Questionnaire scales. For participants with type 1 diabetes, significant weak negative correlations (-0.12 to -0.25) were seen in the five Diabetes Questionnaire PROM scales GenW, FreW, ManD, DiEx, and NLBS. The strongest correlations were seen in ManD and DiEx. Among participants with type 2 diabetes, statistically significant but weak negative correlations (-0.13 to -0.24) were seen in the seven Diabetes Questionnaire PROM scales GenW, MoE, FreW, ManD, DiEx, NLD, and NLBS and in the two PREM scales SuDC and AcDC. The strongest correlations were seen in MoE, FreW, and ManD, with generally stronger correlations in the PROM scales than in the PREM scales (Figs. S1-S2, Tables S3-S4).

For age, statistically significant positive correlations showed that a higher age was weakly associated with higher and better scores in several Diabetes Questionnaire scales. For participants with type 1 diabetes, statistically significant weak positive correlations (0.11 to 0.19) were seen in the four PROM scales MoE, FreW, ManD, and DiEx, and in the two PREM scales AcDC and MDMT. The highest correlations were seen in MoE, FreW, and MDMT. Among participants with type 2 diabetes, statistically significant weak positive correlations (0.12 to 0.16) were seen in the six PROM scales GenW, MoE, FreW, ManD, and DiEx. The highest correlations were seen in MoE, FreW, ManD, and DiEx. The highest correlations were seen in MoE, FreW, and DiEx. For LDL cholesterol and SBP, the results came up to the expectations of no statistically significant negative correlations. However, for participants with type 1 diabetes, a statistically significant negative correlation showed that a lower SBP was weakly associated with better scores in MoE. A lower BMI showed statistically significant weak negative correlations with higher scores in DiEx in both diabetes types as with GenW and MoE in type 2 diabetes. For diabetes duration, statistically significant positive correlations showed that a longer duration was weakly associated with

BMJ Open

Svedbo Engström et al. Manuscript, revised version

higher scores in FreW and ManD for participants with type 1 diabetes. For those with type 2 diabetes, statistically significant negative correlations showed that a longer duration was associated with lower scores in FreW and NLBS (Figs. S1-S2, Tables S3-S4).

Monoton correlations related to the proposed assumptions between scores in the Diabetes Questionnaire scales and the SF-36v2 domains

In line with the assumptions and in support for convergent validity, the statistically significant monoton correlations between the Diabetes Questionnaire scales and the SF-36v2 domains were stronger in seven of the PROM scales as compared to the PROM scale SuO and the PREM scales. As expected, the observed statistically significant correlations were all positive, showing an association between higher scores in both questionnaires. The results are shown in Figs. 1-2 and Tables S5-S6.

As assumed, the strongest correlations were seen in the Diabetes Questionnaire PROM scales GenW and MoE. Statistically significant positive correlations showed that higher scores in GenW and MoE were strongly associated with higher scores in about half of the SF-36v2 domains. In GenW, statistically significant positive correlations were seen with the SF-36v2 domains PF, GH, VT, and MH. The correlations were very strong with VT (0.60), strong with GH and MH (0.51 to 0.56), and weak with PF. Among those with type 2 diabetes, there were also statistically significant strong positive correlations between GenW and SF (0.51). In MoE, statistically significant positive correlations were seen with the SF-36v2 domains GH, VT, SF, and MH. The correlations were very strong with MH (0.60) and strong with GH, VT, and SF (0.51 to 0.58). Among those with type 2 diabetes, statistically significant strong positive correlations were also seen between MoE and RF (0.51). For both diabetes types, statistically significant strong positive correlations were also seen between the PROM scale DiEx and the VT domain (0.51). Statistically significant moderate positive correlations were also seen between the PROM scales and SF-36v2 domains. In NLD and NLBS, statistically significant moderate positive correlations were more common in type 2 diabetes than in type 1 diabetes. In support for divergent validity, the PROM scale SuO and the PREM scales, statistically significant correlations were weak (0.11 to 0.32) or absent (Figs. 1-2, Tables S5-S6).

Svedbo Engström et al. Manuscript, revised version

Non-linear associations to clinical variables and SF-36v2 domains together

The results from the machine learning analysis are shown in Figs. 3 and S3. Similar results were seen for type 1 and type 2 diabetes. Among the PROM scales, the variance was explained by the SF-36v2 domains together with the clinical variables to almost 40% in GenW and to around 45% in MoE. In FreW, ManD, DiEx, NLD, and NLBS, the variance was explained to about 25-30% and in SuO to about 10%. Among the PREM scales, SuDC, AcDC, and MDMT were explained to about 10% or below. In CoDC, almost no variance was explained (Fig. 3). As predictors of the Diabetes Questionnaire PROM scales GenW and MoE, the variables with the highest importance were the SF-36v2 domains GH, VT, and MH. LDL cholesterol and SBP had low variable importance (Fig. S3). The percent variance in HbA_{1c} explained by other clinical variables, the SF-36v2 domains, and the Diabetes Questionnaire scales as predictors of the other clinical variables, the SF-36v2 domains, and the Diabetes Questionnaire scales as predictors of the other clinical variables, the SF-36v2 domains, and the Diabetes Questionnaire scales as predictors of HbA_{1c} was not examined.

Sensitivity of the Diabetes Questionnaire scales to clinically relevant groups of glycaemic control

The results from the adjusted regression analyses of the Diabetes Questionnaire scales and the HbA_{1c} groups are presented separately for participants with type 1 and type 2 diabetes in Fig. 4. The least square mean estimates and confidence intervals from the unadjusted and adjusted analyses are given in detail in Table S7.

Among those with type 1 diabetes, the adjusted analysis of the HbA_{1c} groups showed significantly lower scores for the high-risk group than the well-controlled group in the eight PROM scales GenW, MoE, FreW, ManD, DiEx, NLD, NLBS, and SuO as in the PREM scale SuDC. The largest between-group differences were seen in the PROM scales ManD and DiEx, where the well-controlled group had the significantly highest means, followed by the sub-optimal group and the high-risk group. Among those with type 2 diabetes, the adjusted analysis showed that the high-risk group had significantly lower scores than the well-controlled group in all scales but CoDC. In the five PROM scales MoE, FreW, ManD, NLD, and NLBS, the well-controlled group had the significantly highest means, followed by the sub-optimal and high-risk groups. The largest between-group differences were seen in MoE, FreW, NLD, and NLBS (Fig. 4, Table S7).

Page 17 of 47

 BMJ Open

DISCUSSION

From a nationwide setting with a large sample of adults with type 1 and type 2 diabetes selected at random, we present the outcome from the Diabetes Questionnaire. To study construct validity, we assess convergent and divergent associations of that outcome with clinical variables and generic health-related quality of life, as measured by the SF-36v2 and assess the sensitivity to differences between clinically relevant groups of glycaemic control. We found supporting evidence for construct validity in both type 1 and type 2 diabetes. As expected, and in support for divergent validity, there were few statistically significant correlations with the clinical variables. The observed correlations were weak, and most were negative. Also as expected, and in support for convergent validity, the correlations with the SF-36v2 domains were positive; the strongest correlations were found in the Diabetes Questionnaire PROM scales GenW and MoE. Furthermore, either weak or no correlations were seen in the PREM scales, supporting divergent validity. In machine learning analyses, the SF-36v2 domains and the clinical variables together explained the variance in the PROM scales GenW and MoE to about 40-45%. In the other scales, the variance explained was low. In regression analyses among three groups with differing levels of HbA_{1c} adjusted for demographics, other risk factors, and diabetes complications, the high-risk group had, in support of sensitivity to clinically relevant groups of glycaemic control, statistically significantly lower scores than the well-controlled group in most Diabetes Questionnaire scales for participants with type 1 diabetes and in almost all scales for those with type 2 diabetes. Statistically significant differences between all three groups of glycaemic control were seen in two scales for type 1 diabetes and in five scales for type 2 diabetes.

