1	
2	
3	Solution structure of Gaussia Luciferase with five disulfide bonds
4	and identification of a putative coelenterazine binding cavity by
5	heteronuclear NMR
6	
7	
8	
9	Nan Wu ^{\$} , Naohiro Kobayashi ^{\$} , Kengo Tsuda, Satoru Unzai, Tomonori Saotome,
10	Yutaka Kuroda [*] and Toshio Yamazaki [*]
11	
12	
13	
14	^{\$} Equal contribution
15	* Correspondence: YK: <u>ykuroda@cc.tuat.ac.jp</u> and TY: <u>toshio.yamazaki@riken.jp</u>
16	
17	
18	
19	
20	
21	
22	

23 Supplementary Methods

24

25 Liquid Chromatography-Mass Spectrometry (LC-MS)

26 The trypsin digestion of GLuc was performed by incubating 250 µL of the sample at 27 37°C for 24 hours in 50 mM Tris-HCl (pH 7.0) with 0.05 mg/mL of GLuc, 0.24 mg/mL of 28 Trypsin, 2 M of urea and 1 mM of CaCl2. After the incubation, 100 µL of the sample was 29 aliquoted for the LC-MS measurement. 30 LC-MS analysis was performed using a Shimadzu LCMS-8040 triple quadruple mass 31 spectrometer (Kyoto, Japan) equipped with a Shimadzu model LC-20AD liquid 32 chromatography system (Kyoto, Japan). Chromatography was done by binary gradient system 33 with 0.1% formic acid (A) and methanol (B). The sample was loaded onto a YMC-Triart 34 C18 (3 µm) 2.1 mm I.D. x 50 mm column equilibrated with 0.1% formic acid with flow rate 35 at 0.2 mL/min. The injection volume was 10 μ L. The elution program was as follows: 0 \rightarrow 36 1 min, 0% B; $1 \rightarrow 4$ min, $0 \rightarrow 100\%$ B; $4 \rightarrow 6$ min, 100% B; $6 \rightarrow 7$ min, 100 $\rightarrow 0\%$ B; $7 \rightarrow 10$ min, 37 0% B. 38 39 40 41

- 42
- 43

4	6
---	---

47		
	z (ionic valence)	m/z (mass to charge ratio)
48	4	1065.75
	5	852.80
49	6	710.83
	7	609.43
50	8	533.37

Supplementary Table 1 | The m/z values of the peptide fragment (m =4259.01) of GLuc obtained by the enzymatic digestion of trypsin. The fragment identity was identified using Peptide Mass (https://web.expasy.org/peptide_mass/). Taking into account the formation of intramolecular disulfide bonds, the molecular weight of the largest peptide fragment was 4259.01 and was identified as DLEPMEQFIAQVDLCVDCTTGCLK (D106-K129) + GCLICLSHIK (G55-K64) + AGCTR (A50-R54).

- aliquot of the samples before and after (five parallel experiments) cleavage was analyzed by a
- 78 SDS-PAGE (c). The tags removed GLuc was then purified again through a 2nd passage to the
- 79 reverse phase HPLC (d). The main peak was collected in order to keep all GLuc sample
- 80 have a uniform native fold. Futher purification details are given in 1 .

Supplementary Fig. 2 | MALDI-TOF mass of ¹⁵N labeled GLuc expressed in *E.coli*.
Freeze dryed ¹⁵N labeled GLuc was dissolved in a matrix solution (1mL matrix solution contains: 10 mg sinapic acid, 500 μL acetonitrile, 100 μL 1% TFA and 400 μL MilliQ) at a
final protein concentration of 5 μM. One microliter (containing 5 pmol of GLuc) was loaded
on the MALDI-TOF plate for measurement. The calculated mass of ¹⁵N labeled GLuc is
19055.8 Da.

Supplementary Fig. 3 | Bioluminescence activity of ¹⁵N labeled GLuc expressed in *E.coli*. Bioluminescence was initiated by adding 30 µL of coelenterazine to a final concentration of 3 µM to a 2 mL 0.01 µM GLuc solution in 50 mM Tris-HCl buffer pH 8.0 and 50 mM NaCl. The spectra were measured at 20 °C using a JASCO FP-8000 fluorescence spectrophotometer with a scan speed of 20000 nm/min and an emission bandwidth of 5 nm. The activity measurement was repeated three times (shown in red, blue and green, respectively).

