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Data S1: scREAD server tutorials, Related to Figure 1. 

The scREAD server includes six parts: 

1. Home 

- Pie charts that reflect ratio distribution in 73 datasets for each of the four factors 

(species, condition, region, and gender) 

- Search differentially expressed genes 

- Dataset overview 

2. Example result illustration  

- A general overview of the dataset including dataset source, and other datasets from 

the same experiment 

- Interactive UMAP plot for cell types, subclusters, and specific gene expression 

- Differential expression and Gene set enrichment analysis 

- Cell-type-specific regulon inference 

2. Browse control atlas 

- 23 control atlases from different brain regions of human and mouse species 

3. Submit 

- Submit user's AD scRNA-Seq & snRNA-Seq datasets into scREAD to do the same 

analysis as shown in our database 

4. Download raw and processed datasets 

 

Part 1. Home page 

 

1. General statistical information of all scRNA-Seq & snRNA-Seq datasets that are covered in 

scREAD. The pie charts represent four factors of distribution: species, control/disease 

condition, brain region, and gender. 

2. Options to filter presented datasets. 

3. Download the current presented table or reset all filters to display all datasets. 

4. Each column is sortable by clicking column names. 



5. A floating dialog for dataset overview will pop up when users click on each row, users can 

then navigate to the details page. 

6. Navigate to different pages or control how many queries on one page. 

7. scREAD will return all differential gene expression results queries for a gene. 

 

Part 2. Example result illustration 

We used the dataset of AD00103 as an example to show the analysis result. This dataset 

consists of 6,629 cells isolated from the human AD female prefrontal cortex (Mathys et al., 

2019). 

This tutorial will guide you through the analysis result page of scREAD in detail. 

2.1 General information 

 

 

1. Overview of current dataset: 'scREAD Data ID', 'Species', 'Region', 'Condition', 'Braak 

Stage', 'Gender', and 'Age'.  

2. The number of identified cell types, control-like cells, and AD-associated cells. 

3. General information of the corresponding research paper for this dataset.  

4. All the other datasets that are included in the same experiment or publication.  

5. A dialog will appear when users click on the scREAD Data ID, then users can click the 

'DETAILS' button to go to the analysis result page of the corresponding dataset.  

2.2 Cell clustering 

 

https://bmbls.bmi.osumc.edu/scread/AD00103
https://pubmed.ncbi.nlm.nih.gov/31042697/
https://pubmed.ncbi.nlm.nih.gov/31042697/


 

1. Users choose one of these cell types, the following UMAP will change to the UMAP of 

predicted subclusters for this specific cell type. 

2. The ARI score is used to evaluate the performance of our predicted cell types compared 

with the original cell labels from the original paper. Note: If we don't have the ARI score, it 

will show a silhouette score instead. 

3. A sliding bar is used for controlling the size of each point in the following UMAP. It ranges 

from 1 to 10, the bigger the number is, the larger the point size is. 

4. This function bar contains several quick buttons for graphic operations. 

5. Hover cursor on cell points will display cell type, cell name, and the UMAP coordinates. 

6. The legend of this UMAP plot. 

7. The genes in the drop-down bar are all genes expressed in this dataset, and users can 

also input the name of genes that they're interested in. The darker the color is in this 

UMAP, the higher the expression value of the gene.  

 



2.3 Differential expression (DE) / Gene set enrichment 

 

1. DE testing groups for browsing cell-type-specific genes, subcluster specific genes, and 

DE genes from the cross-dataset comparison.

 

2. Choose the cell type of interest in DE testing. 

3. The Log2 fold-change ranges from 0 to 5. 

4. The Adjusted p-value ranges from 10^-6 to 1. 

5. The DE direction can filter by all DE genes, only up-regulated genes, only 

down-regulated genes. 

6. Users can search for genes that they are interested in, and then the following table will 

return the matching result. 

7. Download the currently listed table. 

8. GeneCards database is linked to each gene in the table. 

9. Set how many rows should the table show.  

https://www.genecards.org/


10. KEGG pathway enrichment analysis result table of the DEGs will appear when users click 

the inverted triangle, and this table can be downloaded when they click the 'Download' 

button. When users click the reversed triangle at the end of each row in this table, it shows 

the genes that are enriched on this pathway, and this table can be downloaded when they 

click the 'Download' button. Users can also search for a specific item by entering the 

content they want to search in the search box. 