Findings and implications

Evaluating the measurement qualities of a questionnaire is a complex and cumulative effort.[13, 14] In this study, we continue the evaluation of the Diabetes Questionnaire by addressing its construct validity. The results in relation to divergent validity show supporting evidence that the Diabetes Questionnaire targets different concepts than the clinical variables for diabetes care traditionally covered by the NDR. Thus, the central aspects covered by the Diabetes Questionnaire including patient perspectives on how they feel, how their diabetes treatment is going, or their experiences of support from diabetes care cannot be measured by HbA_{1c} or other tested clinical variables. Nor can the clinical variables be estimated through the Diabetes Questionnaire. We need the combination. There is a growing emphasis that the perspectives of those living with diabetes should be part of clinical meetings and be given

Svedbo Engström et al. Manuscript, revised version

priority among outcomes in diabetes care assessments.[1, 5, 6, 23-25] Supplementing decision-making by adding the patient's perspective is suggested to increase the focus on these aspects in clinical meetings[2, 26] and to enhance the quality of care.[26-28] In Sweden, the Patient Act strengthens the patient's position and possibilities for shared decision-making and states that the individual patient's prerequisites and wishes should be taken into account.[29] There is also a growing movement towards person-centred care aiming for partnership that is centred on the patient's experience and individual prerequisites, resources, and barriers. An important basis is the patient's story.[30] We hope that the Diabetes Questionnaire can support the patient story if used in the clinical meetings together with the clinical variables.

The Diabetes Questionnaire is unique in being developed to support clinical meetings with individuals and to be used as a means for quality improvement through longitudinal assessment at a local, regional, and national levels within the frame of a nationwide healthcare quality register.[7-9] Many other questionnaires for diabetes were developed to target a specific aspect within intervention studies.[3, 18, 19] The Diabetes Questionnaire has a broad approach with aspects identified as important to adults with diabetes.[8, 9] The Diabetes Questionnaire is also developed using the vocabulary and phrasing of people with diabetes,[8] unlike many other questionnaires that often use academic or professional jargon. In this study, we found supporting evidence that the Diabetes Questionnaire is sensitive to statistically significant differences between clinically relevant subgroups with differing levels of glycaemic control. The Diabetes Questionnaire was also in support of convergent validity found to capture some aspects of generic health-related quality of life, while also in support of divergent validity adding aspects that are not covered by the often-recommended SF-36v2. For routine use within clinical diabetes care, the Diabetes Questionnaire is likely more relevant than the generic SF-36v2. A limitation of the Diabetes Questionnaire is, however, that it is currently only available in Swedish. Consequently, there is limited opportunity for international comparisons. The opportunities and barriers related to clinical use of the Diabetes Questionnaire are currently being studied from the perspectives of professionals and adults with diabetes.

Strengths and weaknesses

Among the strengths of this study are the large and heterogeneous sample of adults with type 1 and type 2 diabetes selected at random from the nationwide NDR. The respondents

 BMJ Open

Svedbo Engström et al. Manuscript, revised version

were representative of the 2015 population in the NDR (data on file). The results can be considered representative of the Swedish adult population with diabetes related to the coverage rate of about 90% in 2015 when around 40,000 adults with type 1 diabetes and 347,000 with type 2 diabetes were registered in the NDR. Through the NDR, we had access to clinical variables relevant for diabetes care and background data for the non-respondents. Another strength is the use of a well-known measure of health-related quality of life. As there is a lack of agreed-upon benchmarks for how strong positive correlations between questionnaires addressing subjective aspects should be to support convergent construct validity,[31, 32] this study based the division of the correlation strength on reports that such correlations generally are low,[31, 33] often within the range 0.20-0.40[33] or 0.40-0.60.[31] A correlation of 0.60 has been suggested to be extremely strong, as the random error of measurement of the two questionnaires impede perfect correlations.[31] As the Diabetes Questionnaire and the SF-36v2 do not measure the exact same construct, there were no prerequisites for broad strong correlations.[14, 31, 33]

Our study also has limitations. The analyses were limited to the respondents and might reflect a group that is more motivated to participate. Another limitation is that the questionnaires were only offered in Swedish, potentially resulting in a higher proportion of foreign-born individuals among the non-responders than among the respondents. Furthermore, the crosssectional design means that it is not possible to make causal conclusions.

Future perspectives

The evaluation of construct validity is a work of putting the pieces together.[13, 14] Consequently, more studies are needed to relate the Diabetes Questionnaire to different concepts and measures. An important task for diabetes care is to identify suitable interventions that adequately can support individuals with diabetes. The Diabetes Questionnaire can be an important contribution to identify the need and focus for targeted interventions, especially for adults with low scores. In future studies, it is important to evaluate the potential of using scores from the Diabetes Questionnaire scales as the primary selection base or in combination with, for example, HbA_{1c} levels or BMI. It is also essential to evaluate whether the Diabetes Questionnaire scales are responsive to actual changes and can be used as an evaluative tool adding patient perspectives to both nursing and medical interventions, longitudinal assessments, and quality improvement. The NDR is established as a clinical and a national assessment tool in Swedish diabetes care.[4, 34-36] By now, the Diabetes Questionnaire is digitally and freely available for use by all clinics in Sweden connected to the NDR. The Diabetes Questionnaire is also included as the basis for developmental quality indicators in the Swedish national guidelines for diabetes care.[4] In the future, the Diabetes Questionnaire can be amongst the established quality indicators bringing patient perspectives to the fore for diabetes care.

Conclusion

 This nationwide study shows that the Diabetes Questionnaire captures some generic healthrelated quality of life dimensions as well as adds diabetes-specific information not covered by the SF-36v2 and clinical variables. The Diabetes Questionnaire is also sensitive to differences between clinically relevant groups of glycaemic control.

List of abbreviations

Abbreviations related to the Diabetes Questionnaire GenW: General Well-being MoE: Mood and Energy FreW: Free of Worries about blood sugar ManD: Capabilities to Manage your Diabetes DiEx: Diet and Exercise NLD: Not Limited by Diabetes NLBS: Not Limited by Blood Sugar SuO: Support from Others SuDC: Support from Diabetes Care AcDC: Access to Diabetes Care CoDC: Continuity in Diabetes Care MDMT: Medical Devices and Medical Treatment PREM: Patient-reported experience measure PROM: Patient-reported outcome measure Abbreviations related to the SF-36v2 survey **PF:** Physical functioning **RP:** Role-physical **BP**: Bodily pain GH: General health

BMJ Open

Acknowledgements

MH: Mental health

The authors wish to thank Ebba Linder for facilitating data collection, Mervete Miftaraj for data management, and Ann-Marie Svensson for intellectual advice and support during the processes of design and ethical approval. Parts of the presented data have been published in an abstract and were presented at the Annual Meeting of the European Association for the Study of Diabetes (EASD) in 2019 and within a doctoral thesis at Gothenburg university, Sweden, in 2019.

Competing interests

Dr. Eeg-Olofsson reports grants from the ALF agreement (ALFGBG 698991), during the conduct of the study; personal fees from Abbott, personal fees from Lilly, personal fees from Novo Nordisk, personal fees from Bayer, outside the submitted work; Dr. Gudbjörnsdottir reports grants from the ALF-agreement (ALFGBG 725311), during the conduct of the study; grants and personal fees from AstraZeneca, grants and personal fees from Boehringer Ingelheim, grants and personal fees from Eli Lilly, grants and personal fees from Merck Sharp & Dohme, grants and personal fees from Novo Nordisk, grants and personal fees from Sanofi, outside the submitted work; the other authors declare that they have nothing to disclose.

