SUPPLEMENTARY INFORMATION

Crystallographic structure of wild-type SARS-CoV-2 Main Protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site

Jaeyong Lee^{1,2,4}, Liam J. Worrall^{1,4}, Marija Vuckovic¹, Federico I. Rosell¹, Francesco Gentile³,

Anh-Tien Ton³, Nathanael A. Caveney¹, Fuqiang Ban³, Artem Cherkasov³, Mark Paetzel^{2,*} and Natalie C.J. Strynadka^{1,*}

¹Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada. ²Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. ³Vancouver Prostate Centre, The University of British Columbia, Vancouver, British Columbia, Canada.

⁴These authors contributed equally to this work: Jaeyong Lee, Liam J. Worrall

*E-mail: mpaetzel@sfu.ca (MP), ncjs@mail.ubc.ca (NCJS).

Supplementary Information includes:

- Supplementary Tables 1 to 3
- Supplementary Figures 1 to 8

	Acyl-enzyme (WT) PDB 7KHP	Product (C145A) PDB 7IOY	Substrate-free (WT)
Data collection			
Space group	C 2	C 2	C 2
Cell dimensions			
a, b, c (Å)	124.3, 80.2, 63.2	123.7, 80.3, 63.3	113.2, 52.7, 44.6
α, β, γ (°)	90, 89.6, 90	90, 90.2, 90	90, 102.7, 90
Resolution (Å)	29.69 - 1.95 (2.02 -	26.16 - 2.0 (2.07 -	27.2 - 1.8 (1.86 -
	1.95)* ^{,#}	2.0)#	1.8)
R _{sym}	0.0462 (1.597)	0.1411 (0.885)	0.102 (0.499)
R _{pim}	0.0293 (0.9888)	0.0859 (0.777)	0.066 (0.418)
CC1/2	0.999 (0.412)#	0.98 (0.619)#	0.997 (0.63)
l / σl	12.30 (0.79)#	7.71 (0.54)#	10.5 (1.4)
Completeness (%)	99.48 (99.42)	95.89 (92.56)	96.0 (84.20)
Redundancy	3.4 (3.5)	2.8 (1.8)	3.2 (2.0)
Refinement			
Resolution (Å)	1.95	2.0	1.8
No. reflections	44912 (4467)	40219 (3843)	22979 (2015)
Rwork / Rfree	0.199 / 0.240	0.217/0.252	0.186 / 0.219
	(0.350 / 0.359)	(0.320 / 0.327)	(0.371 / 0.401)
No. atoms			
Protein	4731	4729	2361
Ligand/ion	12	0	0
Water	141	268	140
B-factors			
Protein	54.1	34.1	34.7
Ligand/ion	66.7		
Water	50.1	36.4	49.7
R.m.s. deviations			
Bond lengths (Å)	0.016	0.011	0.016
Bond angles (°)	2.03	1.58	1.99

Supplementary Table 1: Data collection and refinement statistics.

*Values in parentheses are for highest-resolution shell.

[#] Acyl-enzyme (WT) and Product (C145A) diffraction exhibited anisotropy as assessed by the Diffraction Anisotropy Server. The maximum resolution limit was assessed based on $I / \sigma I$ and CC1/2 in the reciprocal lattice directions.

WT M^{pro} P9T M^{pro} **Sample Details** SASBDB SASDJG5 SASBDB SASDJH5 Organism SARS-CoV-2 Protein Mpro M^{pro} (P9T) Monomer M from chemical composition (Da) 33.797 33,801 Concentrations (mg/mL) 1.20, 2.41, 4.82, 9.63 1.53, 3.06, 6.12, 12.25, 24.49 Solvent 50 mM Tris pH 7.4, 1 mM DTT, 1 mM EDTA **Data Collection Parameters** Rigaku BioSAXS-2000 Instrument Wavelength (Å) 1.54 Beam Size (mm) 1.5 Rigaku HyPix-3000 (pixel size: 100 µm, active area: 77.5 mm X 30.5 Detector mm) q measurement range (Å^-1) 0.006 - 0.650 Radiation damage monitoring Manual examination of each frame Exposure time (s) 3,600 (12 x 300) Sample temperature (°C) 6 Software SAXS data reduction SAXSLab Data processing ATSAS **Structural Parameters** q range (Å⁻¹) 0.0124-0.604 0.0124-0.604 Guinier analysis $I(0) (cm^{-1})$ 2.03 +/- 0.0038 1.22 +/- 0.0015 26.94 +/- 0.08 23.94 +/- 0.04 $R_{g}(\text{Å})$ P(r) analysis $I(0) (cm^{-1})$ 2.03 1.22 $R_{g}(\text{Å})$ 26.94 23.94 Porod volume ($Å^3$) 93,046 52,323 *M* from Porod volume (kDa) 54,732 30,778 *M* from Qp (kDa) 67,917 38,192 *M* from MoW (kDa) 72,517 41,979 *M* from Vc (kDa) 59,567 35,210 *M* from Size/Shape (kDa) 61,444 36,614 *M* from Bayesian Inference (kDa) 62,350 36,900 **Atomistic Modelling** Symmetry P1 P1 CRYSOL analysis - dimer (6M03) q range for fitting (Å⁻¹) 0.0124-0.604 0.0124-0.604 801.893 χ^2 2.158 Predicted R_g (Å) 25.44 26.02 Vol (Å) 90,392 90,392 Ra (Å) 1.8 1.8 Dro (e Å⁻³) 0 0 CRYSOL analysis - monomer (6M03) q range for fitting (Å⁻¹) 0.0124-0.604 0.0124-0.604 479.318 64.608 χ^2 $\frac{1}{\chi^2}$ SREFLEX 15.959 Predicted R_g (Å) 24.03 23.47 Vol (Å) 45,189 40,355 Ra (Å) 1.4 1.4 Dro (e Å-3) 0.075 0.075

