Cell Reports, Volume 33

Supplemental Information

The Roborovski Dwarf Hamster Is

A Highly Susceptible Model for a Rapid

and Fatal Course of SARS-CoV-2 Infection

Jakob Trimpert, Daria Vladimirova, Kristina Dietert, Azza Abdelgawad, Dusan Kunec, Simon Dökel, Anne Voss, Achim D. Gruber, Luca D. Bertzbach, and Nikolaus Osterrieder

The Roborovski dwarf hamster – a highly susceptible model for a rapid and fatal course of SARS-CoV-2 infection

Jakob Trimpert^{1,*}, Daria Vladimirova¹, Kristina Dietert^{2,3}, Azza Abdelgawad¹, Dusan Kunec¹, Simon Dökel², Anne Voss², Achim D. Gruber², Luca D. Bertzbach^{1,5} and Nikolaus Osterrieder^{1,4,5}

¹Institut für Virologie, Freie Universität Berlin, Berlin, Germany ²Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany ³Tiermedizinisches Zentrum für Resistenzforschung, Freie Universität Berlin, Berlin, Germany ⁴Department of Infontious Diseases and Public Health, Jackey Club College of Vetering

⁴Department of Infectious Disease and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong

⁵These authors contributed equally

*Correspondence: trimpert.jakob@fu-berlin.de

Supplementary Materials

Figure S1: Histopathology of further *Phodopus species* (related to Figure 4). *Phodopus (P.) campbelli* and *P. sungorus* developed pneumonia after SARS-CoV2-standard dose infection similar to low dose infected *P. roborovskii* with multifocal consolidated areas (A, E). *P campbelli* had only minimal bronchitis (B), necrosuppurative pneumonia with infiltration of mainly neutrophils (C, arrowhead) and strong initiation of regeneration by alveolar epithelial type II cells (AEC-II, C, arrows) at 3 dpi. *In situ*-hybridization localized viral RNA in bronchial epithelial cells, AEC-I (arrowhead), AEC-II (arrow) and alveolar macrophages associated with areas of inflammation. *P. sungorus* developed marked necrosuppurative bronchitis (F, arrow) and pneumonia at 3 dpi with stronger infiltration of neutrophils (G, arrowheads) and also prominent regeneration of AEC-II (G, arrows) at 3 dpi. Viral RNA was detected with virtually identical distribution and cellular tropism as observed in *P. campbelli.* Red, viral RNA signals; blue, hemalaun counterstain. Bars 1 mm (A, E), 50 μm, (B, C, F, G), 200 μm (D, H) and 20 μm (insets in D, H).

Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	MSSSSWLLLSLVAVTTAQSIIEEQAKTFLDKFNQEAEDLSYQSALASWNYNTNITEENAQ MSSSSWLLLSLVAVTTAQSIIEEQAKTFLDKFNQEAEDLSYQSALASWNYNTNITEENAQ MSSSSWLLLSLVAVTTAQSIIEEQAKTFLDKFNQEAEDLSYQSSLASWNYNTNITEENAQ MSSSSWLLLSLVAVTTAQSIIEEQAKTFLDKFNQEAEDLSYQSSLASWNYNTNITEENAQ	60 60 60 60
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	KMNEAAAKWSAFYEEQSKLAKNYSLQEVQNLIIKRQLQALQQSGSSALSADKNKQLNTIL KMNEAAAKWSAFYEEQSKLAKNYSLQEVQNLTIKRQLQALQQSGSSALSADKNKQLNTIL KMNEAAAKWSAFYEEQSKLAKNYPLQDVQNLTIKRQLQALQQSGSSALSADKNKQLNTIL KMNEAAAKWSAFYEEQSKLAKNYPLQVQNLTIKRQLQALQQSGSSALSADKNKQLNTIL ***	120 120 120 120 120
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	NTMSTIYSTGKVCNPKNPQECLLLEPGLDDIMATSTDYNERLWAMEGWRAEVGKQLRPLY NTMSTIYSTGKVCNPKNPQECLLLEPGLDDIMATSTDYNERLWAMEGWRAEVGKQLRPLY NTMSTIYSTGKVCNPKNPQECLLLEPGLDDIMATSTDYNERLWAMEGWRAEVGKQLRPLY NTMSTIYSTGKVCNPKNPQECLLLEPGLDDIMATSTDYNERLWAMEGWRAEVGKQLRPLY NTMSTIYSTGKVCNPKNPQECLLLEPGLDDIMATSTDYNERLWAMEGWRAEVGKQLRPLY	180 180 180 180 180
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	EEYVVLKNEMARANNYKDYGDYWRGDYBAEGADGYNYNGNQLIEDVERTFKEIKPLYEQL EEYVVLKNEMARANNYEDYGDYWRGDYEAEGADGYNYNGNQLIEDVERTFKEIKPLYEQL EEYVVLKNEMARANNYKDYGDYWRGDYEAEGENGYNYNGNQLIEDVERTFKEIKPLYEQL EEYVVLKNEMARANNYKDYGDYWRGDYEAEGGENGYNYNGNQLIEDVERTFKEIKPLYEQL EEYVVLKNEMARANNYKDYGDYWRGDYEAEGANGYNYNGNQLIEDVERTFKEIKPLYEQL ***************	240 240 240 240 240
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	HAYVRTKLMDTYPSYISPTGCLPAHLLGDMWGRFWTNLYPLTVPFGQKPNIDVTDAMVNQ HAYVRTKLMNTYPSYISPTGCLPAHLLGDMWGRFWTNLYPLTVPFGQKPNIDVTDAMVNQ HAYVRTKLVNTYPSYISPTGCLPAHLLGDMWGRFWTNLYPLTVPFGQKPNIDVTDAMVKQ HAYVRTKLVNTYPSYISPTGCLPAHLLGDMWGRFWTNLYPLTVPFGQKPNIDVTDAMVKQ	300 300 300 300 300
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	GWDAERIFKEAEKFFVSVGLPHMTQGFWGNSMLTDPGDDRKVVCHPTAWDLGKGDFRIKM GWNAERIFKEAEKFFVSVGLPYMTQGFWENSMLTDPGDDRKVVCHPTAWDLGKGDFRIKM GWGAERIFKEAEKFFVSVGLPHMTKGFWQNSMLTDPGDDRKVVCHPTAWDLGKEDFRIKM GWDAERIFKEAEKFFVSVGLPHMTKGFWQNSMLTDPGDDRKVVCHPTAWDLGKEDFRIKM	360 360 360 360 360
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	CTKVTWDNFLTAHHEMGHIQYDMAYATQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKS CTKVTMDNFLTAHHEMGHIQYDMAYATQPFLLRNGANEGFHEAVGEIMSLSAATPEHLKS CTKVTMDNFLTAHHEMGHIQYDMAYATQPFLLRNGANEGFHEAVGEIMSLSAATPEHLKS CTKVTMDNFLTAHHEMGHIQYDMAYATQPFLLRNGANEGFHEAVGEIMSLSAATPEHLKS	420 420 420 420 420
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	IGLLPSNFHEDNETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGDIPKEKWMEKWWEM IGLLPSDFQEDNETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGDIPKEQWMEKWWEM IGLLPSNFQEDSETEINFLLKQALTIIGTLPFTYMLEKWRWMVFKGDIPKEQWMEKWWEM IGLLPSNFQEDSETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGDIPKEQWMEKWWEM	480 480 480 480 480
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	KREIVGVVEPLPHDETYCDPAALFHVSNDYSFIRYYTRTIYQFQFQEALCQAAKHDGPLH KREIVGVVEPLPHDETYCDPAALFHVSNDYSFIRYYTRTIYQFQFQEALCQAAKHDGPLH KREIVGVVEPLPHDETYCDPAALFHVSNDFSFIRYYTRTIYQFQFQEALCKAAKHDGPLH KREIVGVVEPLPHDETYCDPAALFHVSNDFSFIRYYTRTIYQFQFQEALCKAAKHDGPLH KREIVGVVEPLPHDETYCDPAALFHVSNDFSFIRYYTRTIYQFQFQEALCQAAKHDGPLH	540 540 540 540 540
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	KCDISNSTEAGQKLLNMLRLGKSEPWTLALENVVGARNMDVRPLLNYFEPLSVWLKEQNK KCDISNSTEAGQKLLNMLRLGKSEPWTLALENVVGARNMDVRPLLNYFEPLSVWLKEQNK KCDISNSTEAGQKLVNMLRLGKSGPWTLALEKVVGARNMDVRPLLNYFEPLSVWLKEQNK KCDISNSTEAGQKLVNMLRLGKSEPWTLALENVVGARNMDVRPLLNYFEPLSVWLKEQNK	600 600 600 600 600
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	NSFVGWNTDWSPYADQSIKVRISLKSALGENAYEWNDNEMYLFRATVAYAMRVYFAKNKT NSFVGWNTDWSPYADQSIKVRISLKSALGENAYEWDDNEMYLFRASVAYAMRVYFAKNKT NSFVGWNTDWSPYADQSIKVRISLKSALGENAYWNDNEMYLFRASVAYAMRVYFAKNKT NSFVGWNTDWSPYADQSIKVRISLKSALGENAYWNDNEMYLFRASVAYAMRVYFAKNKT	660 660 660 660 660
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	QTVLFGVEDIRVSDLKPRVSFNFFVTSPQNVSDIIPRNEVEEAVRFSRGRINDVFGLDDN QTVPFGVEDIRVSDLKPRVSFNFFVTSPQNVSDIIPRNEVEEAVRFSRGRINDVFGLDDN QIVPFGVEDIRVSDLTPRVSFNFFVTSPQNMSDIIPRNEVEEAVRFSRGRINDVFGLDDN QTVPFGVEDIRVSDLTPRVSFNFFVTSPQNMSDIIPRNEVEEAVRFSRGRINDVFGLDDN QTVPFGVEDIRVSDLTPRVSFNFFVTSPQNMSDIIPRNEVEEAVRFSRGRINDVFGLDDN	720 720 720 720 720 720
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	SLEFLGINPTLAPPYQPPVTIWLIIFGVVMGIVVUGIVILIVTGIRARKKNNEAKREENP SLEFLGINPTLAPPYQPPVTIWLIIFGVVMGIVVVGIIILIFTGIKGRKKKNETKREENP SLEFLGINPTLAPPYQPPVTIWLIIFGVVMGIVVUGIVILIVTGIKARKKKNEKKRGENP SLEFLGINPTLAPPYQPPVTIWLIIFGVVMGIVVVGIVILIVTGIKARKKKNEKKREENP ******	780 780 780 780 780 780
Cricetulus griseus Mesocricetus auratus Phodopus campbelli Phodopus sungorus Phodopus roborovskii	YDSVDIGKGESNAGFQSNDDVQTSF YDSVDIGKGESNAGFLSNDDAQTSF YASTDIGKGESNAGFQSNDDAQTSF YDSTDIGKGESNAGFQSNDDAQTSF YDSNDIGKGESNAGFQSNDDAQTSF	805 805 805 805 805