Funding

This work was supported by Dalarna University, Falun; Uppsala University, Uppsala; the Sahlgrenska University Hospital, Gothenburg; the Swedish Diabetes Foundation; and the Sophiahemmet Foundation, Stockholm. Unrestricted grants were provided by Astra Zeneca, MSD, Novo Nordisk, and the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (Nos. ALFGBG-725311 and ALFGBG-698991). None of the funding providers have influenced the design of the study; the collection, analysis, or interpretation of data; the writing of the manuscript, or any publication decision at any stage.

Author Contributions

 MSE made substantial contributions to the design of the work, applying for ethical approval and funding, interpreting the data, and drafting and revising the manuscript (major contributor). JL and UBJ supervised and made substantial contributions to the design of the work, applied for funding, made intellectual contributions in the interpretation of the data, critically revised the manuscript for important intellectual content, and contributed experience and knowledge from diabetes care and research in diabetes and health-related quality of life. SB made substantial contributions to the design of the work, made intellectual contributions in the interpretation of the data, and critically revised the manuscript for important intellectual content. BP made substantial contributions to the design of the work; performed the selection of the random sample; made intellectual contributions in the interpretation of the data; critically revised the manuscript for important intellectual content, and contributed statistical advice, experience, and knowledge in the research of generic health-related quality of life and patient-reported outcome. SF made substantial contributions to the design of the work. contributed substantial statistical advice, was the major contributor in analysing the data, made substantial intellectual contributions in the interpretation of the data, and critically revised the manuscript for important intellectual content. SG supervised and made substantial contributions to the design of the work; applied for ethical approval and funding; made intellectual contributions in interpretation of the data; critically revised the manuscript for important intellectual content, and contributed medical experience and knowledge from diabetes care, diabetes research, and research using health-care quality registers. KEO supervised and made substantial contributions to the design of the work; applied for ethical approval and funding; generated the SF-36v2 data; interpreted the data; critically revised the manuscript for important intellectual content, and contributed medical experience and knowledge from diabetes care, diabetes research, and research using health-care quality registers. All authors read and approved the final manuscript as well as consented to be on the author list.

Data sharing statement

The data that support the findings of this study are not publicly available. The study presented here has been subject to review by an ethical board and approved for publication related to the specific aim of our research project. With reference to the European General Data Protection Regulation, the data are personal and therefore confidential.

1. Young-Hyman D, de Groot M, Hill-Briggs F, Gonzalez JS, Hood K, Peyrot M. Psychosocial Care for People With Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016;39(12):2126-40. doi: 10.2337/dc16-2053.

2. Polonsky WH. Emotional and quality-of-life aspects of diabetes management. Curr Diab Rep. 2002;2(2):153-9.

3. Speight J, Reaney, M. D. & Barnard, K. D. Not all roads lead to Rome—a review of quality of life measurement in adults with diabetes. Diabetic Medicine. 2009;26:315–27. doi: DOI: 10.1111/j.1464-5491.2009.02682.x.

4. National Board of Health and Welfare (Socialstyrelsen). National guidelines for diabetes care. [In Swedish]. Nationella riktlinjer för diabetesvård: Stöd för styrning och ledning. www.socialstyrelsen.se; 2018 October. Report No.: 2018-10-25. [Cited 2019 October 16]. Available from: https://www.socialstyrelsen.se/regler-och-riktlinjer/nationella-riktlinjer/slutliga-riktlinjer/diabetes/

5. American Diabetes Association. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S37-S47. doi: 10.2337/dc20-S004.

6. American Diabetes Association. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S48-S65. doi: 10.2337/dc20-S005.

7. Borg S, Eeg-Olofsson K, Palaszewski B, Svedbo Engstrom M, Gerdtham UG, Gudbjornsdottir S. Patient-reported outcome and experience measures for diabetes: development of scale models, differences between patient groups and relationships with cardiovascular and diabetes complication risk factors, in a combined registry and survey study in Sweden. BMJ Open. 2019;9(1):e025033. doi: 10.1136/bmjopen-2018-025033.

8. Svedbo Engstrom M, Leksell J, Johansson U-B, Eeg-Olofsson K, Borg S, Palaszewski B, et al. A disease-specific questionnaire for measuring patient-reported outcomes and experiences in the Swedish National Diabetes Register: Development and evaluation of content validity, face validity, and test-retest reliability. Patient Educ Couns. 2018;101(1):139-46. doi: 10.1016/j.pec.2017.07.016.

9. Svedbo Engström M, Leksell J, Johansson U-B, Gudbjörnsdottir S. What is important for you? A qualitative interview study of living with diabetes and experiences of diabetes care to establish a basis for a tailored Patient-Reported Outcome Measure for the Swedish National Diabetes Register. BMJ Open. 2016;6(3):e010249. doi: 10.1136/bmjopen-2015-010249.
10. Borg S, Palaszewski B, Gerdtham UG, Fredrik O, Roos P, Gudbjornsdottir S. Patient-reported outcome measures and risk factors in a quality registry: a basis for more patient-centered diabetes care in Sweden. Int J Environ Res Public Health. 2014;11(12):12223-46. doi: 10.3390/ijerph111212223.

11. Robeyns I. Sen's capability approach and gender inequality: selecting relevant capabilities. Feminist Economics. 2003;9 (2-3):61-92. doi: 10.1080/1354570022000078024.
12. Sen AK. Nuschaum MC. The multiple filter output filter output filter. Doi: 10.02

Sen AK, Nussbaum MC. The quality of life. Oxford: Clarendon Press; 1993.
 Fayers PM, Machin D. Quality of life: the assessment, analysis, and reporting of patient-

reported outcomes. Third ed. Chichester, West Sussex, UK; Hoboken, NJ: John Wiley & Sons Inc.; 2016.

14. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737-45. doi: 10.1016/j.jclinepi.2010.02.006.

2010;63(7):737-45. doi: 10.1016/j.jclinepi.2010.02.006.
 15. Svedbo Engström M, Leksell J, Johansson U-B, Borg S, Palaszewski B, Franzén S, et al.
 Health-related quality of life and glycaemic control among adults with type 1 and type 2