Supplementary Table 2: SAXS sample details, data collection parameters, software, structure parameters, and modelling statistics.

Supplementary Table 3: Optimized M^{pro} gene and primer sequences used in this study.

Suppremen	Sene und printer sequences used in this study.
Optimized	GCAGTCCTGCAATCTGGCTTTCGTAAGATGGCCTTCCCATCAGGTAAAGTTGAGGGATGCATGGTGCAG
gene	GTTACATGCGGCACTACGACGCTTAACGGCCTGTGGCTCGACGATGTGGTTTATTGCCCACGTCATGTG
sequence	ATTTGCACTTCTGAAGACATGCTGAACCCAAATTATGAAGATTTACTGATTCGCAAAAGTAATCATAAT
including	TTTCTGGTACAGGCGGGGAACGTTCAACTGCGCGTCATCGGGCACTCTATGCAGAATTGCGTCCTGAAG
N-terminal	CTGAAAGTTGATACTGCGAACCCAAAAACACCAAAATATAAGTTTGTGCGCATTCAACCGGGCCAAACT
AVI O and	TTCAGTGTTTTGGCTTGTTATAACGGCAGTCCGTCGGGTGTATATCAGTGCGCAATGCGTCCTAATTTC
Av LQ allu	ACGATTAAGGGGTCTTTTCTCAATGGGTCCTGTGGTTCCGTTGGTTTTAATATTGACTATGATTGCGTG
C-terminal	TCATTCTGCTATATGCACCATATGGAGTTACCGACCGGAGTGCATGCCGGCACGGATCTGGAGGGCAAT
GPHHHHH	TTTTATGGCCCTTTTGTAGATCGTCAGACCGCCCAAGCCGCTGGTACGGATACCACCATCACCGTGAAT
	GTTTTAGCGTGGCTGTACGCAGCGGTGATCAACGGCGACCGTTGGTTTTTGAATCGCTTTACTACAACG
	TTAAACGATTTCAACCTCGTTGCCATGAAGTACAATTATGAACCCCTCACTCA
	CTGGGTCCACTGTCGGCGCAGACAGGGATTGCCGTCCTGGATATGTGTGCGTCACTGAAAGAACTGTTG
	CAAAACGGGATGAACGGCCGTACAATCCTGGGTAGTGCGCTGCTGGAGGATGAGTTTACGCCGTTCGAC
	GTGGTCCGGCAATGTAGTGGCGTGACCTTCCAAGGTCCACATCATCACCATCATCAT
Primer	Primers for restriction-free cloning into pGEX-6P-1
sequences	Fwd – CTGTTCCAGGGGCCCCTGGGATCCGCAGTCCTGCAATCTGGCTTTCGTAAGATGGCCTTC
-	Rev – GACCTTCCAAGGTCCACATCATCACCATCATCATTAAGAATTCCCGGGTCGACTCGAGC
	Primars for C1/EA mutation
	FWQ - CGATTAAGGGGTUTTTTTTTTTTTGGGTUCGGTGGTTTCGGTTTTTAATATTGGCTATG Para CAMPA CHICA A MAMMAA A A COCA A COCACA COCACA COCATURA A A A A COCACHUMA A MOO
	Rev – CATAGTCAATATTAAAACCAACGGAACCAGCGGACCCATTGAGAAAAGACCCCTTAATCG

Supplementary Fig. 1: M^{pro} reaction schematic and cleavage site specificity. a Reaction schematic for M^{pro} catalyzed proteolytic cleavage. S – substrate, E – enzyme, TS – transition state, AE – acyl-enzyme, P – product. Structures captured here shown in color with associated PDB IDs. b M^{pro} cleavage site specificity sequences (P6-P6'). SARS-CoV-1 UniProt accession number P0C6X7, SARS-CoV-2 P0DTD1. A vertical line depicts the cleavage site.