Figure S2 – Amino acid alignment of Hamster ACE-2 sequences (related to Figure 5).

Table S1: SARS-CoV-2 blood titers and virus loads in brains of infected Roborovski dwarf hamsters (related to Figures 2 and 3). Presented as means \pm standard deviations of standard dose-infected (SD, n = 10) and low dose-infected Roborovski dwarf hamsters (LD, n = 3).

d.p.i.	Blood titers (SD)	Blood titers (LD)	Virus RNA copies (brains, SD)	Virus RNA copies (brains, LD)
2	all < 100	oll 100	0	
3	$3.9x10^4 \pm 7.9x10^4$	all < 100	$4.8 \times 10^1 \pm 1.1 \times 10^2$	n.a.

Table S2: Comparison of pathologies and distribution of viral RNA in Phodopus species following SARS-CoV-2 infection (related to Figure 4).

Evaluation criteria	Roborovski standard dose	Roborovski Iow dose	Campbell standard dose	Djungarian standard dose		
Histopathology						
Distribution	diffuse	multifocal	multifocal	multifocal		
Alveolar damage	++	+	+	+		
Bronchitis	+/-	+	+	++		
Pneumonia	+/-	++	++	++		
Endothelialitis	-	+/-	-	-		
Hyaline thrombi	++	-	-	-		
Edema	+	+	+/-	-		
Regeneration AEC	-	++	++	++		
Regeneration BEC	-	+	-	-		
SARS-CoV-2 detection by in situ-hybridization						
AEC I	-	-	++	++		
AEC II	++	++	++	++		
BEC	+	+	+	+		
Macrophages	+	+	+	+		

++ main lesion, + observed, +/- variable, - not observed, AEC = alveolar epithelial cells, BEC = bronchial epithelial cells

Table S3: Oligonucleotides used in this study (related to the STAR Methods section).

Primer/probe	Sequence 5'–3'
SARS-CoV-2 qPCR forward	ACAGGTACGTTAATAGTTAATAGCGT
SARS-CoV-2 qPCR reverse	ATATTGCAGCAGTACGCACACA
SARS-CoV-2 qPCR probe	FAM-ACACTAGCCATCCTTACTGCGCTTCG-BHQ
ACE2 seq forward 1	TCCTGGCTCCTTCTCAG
ACE2 seq forward 2	GACAAGTTTAACCAGGAAGCT
ACE2 seq forward 3	CCAAAAGATGAATGAGGCTG
ACE2 seq reverse 1	TCTCCTTCAACTTCTTTGTCACT
ACE2 seq reverse 2	WGTCACCATATGGCTGATT
ACE2 seq reverse 3	TGATGAYGYTCAGACTTCATTTTAG