Svedbo Engström et al. Manuscript, revised version

58

59 60

diabetes – a nationwide cross-sectional study. Health and Ouality of Life Outcomes. 2019;17(141):1-11. doi: 10.1186/s12955-019-1212-z. 16. Ware JE, Jr. SF-36 health survey update. Spine. 2000;25(24):3130-9. 17. Maruish ME, editor. User's manual for the SF-36v2 Health Survey. 3rd ed. ed: Lincoln, RI: QualityMetric Incorporated; 2011. 18. Fitzpatrick R, Bowling A, Gibbons E, Haywood K, Jenkinson C, Mackintosh A, et al. A structured review of patient-reported measures in relation to selected chronic conditions, perceptions of quality of care and carer impact National Centre for Health Outcomes Development (Oxford site): Unit of Health-Care Epidemiology, Department of Public Health, University of Oxford; 2006. Available from: http://phi.uhce.ox.ac.uk/ 19. Gibbons E, Fitzpatrick R, Patient Reported Outcome Measurement Group. A structured review of patient-reported outcome measures (PROMs) for diabetes. University of Oxford 2009. 20. Norris SL, McNally TK, Zhang X, Burda B, Chan B, Chowdhury FM, et al. Published norms underestimate the health-related quality of life among persons with type 2 diabetes. J Clin Epidemiol. 2011;64(4):358-65. doi: 10.1016/j.jclinepi.2010.04.016. 21. Breiman L. Random Forests. Machine Learning. 2001;45(1):5-32. doi: 10.1023/a:1010933404324. 22. American Diabetes A. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S66-S76. doi: 10.2337/dc20-S006. 23. Jones A, Vallis M, Pouwer F. If it does not significantly change HbA1c levels why should we waste time on it? A plea for the prioritization of psychological well-being in people with diabetes. Diabet Med. 2015;32(2):155-63. doi: 10.1111/dme.12620. 24. Glasgow RE, Peeples M, Skovlund SE. Where is the patient in diabetes performance measures? The case for including patient-centered and self-management measures. Diabetes Care. 2008;31(5):1046-50. doi: 10.2337/dc07-1845. 25. IDF Clinical Guidelines Task Force. Global Guideline for Type 2 Diabetes: recommendations for standard, comprehensive, and minimal care. Diabet Med. 2006;23(6):579-93. doi: 10.1111/j.1464-5491.2006.01918.x. 26. Kotronoulas G, Kearney N, Maguire R, Harrow A, Di Domenico D, Croy S, et al. What is the value of the routine use of patient-reported outcome measures toward improvement of patient outcomes, processes of care, and health service outcomes in cancer care? A systematic review of controlled trials. J Clin Oncol. 2014;32(14):1480-501. doi: 10.1200/JCO.2013.53.5948. 27. Reay N. How to measure patient experience and outcomes to demonstrate quality in care. Nurs Times. 2010;106(7):12-4. 28. Snyder CF, Aaronson NK, Choucair AK, Elliott TE, Greenhalgh J, Halvard MY, et al. Implementing patient-reported outcomes assessment in clinical practice: a review of the options and considerations. Qual Life Res. 2012;21(8):1305-14. doi: 10.1007/s11136-011-0054-x. 29. Patient Act, (SFS 2014:821). [In Swedish]. Patientlag (SFS 2014:821). Stockholm, Sweden. Socialdepartementet. 30. Ekman I, Swedberg K, Taft C, Lindseth A, Norberg A, Brink E, et al. Person-centered care--ready for prime time. Eur J Cardiovasc Nurs. 2011;10(4):248-51. doi: 10.1016/j.ejcnurse.2011.06.008. 31. McDowell I. Measuring health: a guide to rating scales and questionnaires. 3rd ed. Oxford; New York: Oxford University Press; 2006. xvi, 748 p. p. 32. Post MW. What to Do With "Moderate" Reliability and Validity Coefficients? Arch Phys Med Rehabil. 2016;97(7):1051-2. doi: 10.1016/j.apmr.2016.04.001.

33. Polit DF, Beck CT. Nursing Research: Generating and Assessing Evidence for Nursing Practice. 10th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams and Wilkins; 2016.

34. Eliasson B, Gudbjornsdottir S. Diabetes care - improvement through measurement.
Diabetes Res Clin Pract. 2014;106 Suppl 2:S291-4. doi: 10.1016/S0168-8227(14)70732-6.
35. Gudbjornsdottir S, Cederholm J, Nilsson PM, Eliasson B. The National Diabetes Register in Sweden: an implementation of the St. Vincent Declaration for Quality Improvement in Diabetes Care. Diabetes Care. 2003;26(4):1270-6.

36. Svensson AM, Gudbjörnsdottir, S., Samuelsson, P., Miftaraj, M., Eliasson, B., Cederholm, J., Rawshani, A. 20 years of successful improvements. Gothenburg, Sweden; 2016. Available from: www.ndr.nu

Figure Legends

Svedbo Engström et al. Manuscript, revised version

Fig. 1. Spearman's rank correlation between the Diabetes Questionnaire scales and the SF-36v2 domains in type 1 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment. SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health.

Fig. 2. Spearman's rank correlation between the Diabetes Questionnaire scales and the SF-36v2 domains in type 2 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment. SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health.

Fig. 3. Percent variance in the Diabetes Questionnaire scales explained by the SF-36v2 domains and clinical variables in type 1 (A) and type 2 diabetes (B)

 GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Fig. 4. Adjusted least square mean estimates with 95% confidence intervals for the Diabetes Questionnaire scales in type 1 diabetes (A) and type 2 diabetes (B) separated by glycated haemoglobin (HbA_{1c}) level

Adjusted for age, sex, diabetes duration, body mass index, systolic blood pressure, LDL cholesterol level, micro- and macro-albuminuria, estimated glomerular filtration rate, retinopathy, smoking status, physical activity level, receipt of antihypertensive and lipid lowering treatments, previous coronary heart disease and previous stroke.

GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Supplementary material

Supplementary figures

Fig. S1. Spearman's rank correlation between the Diabetes Questionnaire scales and clinical variables in type 1 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment. Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

BMJ Open

Svedbo Engström et al. Manuscript, revised version

Fig. S2. Spearman's rank correlation between the Diabetes Questionnaire scales and clinical variables in type 2 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment. Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

Fig. S3. Variable importance of clinical variables and the SF-36v2 domains as predictors of the Diabetes Questionnaire scales GenW (General Wellbeing) and MoE (Mood and Energy) in type 1 (A and B) and type 2 diabetes (C and D)

Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role-emotional; MH: mental health.

Supplementary tables

Table S1. Crude means and standard deviations for the Diabetes Questionnaire scales and the SF-36v2 domains for participants with type 1 diabetes and those with type 2 diabetes

Table S2. Clinical and demographic characteristics for non-respondents separated for type 1 and type 2 diabetes

Table S3. Spearman's rank correlations with p-values between the Diabetes Questionnaire scale scores and clinical variables in type 1 diabetes

Table S4. Spearman's rank correlations with p-values between the Diabetes Questionnaire scale scores and clinical variables in type 2 diabetes

Table S5. Spearman's rank correlations with p-values between the Diabetes Questionnaire scales and the SF-36v2 domains in type 1 diabetes

Table S6. Spearman's rank correlations with p-values between the Diabetes Questionnaire scales and the SF-36v2 domains in type 2 diabetes

Table S7. Least square mean estimates and 95% confidence intervals for the Diabetes Questionnaire scales in three glycated haemoglobin (HbA_{1c}) groups for type 1 and type 2 diabetes

.io. In type . Le estimates and 95%. Le eglycated haemoglob.