Supplementary Fig. 2: Biological Small-Angle X-ray Scattering (BioSAXS) analysis of wildtype and P9T mutant M^{pro}. a BioSAXS data for wildtype M^{pro} at various concentrations and an extrapolated 0.00 mg/mL curve. b BioSAXS data for P9T M^{pro} at various concentrations and an extrapolated 0.00 mg/mL curve. c CRYSOL fitting of PDB dimeric and monomeric M^{pro} structures (PDB 6M03) to the 0.00 mg/mL extrapolated data. SREFLEX was used to remove potential dimer bias from the M^{pro} and allow for more flexible fitting in the case of the monomer-P9T fitting. d Oligomer volume fraction analysis of wild type and P9T M^{pro} using the extrapolated 0.00 mg/mL curves as basis for dimeric (wild-type) and monomeric (P9T) M^{pro}. Fraction analysis of M^{pro} from a and b. (i) and analysis of 1 mg/mL M^{pro} with the addition of 5% DMSO and increasing NaCl up to 300 mM (ii). e,f BioSAXS data used in d ii.

Supplementary Fig. 3: Size-Exclusion Chromatography Multi-Angle Light Scattering (SEC-MALS) analysis of wild-type and P9T mutant M^{pro}. Size exclusion chromatography elution profiles with overlaid calculated molar mass for elution peaks shown in respective colors as in table. Wild-type M^{pro} (red) elutes as a single peak with a calculated molecular mass consistent with a dimer. The P9T mutant elutes with a predominant monomeric peak with some evidence of a minor dimer species (blue). BSA (green) run for calibration and shown for comparison.

Supplementary Fig. 4: Proteolytic activity of wild-type and P9T mutant of SARS-CoV-2 M^{pro} . a Activity of wild-type SARS-CoV-2 M^{pro} (100 nM enzyme) shown as a plot of initial velocity verses substrate concentration, using the substrate: (MCA)-AVLQ/SGFR-Lys(Dnp)-Lys-NH₂. The datum represented in grey as a hollow circle was omitted for the non-linear regression analysis of the data to derive enzymology parameters but is shown here for completeness. Data are presented as mean values +/- SD calculated from at least three data points. **b** Dose dependent inhibition of SARS-CoV-2 M^{pro} activity by the antineoplastic agent carmofur (IC₅₀ = 1.8 ± 0.3 μ M, $n = 2.0 \pm 0.1$). Assay conducted at 27 °C in 50 mM Tris buffer, 2 mM EDTA pH 7.3, 10 % DMSO with 20 μ M substrate and 100 nM M^{pro}. Data are presented as mean values +/- SD calculated from at least three data mean values +/- SD calculated from the persented as mean values +/- SD means the persented as mean values +/- SD means the persented as mean values +/- SD means three data points. **b** Dose dependent inhibition of SARS-CoV-2 M^{pro} activity by the antineoplastic agent carmofur (IC₅₀ = 1.8 ± 0.3 μ M, $n = 2.0 \pm 0.1$). Assay conducted at 27 °C in 50 mM Tris buffer, 2 mM EDTA pH 7.3, 10 % DMSO with 20 μ M substrate and 100 nM M^{pro}. Data are presented as mean values +/- SD calculated from at least three data points. **c** Enzymatic parameters for the wild-type SARS-CoV-2 M^{pro} and the P9T M^{pro} mutant. n = the Hill coefficient.

Supplementary Fig. 5: Simulated annealing 2mFo-DFc OMIT electron density maps for the active site of M^{pro} acyl-enzyme complex and product complex. a Simulated annealing 2mFo - DFc OMIT maps calculated in absence of C-terminal Ser301-Gln306 autocleavage sequence bound in active site of chain B for the M^{pro} acyl-enzyme complex. b As a for the M^{pro} C145A product complex. Map contoured at 1 σ with a 2 Å carve around the omitted atoms.

Supplementary Fig. 6: The secondary structure and dimeric structure of SARS-CoV-2 M^{pro} . **a** A cartoon drawing showing the secondary structural elements with helices as cylinders and β -strands as arrows. The protomer is colored spectrally from N-terminus (blue) to C-terminus (red). The amino acid residue range for domains (I-III) and the secondary structural elements are listed. **b** M^{pro} dimer. Each protomer is shown in cartoon and colored spectrally (N-terminus blue to C-terminus red). A transparent molecular surface is shown around each protomer (chain A – orange, chain B- blue).

Supplementary Fig. 7: The hydrogen bonding distances observed between the C-terminus substrate of chain B' and the catalytic groove of chain B for the acyl-enzyme (a) and product (b) complexes.

Supplementary Fig. 8: Chemical structures of the M^{pro} inhibitors depicted in Fig. 5.