GLuc sequence TALOS+ Consensus 85% NOE flexible H/D 20min H/D 18h Packing status Domain(repeats)	
GLuc sequence TALOS+ Consensus 85% NOE flexible H/D 20min H/D 18h Packing status Domain(repeats)	55 60 65 70 75 80 85 90 95 100 GCTRGCLICLSHIKCTPKMKKFIPGRCHTYEGDKESAQGGIGEAIVDIPE cecchhihhhhcceeccccccccccccccccccccccceeccc cccccc-eee-ccccceeeccc cecchhihhhhcceechhihhhhcceecccccccccccc
GLuc sequence TALOS+ Consensus 85% NOE flexible H/D 20min H/D 18h Packing status Domain(repeats)	105 110 115 120 125 130 135 140 145 150 IPGFKDLEPMEQFIAQVDLCVDCTTGCLKGLANVQCSDLLKKWLPQRCAT cchhhhhhhhhhhhhhccccccc cccccccchhhhhhhhhhhhhccccccc ccccccccchhhhhhhhhhhhccccccc ccccccccchhhhhhhhhhhhccccccchhhhhhhccccc
GLuc sequence TALOS+ Consensus 85% NOE flexible H/D 20min H/D 18h Packing status Domain(repeats)	0 222222222222222222222222222222222222

h = 4-turn helix (α helix). Min length 4 residues. e = extended strand in parallel and/or anti-parallel β -sheet conformation. Min length 2 residues. c = coil (residues which are not in any of the above conformations).

109

110 Supplementary Fig. 4 | Residue-level structural characterization of GLuc. TALOS+

111 shows GLuc's secondary structure calculated from the chemical shifts using the TALOS+ 112 server². Consensus 85% indicates GLuc secondary structure predicted using seven publicly available predictors with 85% consensus ³. NOE flexible and marked with " \approx " shows highly 113 flexible residues identified by ¹H-¹⁵N heteronuclear NOE experiment. H/D 20min and H/D 114 18h respectively shows residues that retained their signal after 20 minutes (marked with "*") 115 116 and 18 hours (marked with "+") in D₂O. Packing status shows the tightly packed moiety (marked with "•") and the loosely packed moiety (marked with "o"), respectively. Domain 117 (repeats) indicates the two homologous repeats of GLuc that identified in the reference⁴. 118

122 Supplementary Fig. 5 | LC-MS spectra and selected ion chromatograms of the peptide

123 fragment (m=4259) of GLuc obtained by the enzymatic digestion of trypsin. The

124	experimental	values	of m/z	coincided	with	the	computed	values	(z=6	and	z=7),	and	the
-----	--------------	--------	----------	-----------	------	-----	----------	--------	------	-----	-------	-----	-----

retention times of the LC peaks of the two different ionic valences were identical.

MODEL A # No: Chain Z rmsd lali nres %id PDB Description MODEL B Chain %id PDB Description
5 MOLECULE: UBIQUITIN-CONJUGATING ENZYME E2 D2, UBIQUITIN THI rmsd lali nres # No: 2.5 4dda–A 1: 3.5 59 399 2.4 2.4 3.7 52 MOLECULE: N-GLYCOSYLASE/DNA LYASE; MOLECULE: HNH ENDONUCLEASE DOMAIN PROTEIN; 2xhi-A 316 10 3: 4: x 4one-A 9.3 99 977 5 5ukh-A 2.3 5.6 52 321 13 MOLECULE: UNCHARACTERIZED PROTEIN; 1u9p-A 2rji-A 4d8o-A 5: 2.3 3.6 2.8 48 96 4 2 MOLECULE: PARC; MOLECULE: ERYTHROCYTE BINDING ANTIGEN 175; 2.3 84 6: 53 MOLECULE: ANKYRIN-2; MOLECULE: RNA POLYMERASE SIGMA-H FACTOR; MOLECULE: ODORANT-BINDING PROTEIN; MOLECULE: UNKNOWN (CLAW); 2.3 3.0 46 5**0**9 123 7: 11 4.0 8: 2.2 67 9 3mzy-A 2.9 4.2 51 65 9: 5dic-A 2.2 115 4 10: 6e11-E 2.2 210 8 11: 12: 5gha-D 5bmq-A 2.1 2.1 5.6 7.4 55 59 310 205 MOLECULE: MOLECULE: SULFUR TRANSFERASE TTUA; ERFK/YBIS/YCFS/YNHG FAMILY PROTEIN; 4 8 146 86 MOLECULE: RANBP-TYPE AND C3HC4-TYPE ZINC FINGER-CONTAINING MOLECULE: MUCOSA-ASSOCIATED LYMPHOID TISSUE LYMPHOMA TRANSL 13: 4dbg–B 2.1 8.2 50 10 48 2.7 13 14: 2a7r-A 2.1 2.1 10.5 2.0 4.2 70 47 11 9 MOLECULE: DNA-DIRECTED RNA POLYMERASE I SUBUNIT RPA190; MOLECULE: UNCHARACTERIZED PROTEIN FROM DUF2059 FAMILY; 15: 6hls-A 1431 140 16: 3oao-A H1 H2 H3 H4 H5 H6 H7 H8 H9 4ddg–A ο 0 0 2xhi–A 0 o 1u9p-A 2rji-A 4d8o-A 0 0 0 _ _ 0 0 -0 0 _ 0 0 _ _ _ 3mzy-A D 0 0 _ 0 -0 5dic-A _ 0 0 _ _ 0 0 _ 0 6e11–E 0 0 _ 2a7r-A 0 0 0 o 3oao-A 0 o 0 MODEL C rmsd lali nres %id PDB Description 4.8 73 521 8 MOLECULE: HYPOTHETICAL MULTIHEME PROTEIN; 2.7 61 136 3 MOLECULE: PUTATIVE TRANSCRIPTION REGULATOR LMO0852; 2.8 49 86 12 MOLECULE: MUCOSA-ASSOCIATED LYMPHOID TISSUE LYMPHOMA TRANSL Z rmsd 2.4 4.8 2.2 2.7 2.0 2.8 Chain 4qo5-A # No: 1: 2: 5c4y-A 3: 2g7r-A H1 H2 H3 H4 H5 H6 H7 H8 H9 4qo5–A --0 -0 0 0 0 0 _ 5c4y-A 2g7r-A 0 0 0 0 0 0 0 0 MODEL D # No: Chain Ζ rmsd lali nres %id PDB Description MODEL E %id PDB Description 10 MOLECULE: RNA LARIAT DEBRANCHING ENZYME, PUTATIVE; # No: 1: Chain 7 rmsd lali nres
 Str8-B
 2.8
 3.7
 61
 351
 10