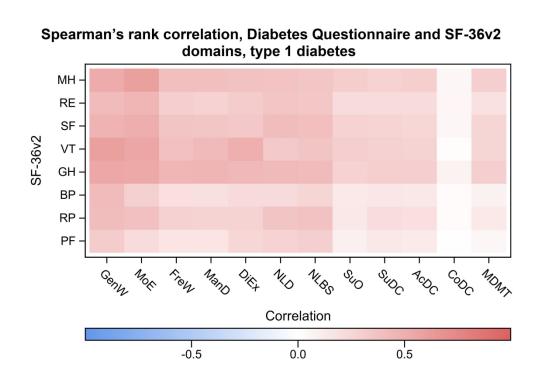
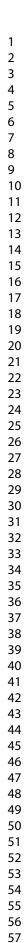
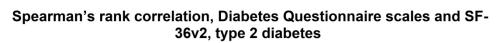
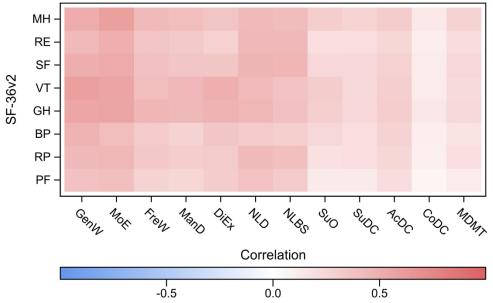
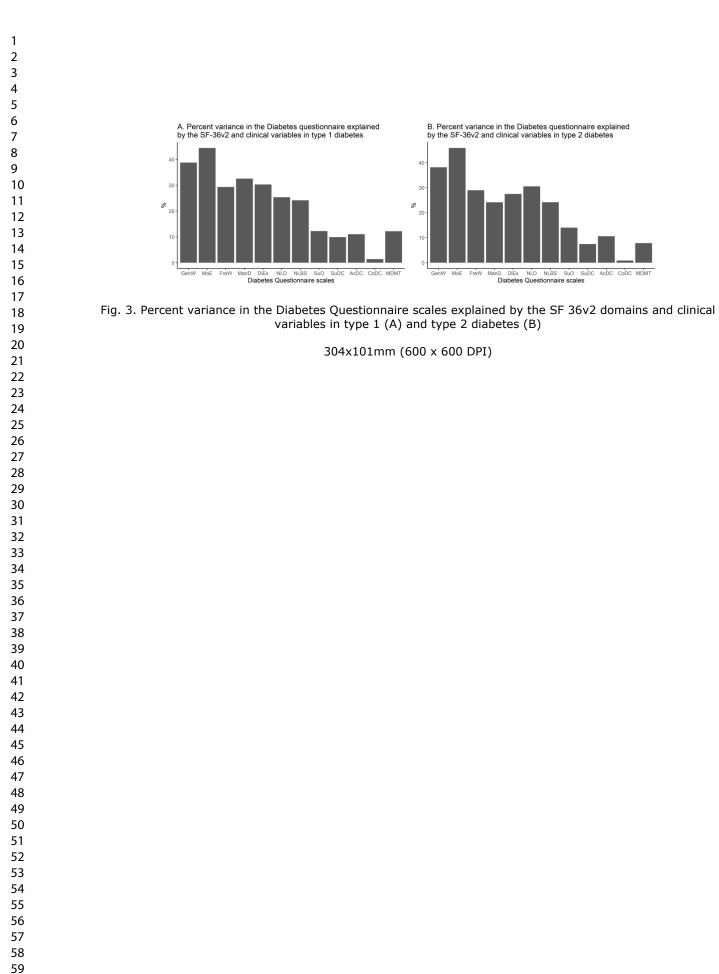
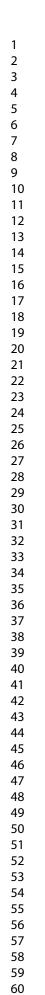
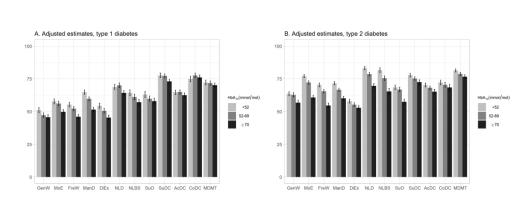
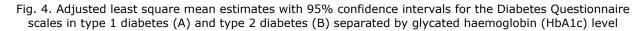




Fig. 1. Spearman's rank correlation between the Diabetes Questionnaire scales and the SF 36v2 domains in type 1 diabetes

127x88mm (600 x 600 DPI)

60

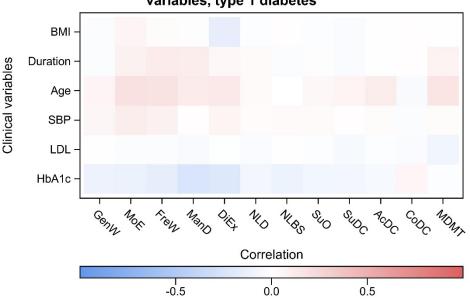

Fig. 2. Spearman's rank correlation between the Diabetes Questionnaire scales and the SF 36v2 domains in type 2 diabetes

127x88mm (600 x 600 DPI)

349x119mm (300 x 300 DPI)

SUPPLEMENTARY MATERIAL

To the article titled


New diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – Nationwide cross-sectional study of construct validity assessing associations with generic health-related quality of life and clinical variables

By

Maria Svedbo Engström; Janeth Leksell; Unn-Britt Johansson; Sixten Borg, Bo Palaszewski; Stefan Franzén; Soffia Gudbjörnsdottir; Katarina Eeg-Olofsson

Submitted to BMJ Open

Supplementary figures

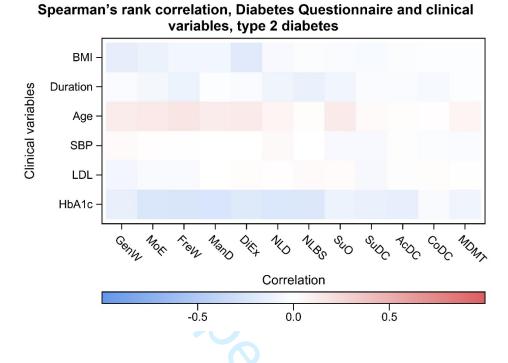
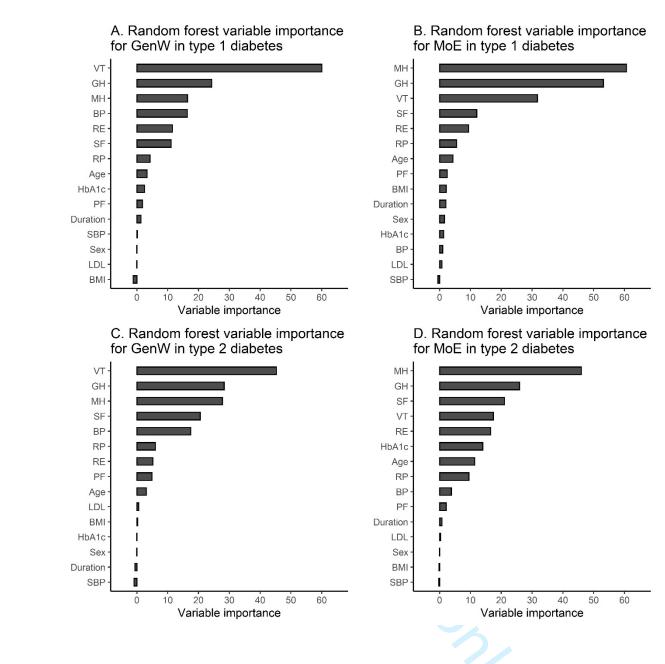

Spearman's rank correlation, Diabetes Questionnaire and clinical variables, type 1 diabetes

Fig. S1. Spearman's rank correlation between the Diabetes Questionnaire scales and clinical variables in type 1 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables


Fig. S2. Spearman's rank correlation between the Diabetes Questionnaire scales and clinical variables in type 2 diabetes

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Fig. S3. Variable importance of clinical variables and the SF-36v2 domains as predictors of the Diabetes Questionnaire scales GenW (General Wellbeing) and MoE (Mood and Energy) in type 1 (A and B) and type 2 diabetes (C and D)

Clinical variables: BMI: body mass index, SBP: systolic blood pressure, LDL: LDL cholesterol, HbA_{1c}: glycated haemoglobin level.

SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role-emotional; MH: mental health.

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Supplementary tables

 Table S1. Crude means and standard deviations for the Diabetes Questionnaire scales and the SF-36v2 domains for participants with type 1 diabetes and those with type 2 diabetes

Diabetes	Type 1 diabetes	Type 2 diabetes	p-value	Standardized mean
Questionnaire scale				difference, SMD
GenW	59.69 (23.81)	63.76 (24.71)	< 0.001	0.168
MoE	64.07 (23.60)	75.19 (22.25)	< 0.001	0.485
FreW	54.89 (21.91)	69.03 (22.29)	< 0.001	0.640
ManD	63.20 (20.16)	70.48 (19.89)	< 0.001	0.364
DiEx	56.66 (24.36)	58.88 (24.08)	0.018	0.092
NLD	75.33 (23.47)	84.14 (21.70)	< 0.001	0.390
NLBS	69.97 (26.94)	80.94 (26.84)	< 0.001	0.408
SuO	62.32 (23.46)	66.26 (23.71)	< 0.001	0.167
SuDC	78.35 (20.29)	77.89 (22.61)	0.574	0.022
AcDC	67.80 (20.73)	71.31 (22.61)	<0.001	0.162
CoDC	80.04 (23.29)	71.42 (27.39)	<0.001	0.339
MDMT	75.40 (21.78)	80.47 (18.39)	< 0.001	0.252

Diabetes questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Variable	Type 1 diabetes (n=1106)	Type 2 diabetes (n=1116)
Men, %	60.7	58.1
Age, years (SD)	41.2 (15.5)	62.8 (10.9)
Diabetes duration, years (SD)	21.7 (14.0)	8.7 (7.0)
HbA _{1c} , mmol/mol (SD)	65.2 (15.1)	54.7 (14.3)
BMI, kg/m^2 (SD)	26.1 (4.6)	30.9 (5.9)
Systolic blood pressure, mmHg (SD)	126.1 (14.0)	134.7 (15.8)
Antihypertensive medication, %	34.6	77.5
LDL-cholesterol, mmol/L (SD)	2.53 (0.79)	2.64 (0.93)
Lipid-lowering medication, %	37.1	60.5
Micro-albuminuria, %	11.4	18.4
Macro-albuminuria, %	5.6	5.0
Retinopathy, %	66.2	30.5
Smoker, %	15.7	18.4
Physical activity, daily, %	20.3	27.1
Diabetes treatment		
Diet alone, %	-	20.1
Oral hypoglycaemic agent alone, %	5	52.5
Insulin alone, %	97.2	8.1
Insulin and oral agent, %	2.3	16.7
Insulin pump users, %	19.9	_

Table S2. Clinical and demographic characteristics for non-responders separated for type 1 and type 2 diabetes

The descriptive statistics are presented as the means and standard deviations (SD) for continuous variables or number and percentages for categorical variables.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic healthrelated quality of life and clinical variables

Clinical variable	GenW	MoE	FreW	ManD	DiEx	NLD	NLBS	SuO	SuDC	AcDC	CoDC	MDMT
Age	0.06	0.19	0.18	0.13	0.14	0.03	0.01	0.05	0.07	0.11	-0.04	0.17
	(0.0184)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(0.2050)	(0.8445)	(0.0875)	(0.0093)	(<.0001)	(0.1635)	(<.0001)
Diabetes	-0.02	0.09	0.13	0.11	0.05	0.04	-0.02	-0.01	-0.03	-0.00	0.01	0.08
duration	(0.4673)	(0.0006)	(<.0001)	(<.0001)	(0.0456)	(0.1981)	(0.4678)	(0.6936)	(0.2024)	(0.9883)	(0.6045)	(0.0027)
HbA _{1c}	-0.12	-0.12	-0.16	-0.25	-0.21	-0.07	-0.12	-0.08	-0.07	-0.05	0.06	-0.02
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(0.0073)	(<.0001)	(0.0101)	(0.0070)	(0.0542)	(0.0356)	(0.5485)
BMI	-0.02	0.07	0.03	-0.01	-0.15	-0.01	0.02	-0.01	-0.03	-0.00	0.02	0.01
	(0.4601)	(0.0151)	(0.2763)	(0.6738)	(<.0001)	(0.6239)	(0.5767)	(0.6620)	(0.2568)	(0.9175)	(0.5998)	(0.7292)
SBP	0.06	0.12	0.09	0.02	0.07	0.03	0.03	0.03	0.01	0.03	-0.03	0.03
	(0.0231)	(<.0001)	(0.0005)	(0.5036)	(0.0072)	(0.3393)	(0.2152)	(0.3092)	(0.6002)	(0.2773)	(0.3239)	(0.2610)
LDL	-0.00	-0.02	-0.02	-0.04	-0.01	-0.03	-0.00	-0.02	-0.06	-0.02	-0.03	-0.09
	(0.9452)	(0.4805)	(0.4380)	(0.1549)	(0.8077)	(0.2406)	(0.9780)	(0.5905)	(0.0474)	(0.5275)	(0.2873)	(0.0023)

Table S3. Spearman's rank correlations with p-values between the Diabetes Questionnaire scale scores and clinical variables in type 1 diabetes

 Diabetes questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Clinical variables: BMI: body mass index; SBP: systolic blood pressure; LDL: LDL cholesterol; HbA1c: glycated haemoglobin level.

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Clinical variable	GenW	MoE	FreW	ManD	DiEx	NLD	NLBS	SuO	SuDC	AcDC	CoDC	MDMT
Age	0.12	0.14	0.16	0.12	0.14	0.07	0.02	0.13	0.04	0.02	0.01	0.07
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(0.0061)	(0.3646)	(0.0002)	(0.1926)	(0.3657)	(0.6265)	(0.0089)
Diabetes	-0.03	-0.07	-0.11	-0.02	-0.04	-0.10	-0.13	-0.09	-0.04	-0.03	-0.06	-0.01
duration	(0.2226)	(0.0202)	(<.0001)	(0.5662)	(0.1868)	(0.0007)	(<.0001)	(0.0184)	(0.2043)	(0.2353)	(0.0570)	(0.6150)
HbA _{1c}	-0.14	-0.24	-0.24	-0.24	-0.21	-0.23	-0.22	-0.11	-0.13	-0.15	-0.04	-0.09
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(0.0015)	(<.0001)	(<.0001)	(0.1270)	(0.0012)
BMI	-0.15	-0.12	-0.08	-0.08	-0.20	-0.05	-0.03	-0.03	-0.05	-0.03	-0.01	-0.02
	(<.0001)	(<.0001)	(0.0046)	(0.0037)	(<.0001)	(0.0752)	(0.3242)	(0.4203)	(0.0854)	(0.3238)	(0.6580)	(0.5507)
SBP	0.03	0.02	0.01	0.00	0.00	0.04	0.01	-0.05	-0.05	-0.01	-0.02	-0.03
	(0.2195)	(0.5649)	(0.7496)	(0.9131)	(0.8954)	(0.1082)	(0.8433)	(0.1746)	(0.0781)	(0.6444)	(0.4327)	(0.2736)
LDL	-0.07 (0.0151)	-0.04 (0.1773)	-0.04 (0.1310)	0.00 (0.9813)	0.02 (0.4793)	0.02 (0.5751)	0.04 (0.2250)	0.03 (0.4554)	-0.06 (0.0504)	-0.01 (0.7171)	0.02 (0.5061)	0.01 (0.8070)

Table S4. Spearman's rank correlations with p-values between the Diabetes Questionnaire scale scores and clinical variables in type 2 diabetes

Diabetes questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

Clinical variables: BMI: body mass index; SBP: systolic blood pressure; LDL: LDL cholesterol; HbA_{1c}: glycated haemoglobin level.

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations - A nationwide cross-sectional study - A nationwide cross-sectional stud

Table S5. Spearman's rank correlations with p-values between the Diabetes Questionnaire scales and the SF-36v2 domains in type 1 diabetes

				SF-36v2	domain			
Diabetes Questionnaire scale	PF	RP	BP	GH	VT	RF	SF	МН
GenW	0.33	0.43	0.43	0.56	0.60	0.43	0.48	0.53
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
MoE	0.23	0.40	0.30	0.55	0.57	0.46	0.52	0.60
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
FreW	0.17	0.29	0.21	0.46	0.40	0.31	0.38	0.41
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
ManD	0.18	0.28	0.20	0.47	0.44	0.29	0.37	0.41
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
DiEx	0.26	0.28	0.23	0.45	0.51	0.32	0.35	0.39
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
NLD	0.29	0.37	0.24	0.44	0.34	0.37	0.42	0.38
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
NLBS	0.31	0.39	0.27	0.43	0.37	0.35	0.41	0.36
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
SuO	0.10	0.15	0.14	0.29	0.30	0.23	0.29	0.32
	(0.0017)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
SuDC	0.15	0.22	0.16	0.31	0.29	0.23	0.27	0.29
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
AcDC	0.13	0.20	0.15	0.30	0.28	0.23	0.26	0.31
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
CoDC	0.01	0.03	0.03	0.08	0.02	0.06	0.06	0.06
	(0.8176)	(0.3182)	(0.3309)	(0.0027)	(0.3822)	(0.0375)	(0.0297)	(0.0335)
MDMT	0.06	0.14	0.09	0.30	0.27	0.19	0.26	0.30
	(0.0240)	(<.0001)	(0.0006)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role-emotional; MH: mental health.