 2r18-A
 2.0
 2.3
 41
 129
 10

 H1
 H2
 H3
 H4
 H5
 H6
 H7
 H8
 H9
 MOLECULE: CAPSID ASSEMBLY PROTEIN VP3; 2: 5k78–B o 0 0 _ 2r18-A _ 0 _ _ 0 MODEL F Chain Z rmsd lali nres %id P 4d8o-A 2.1 3.0 47 509 9 2h56-A 2.0 3.1 45 218 11 H1 H2 H3 H4 H5 H6 H7 H8 H9 %id PDB Description
9 MOLECULE: ANKYRIN-2;
11
MOLECULE: DNA-3-METHYLADENINE GLYCOSIDASE; # No: 1: 2: 4d8o–A o 0 0 _ _ _ n 2r18-A 0 MODEL G * No: Chain Z rmsd lali nres %id PDB Description x 1: 1e3a-B 2.8 6.5 85 560 8 MOLECULE: PENICILLIN AMIDASE ALPHA SUBUNIT; 135 136 Supplementary Fig. 6 | Similar structure search of GLuc against the Protein Data Bank 137 using Dali server. Seven GLuc models that have all five disulfide bonds were selected from 138 NMR-derived the nineteen structures and submitted to а Dali server (http://ekhidna2.biocenter.helsinki.fi/dali/)⁵ to search similar structure in the Protein Data 139 140 Bank. The data outputs of Dali sever of all seven GLuc models are shown for MODEL A 141 (representative structure), B, C, D, E, F and G, respectively. None the searches showed a 142 similar structure for MODEL A and D. Although a few similar structures were identified for 143 on MODEL B, C, E, F and G, all of which exhibited low Z-score (<3.0, which over 6.0 could 144 be taken to be highly significant), indicating no significant structural similarity. Structures 145 marked with a " \times " were firstly ignored, because they have an rmsd >4.0 are structurally 146 dissimilar to GLuc. Structures with rmsd less than 4.0 were then partially matched with GLuc 147 models over helix segments (shown in "Details", "H1"-"H9" represent nine helices of GLuc, 148 all matched helices were marked with "o" below). GLuc structure shows H3H4H5-H7H8H9 149 is critical for GLuc's structural skeleton (Fig. 3) and the putative catalytic cavity (Fig. 4), but 150 none of the identified structures matched GLuc in this areas, which strongly suggested that 151 the matches are accidental.

153 Supplementary Fig. 7 | H/D exchanging ¹H-¹⁵N HSQC spectra of GLuc. Measurements
154 were initialed by dissolving GLuc to a final concentration of 0.2 mM in D₂O containing 50
155 mM MES buffer pH 6.0 with 2 mM NaN₃. ¹H-¹⁵N HSQC spectra were measured after

156 incubating GLuc at 298 K for 20 minutes (a) and 18 hours (b), respectively.

Supplementary Fig. 8 | Surface representation of GLuc (representative structure, residues 10-148). (a) Hydropathy surface representation of GLuc shown by coloring the molecule using "color_h" pymol script (https://pymolwiki.org/index.php/Color_h): hydrophilic regions were shown in white and hydrophobic regions were shown in red. The insert figures show the interior cavity. (b) Electrostatic surface representation of GLuc

- 163 calculated using an APBS plugin of Pymol. Positive charges are shown in blue, negative
- 164 charges are shown in red and neutral residues are in gray. (c) Ribbon representation of GLuc
- 165 from the same direction as in (a) and (b).