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables - A nationwide cross-sectional study of associations - A nationwide cross-sectional study - A nationwide cross-sectional stud

Table S6. Spearman's rank correlations with p-values between the Diabetes Questionnaire scales and the SF-36v2 domains in type 2 diabetes

				SF-36v2	domain			
Diabetes Questionnaire scale	PF	RP	BP	GH	VT	RF	SF	МН
GenW	0.39	0.44	0.48	0.56	0.60	0.44	0.51	0.53
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
MoE	0.41	0.45	0.42	0.57	0.58	0.51	0.54	0.60
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
FreW	0.28	0.35	0.34	0.47	0.42	0.38	0.40	0.43
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
ManD	0.26	0.32	0.28	0.44	0.45	0.34	0.37	0.42
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
DiEx	0.32	0.33	0.36	0.48	0.51	0.30	0.36	0.38
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
NLD	0.38	0.44	0.34	0.46	0.43	0.45	0.47	0.43
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
NLBS	0.34	0.40	0.31	0.40	0.38	0.44	0.46	0.42
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
SuO	0.14	0.19	0.25	0.31	0.32	0.20	0.26	0.32
	(0.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
SuDC	0.14	0.21	0.21	0.26	0.25	0.21	0.26	0.28
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
AcDC	0.22	0.26	0.28	0.32	0.31	0.26	0.29	0.32
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)
CoDC	0.07	0.10	0.11	0.16	0.13	0.11	0.13	0.14
	(0.0130)	(0.0006)	(0.0001)	(<.0001)	(<.0001)	(0.0002)	(<.0001)	(<.0001)
MDMT	0.13	0.20	0.18	0.24	0.24	0.22	0.26	0.28
	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)	(<.0001)

Diabetes Questionnaire scales: GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment.

SF-36v2 domains: PF: physical functioning; RP: role-physical; BP: bodily pain; GH: general health; VT: vitality; SF: social functioning; RE: role-emotional; MH: mental health.

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic healthrelated quality of life and clinical variables

Table S7. Least square mean estimates and 95% confidence intervals for the Diabetes Questionnaire scales in three glycated haemoglobin (HbA_{1c}) groups for type 1 and type 2 diabetes

Diabetes			Type 1	diabetes					Type 2	diabetes		
Questionn	Un	adjusted analy	/sis	А	djusted analys	sis	Un	adjusted analy	/sis	А	djusted analys	sis
aire scale	HbA _{1c}											
	<52	52-69	≥70	<52	52-69	≥70	<52	52-69	≥70	<52	52-69	≥70
	mmol/mol											
GenW	64.33	59.27	56.34	51.11	47.23	45.66	65.97	62.92	54.26	63.63	62.81	56.81
	(63.46-	(58.74-	(55.49-	(49.14-	(45.44-	(43.80-	(65.41-	(62.24-	(52.90-	(62.10-	(61.29-	(54.85-
	65.20)	59.79)	57.19)	53.07)	49.01)	47.53)	66.54)	63.60)	55.62)	65.15)	64.32)	58.78)
MoE	67.15	65.14	58.32	57.77	56.14	49.75	79.24	72.75	61.02	77.12	72.23	60.73
	(66.29-	(64.62-	(57.48-	(55.87-	(54.41-	(47.96-	(78.74-	(72.15-	(59.80-	(75.78-	(70.91-	(58.99-
	68.01)	65.66)	59.16)	59.66)	57.86)	51.54)	79.74)	73.35)	62.25)	78.46)	73.56)	62.46)
FreW	58.21	56.09	48.72	55.28	52.22	46.09	73.07	66.72	54.82	70.39	65.51	54.66
	(57.41-	(55.61-	(47.96-	(53.51-	(50.61-	(44.42-	(72.57-	(66.12-	(53.62-	(69.03-	(64.16-	(52.90-
	59.01)	56.58)	49.49)	57.05)	53.82)	47.75)	73.57)	67.32)	56.03)	71.75)	66.86)	56.42)
ManD	70.05	63.88	55.09	64.84	59.71	51.49	74.12	67.74	60.35	71.53	66.65	60.07
	(69.33-	(63.45-	(54.40-	(63.20-	(58.23-	(49.95-	(73.67-	(67.20-	(59.26-	(70.33-	(65.46-	(58.51-
	70.78)	64.32)	55.79)	66.47)	61.19)	53.03)	74.56)	68.28)	61.43)	72.74)	67.85)	61.63)
DiEx	63.95	56.52	50.18	54.44	50.59	45.40	62.48	55.86	50.13	57.97	55.31	52.85
	(63.07-	(55.98-	(49.32-	(52.50-	(48.83-	(43.57-	(61.92-	(55.20-	(48.80-	(56.54-	(53.91-	(51.02-
	64.84)	57.06)	51.04)	56.37)	52.35)	47.23)	63.03)	56.52)	51.47)	59.40)	56.72)	54.68)
NLD	76.79	76.59	70.75	68.78	70.09	64.26	87.94	81.82	71.54	83.17	78.57	69.61
	(75.93-	(76.07-	(69.92-	(66.84-	(68.33-	(62.44-	(87.46-	(81.23-	(70.37-	(81.79-	(77.21-	(67.83-
	77.66)	77.11)	71.58)	70.71)	71.85)	66.09)	88.43)	82.40)	72.71)	84.55)	79.94)	71.38)
NLBS	74.54	70.33	64.60	64.39	61.14	57.16	85.59	77.91	65.85	81.69	75.53	65.42
	(73.54-	(69.73-	(63.63-	(62.08-	(59.05-	(54.98-	(84.98-	(77.18-	(64.37-	(79.96-	(73.81-	(63.19-
	75.54)	70.93)	65.58)	66.69)	63.23)	59.33)	86.20)	78.64)	67.33)	83.43)	77.25)	67.65)
SuO	66.33	61.93	59.61	63.01	59.84	58.00	68.56	65.70	57.12	68.47	66.84	57.40
	(65.31-	(61.32-	(58.63-	(60.74-	(57.79-	(55.86-	(67.83-	(64.89-	(55.49-	(66.77-	(65.20-	(55.25-
	67.35)	62.54)	60.59)	65.28)	61.88)	60.14)	69.29)	66.51)	58.74)	70.16)	68.48)	59.56)
SuDC	79.87	79.34	74.41	77.71	77.27	73.04	80.06	76.49	70.89	77.76	75.23	72.46
	(79.13-	(78.89-	(73.70-	(76.01-	(75.73-	(71.44-	(79.54-	(75.87-	(69.64-	(76.38-	(73.86-	(70.69-
	80.61)	79.79)	75.13)	79.41)	78.81)	74.64)	80.58)	77.11)	72.14)	79.14)	76.59)	74.24)
AcDC	69.08	68.52	64.78	64.69	64.90	62.54	73.64	69.68	64.39	70.33	68.12	65.20
	(68.32-	(68.06-	(64.05-	(62.96-	(63.33-	(60.91-	(73.12-	(69.06-	(63.14-	(68.92-	(66.72-	(63.37-
	69.84)	68.98)	65.51)	66.42)	66.47)	64.17)	74.16)	70.30)	65.64)	71.75)	69.52)	67.02)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 43 of 47

BMJ Open

Svedbo Engström et al. A new diabetes questionnaire to add patients' perspectives to diabetes care for adults with type 1 and type 2 diabetes – A nationwide cross-sectional study of associations with generic health-related quality of life and clinical variables

Diabetes	Diabetes Type 1 diabetes						Type 2 diabetes						
Questionn	Un	adjusted analy	vsis	А	djusted analys	sis	Un	adjusted analy	vsis	А	djusted analysis		
aire scale	HbA _{1c}	HbA_{1c}	HbA _{1c}										
	<52	52-69	≥ 70	<52	52-69	≥70	<52	52-69	≥ 70	<52	52-69	≥70	
	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol	mmol/mol	
CoDC	78.03	80.76	80.05	74.89	77.58	76.08	72.45	70.90	67.72	72.22	70.45	68.43	
	(77.13-	(80.22-	(79.20-	(72.88-	(75.75-	(74.18-	(71.77-	(70.11-	(66.11-	(70.34-	(68.59-	(66.01-	
	78.92)	81.29)	80.90)	76.90)	79.41)	77.97)	73.12)	71.70)	69.33)	74.09)	72.31)	70.84)	
MDMT	77.14	75.78	72.81	72.21	71.74	70.14	82.46	78.80	76.45	81.42	78.79	76.64	
	(76.34-	(75.30-	(72.04-	(70.41-	(70.11-	(68.45-	(82.02-	(78.29-	(75.41-	(80.23-	(77.62-	(75.11-	
	77.94)	76.26)	73.58)	74.01)	73.38)	71.84)	82.90)	79.31)	77.48)	82.62)	79.96)	78.17)	

Table S7 continued. GenW: General Wellbeing; MoE: Mood and Energy; FreW: Free of Worries about blood sugar; ManD: Capabilities to Manage your Diabetes; DiEx: Diet and Exercise; NLD: Not Limited by Diabetes; NLBS: Not Limited by Blood Sugar; SuO: Support from Others; SuDC: Support from Diabetes Care; AcDC: Access to Diabetes Care; CoDC: Continuity in Diabetes Care; MDMT: Medical Devices and Medical Treatment

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cross sectionalreporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Reporting Item

abstract

Title

<u>#1a</u> Indicate the study's design with a commonly

used term in the title or the abstract

1 2	Abstract	<u>#1b</u>	Provide in the abstract an informative and	2
3 4			balanced summary of what was done and	
5 6 7			what was found	
8 9 10 11	Introduction			
12 13	Background /	<u>#2</u>	Explain the scientific background and	4-5
14 15 16	rationale		rationale for the investigation being reported	
17 18	Objectives	<u>#3</u>	State specific objectives, including any	5
19 20 21			prespecified hypotheses	
22 23 24	Methods			
25 26	Study design	<u>#4</u>	Present key elements of study design early in	5
27 28 29 30			the paper	
31 32	Setting	<u>#5</u>	Describe the setting, locations, and relevant	5
33 34			dates, including periods of recruitment,	
35 36 37			exposure, follow-up, and data collection	
38 39 40	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources	5
41 42 43			and methods of selection of participants.	
44 45		<u>#7</u>	Clearly define all outcomes, exposures,	5-8
46 47			predictors, potential confounders, and effect	
48 49 50			modifiers. Give diagnostic criteria, if applicable	
51 52	Data sources /	<u>#8</u>	For each variable of interest give sources of	5-8
53 54 55	measurement		data and details of methods of assessment	
56 57 58			(measurement). Describe comparability of	
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

			BMJ Open	Page 46 of 47
1			assessment methods if there is more than one	
2 3			group. Give information separately for for	
4 5 6			exposed and unexposed groups if applicable.	
7 8 9 10	Bias	<u>#9</u>	Describe any efforts to address potential	5,7-8,16-17
11 12			sources of bias	
13 14 15	Study size	<u>#10</u>	Explain how the study size was arrived at	5
16 17	Quantitative	<u>#11</u>	Explain how quantitative variables were	5-8
18 19 20	variables		handled in the analyses. If applicable,	
21 22			describe which groupings were chosen, and	
23 24 25			why	
26 27	Statistical	<u>#12a</u>	Describe all statistical methods, including	7-8
28 29	methods		those used to control for confounding	
30 31 32 33	Statistical	<u>#12b</u>	Describe any methods used to examine	7-8
34 35	methods		subgroups and interactions	
36 37 38	Statistical	<u>#12c</u>	Explain how missing data were addressed	8
39 40 41	methods			
42 43	Statistical	<u>#12d</u>	If applicable, describe analytical methods	5
44 45 46	methods		taking account of sampling strategy	
47 48 49	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
50 51	methods			
52 53 54 55 56 57 58 50	Results			

1 2	Participants	<u>#13a</u>	Report numbers of individuals at each stage	5
3 4			of study—eg numbers potentially eligible,	
5 6			examined for eligibility, confirmed eligible,	
7 8 9			included in the study, completing follow-up,	
9 10 11			and analysed. Give information separately for	
12 13			for exposed and unexposed groups if	
14 15			applicable.	
16 17				
18 19	Participants	<u>#13b</u>	Give reasons for non-participation at each	n/a With reference to
20 21			stage	ethical guidelines we did
22 23				not ask potential
24 25 26				participants to give their
27 28				reasons for non-
29 30				participation
31 32	Participants	<u>#13c</u>	Consider use of a flow diagram	n/a
33 34 35		<u></u>		
36 37	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	9-11
38 39			demographic, clinical, social) and information	
40 41			on exposures and potential confounders. Give	
42 43			information separately for exposed and	
44 45 46			unexposed groups if applicable.	
47 48	Descriptive data	<u>#14b</u>	Indicate number of participants with missing	8
49 50			data for each variable of interest	
51 52 53				
53 54 55	Outcome data	<u>#15</u>	Report numbers of outcome events or	9
56 57			summary measures. Give information	
58 59				
60		For pe	er review only - http://bmjopen.bmj.com/site/about/guideline	s.xhtml

BMJ	Open
0.000	open

1			separately for exposed and unexposed groups	
2 3 4			if applicable.	
5 6 7	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable,	8,14
8 9			confounder-adjusted estimates and their	
10 11			precision (eg, 95% confidence interval). Make	
12 13			clear which confounders were adjusted for	
14 15 16 17			and why they were included	
17 18 19	Main results	<u>#16b</u>	Report category boundaries when continuous	8,10-11,14
20 21 22			variables were categorized	
23 24	Main results	<u>#16c</u>	If relevant, consider translating estimates of	n/a
25 26 27			relative risk into absolute risk for a meaningful	
27 28 29 30			time period	
31 32	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of	12-14
33 34			subgroups and interactions, and sensitivity	
35 36			analyses	
37 38 39	Discussion			
40 41				15
42 43	Key results	<u>#18</u>	Summarise key results with reference to study	15
44 45			objectives	
46 47 48	Limitations	<u>#19</u>	Discuss limitations of the study, taking into	16-17
49 50			account sources of potential bias or	
51 52			imprecision. Discuss both direction and	
53 54 55			magnitude of any potential bias.	
56 57				
58 59				
60		For pe	er review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml	

1 2	Interpretation	<u>#20</u>	Give a cautious overall interpretation	15-18			
3 4			considering objectives, limitations, multiplicity				
5 6 7			of analyses, results from similar studies, and				
, 8 9 10			other relevant evidence.				
10 11 12	Generalisability	<u>#21</u>	Discuss the generalisability (external validity)	16-17			
13 14 15			of the study results				
15 16 17	Other						
18 19 20 21 22 23	Information						
	Funding	<u>#22</u>	Give the source of funding and the role of the	19			
24 25			funders for the present study and, if				
26 27			applicable, for the original study on which the				
28 29 30			present article is based				
 33 34 35 36 37 38 39 40 41 42 43 	Notes:						
	• 9: 5,7-8,16-17						
	• 13b: n/a With	13b: n/a With reference to ethical guidelines we did not ask potential participants to give their					
	reasons for no	reasons for non-participation The STROBE checklist is distributed under the terms of the					
	Creative Com	Creative Commons Attribution License CC-BY. This checklist was completed on 25. June 2020					
44 45 46	using <u>https://w</u>	using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with					
47 48	Penelope.ai						
49 50 51							
52 53							
54 55 56							
57 58							