167 Supplementary Fig. 9 | Conformations of seven best docking complexes.

168 Seven GLuc models that are referred in Supplementary Fig. 6 were docked with 169 coelenterazine using Autodock4.2 ⁶. The coelenterazine and three activity-related residues on 170 GLuc (R76, H78 and T79) were set as flexible, and all other residues were set as rigid. 50 171 docking complexes were generated during the docking simulation of each GLuc model

172	(Genetic Algorithm), and the one with lowest binding energy were selected and shown in (a)
173	\sim (g), respectively. (a) shows the docking complex of MODEL A (representative structure),
174	binding energy= -6.47 kcal/mol, inhibit constant= 17.96 μ M; (b) shows the docking complex
175	of MODEL B, binding energy= -6.13 kcal/mol, inhibit constant= 32.26 μ M; (c) shows the
176	docking complex of MODEL C, binding energy= -5.8 kcal/mol, inhibit constant= 56.21 μ M;
177	(d) shows the docking complex of MODEL D, binding energy= -7.07 kcal/mol, inhibit
178	constant= 6.57 μ M; (e) shows the docking complex of MODEL E, binding energy= -9.29
179	kcal/mol, inhibit constant= 154.09 nM; (f) shows the docking complex of MODEL F, binding
180	energy= -11.8 kcal/mol, inhibit constant= 2.26 nM; (g) shows the docking complex of
181	MODEL G, binding energy= -8.36 kcal/mol, inhibit constant= 742.04 nM. GLuc molecules
182	are shown in white; coelenterazines are shown in red; five disulfide bonds are shown in green;
183	the interior surface (cavity) that is formed by residues N10, V12, A13, V14, S16, N17, F18,
184	L60, S61, I63, K64, C65, R76, C77, H78, T79, F113, I114, V117 are shown in transparent
185	light blue.

187 Supplementary Fig. 10 | Sequence alignment of luciferases. GLuc alignment with 12 188 similar luciferases is shown in (a). GLuc indicates the GLuc's amino acid sequence. Residues 189 -16 to 0 represent a secretion tag sequence. Clustal Co indicates amino acid conservation 190 throughout the 12 sequences of BLAST-detected luciferases according to ClustalW³: (An 191 asterisk indicates a fully conserved residue, a column shows a highly conserved residue, and a 192 dot shows a poorly conserved residue according to ClustalW classification). Nine α helices 193 identified from the representative structure are marked at the bottom. Residues L60, S61, C65, 194 R76, C77, H78 and V117 were marked with red squares. The alignment of GLuc's

195	homolo	gous repeats ^{3,4} : residues 27-97 against residues 98-168 is shown in (b). Residues					
196	W143, L144, F151 ¹ are marked with red circles, and the residues in the activity-associated						
197	loop R7	76-T79 7 are marked with a red square. The flexible C-terminus is underlined. Clustal					
198	Co show	ws amino acid consensus generated by ClustalW (the symbol codes are the same as in					
199	(a)).						
200							
201	Referen	nces					
202	1.	Wu, N., Kamioka, T. & Kuroda, Y. A novel screening system based on VanX -					
203		mediated autolysis—Application to Gaussia luciferase. Biotechnol Bioeng 113,					
204		1413-1420 (2016).					
205	2.	Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for					
206		predicting protein backbone torsion angles from NMR chemical shifts. J Biomol					
207		NMR 44, 213-223 (2009).					
208	3.	Wu, N., Rathnayaka, T. & Kuroda, Y. Bacterial expression and re-engineering of					
209		Gaussia princeps luciferase and its use as a reporter protein. BBA-Proteins Proteom					
210		1854 , 1392-1399 (2015).					
211	4.	Inouye, S. & Sahara, Y. Identification of two catalytic domains in a luciferase					
212		secreted by the copepod Gaussia princeps. Biochem Biophys Res Commun 365,					
213		96-101 (2008).					
214	5.	Hasegawa, H. & Holm, L. Advances and pitfalls of protein structural alignment. Curr					
215		<i>Opin in Struc Biol</i> 19 , 341-348 (2009).					

216	6.	Morris, G.M. et al. AutoDock4 and AutoDockTools4: Automated docking with
217		selective receptor flexibility. J Comput Chem 30, 2785-2791 (2009).
218	7.	Kim, S.B., Suzuki, H., Sato, M. & Tao, H. Superluminescent variants of marine
219		luciferases for bioassays. Anal Chem 83, 8732-40 (2011).
220		