 

11. GO biological process analysis result of the DEGs. Please see entry 10 to know how to 

use it.  

12. GO molecular function analysis result of the DEGs. Please see entry 10 to know how to 

use it.  

13. GO cellular component analysis result of the DEGs. Please see entry 10 to know how to 

use it.  

14. Cell-type-specific regulon analysis result table of this dataset will appear when users click 

the inverted triangle, and this result only shows up when they choose the 

'Cell-type-specific genes' in the 'Group' drop-down bar. 

  

 This is the cell-type-specific regulon result table for each cell type, and this table can be 

downloaded when users click the 'Download' button. 

 

Part 3. Browse control atlas page 

The 'Browse control atlas' page contains all the 23 control atlases that are stored in the 

scREAD based on different brain regions for different species and different mouse ages. 



 

These are 23 control atlases entries. The default pattern is all the UMAP of control atlases are 

folded, however, users can click the reverses triangle to unfold the UMAP of each control atlas. 

The top five control and bottom five atlases are human control atlases, and the rest control 

atlases are mouse control atlases. 

 

Part 4. Submit page 

The submission of a new entry is welcome, and it can be done on the “submit” page. One 

scRNA-Seq file of AD disease should be uploaded, and one scRNA-Seq file of control can be 

uploaded or not. 

 



1. Upload your AD scRNA-Seq expression matrix file by selecting the file stored on your 

computer. Note: This file is required if you want to analyze new data. Note: The format of 

your uploaded file should be a text format. 

2. You can provide species, gender, brain region, and Braak stage these four types of 

information of your input gene expression dataset to scREAD. 

3. You can select one of the control datasets as a reference control atlas to do the 

downstream analysis by choosing the 'Select from scREAD controls' option. 

4. These are all the 23 control files that are stored in scREAD to produce all control atlas.  

5. You can also upload your control dataset if you have one to do the comparison within 

your own paired dataset by selecting 'Upload control data' and then click the bar. 

6. If you have any comments about scREAD, we will be appreciative that you can write your 

comments here. 

7. Clicking this option, it means you allow us to store your data in scREAD (both datasets 

and results) for the future database construction. Be cautious if your data have not been 

published. 

8. An email is not required to submit the job; however, we strongly suggest you provide your 

email because the data you uploaded will be processed by our analyst manually. So you 

will be noticed by email when the job is done. 

9. Submit the job once everything is ready. If you have provided your email to us you will 

receive an email after you submit your job successfully. The job ID is in the showed up 

floating window, which can be used to retrieve the results.  

 

10. You can reset all the input information by clicking this button and restart over again. 

11. You can input the job ID here and retrieve the analysis result after the work is done. 

 



Part 5. Download page 

Not all the datasets in scREAD are available to download for users. On the “Download” page, 

datasets that downloaded from the GEO database are available to download, but datasets 

downloaded from Synapse are not available to download. 

 

It provides three files for users to download. 1. The compressed gene expression matrix 

(.txt.zip); 2. Cell type labels (.txt.zip); 3. Processed Seurat R object (.rds). 

 

  



Data S2: scREAD workflow tutorials, Related to figure 1. 

The data analysis workflow can be downloaded from 

https://github.com/OSU-BMBL/scread/tree/master/script, the folder contains the following files: 

1. custom_marker.csv. A manually created marker gene list file used for identified cell types. 

2. functions.R. Visualization functions used in R. 

3. build_control_atlas.R: build control cells atlas Seurat object from count matrix file. 

4. transfer_cell_type.R: filter out control-like cells in disease dataset 

5. run_analysis.R: run analysis workflow, and export tables in scREAD database format. 

6. example_control.fst. The example control dataset. 

7. example_disease.fst. The example disease dataset. 

Build control atlas  

1. Goal: Build the control atlas file from the raw gene expression matrix. 

2. Prepare your control gene expression data in fst format (https://www.fstpackage.org/), we 

used fst package to store raw data in scREAD since it provides a fast, easy, and flexible 

way to serialize data frames. In the data frame, the first column should be gene symbols 

and other columns as cell labels. Put all code and data in a working directory. (e.g 

PATH_TO_WD), in this tutorial, we will run example_control.fst. 

3. build_control_atlas.R takes three parameters: 1. Working directory path; 2. Control data 

path. 3. Output data ID 

4. cd PATH_TO_WD   

5. Rscript build_control_atlas.R PATH_TO_WD example_control.fst control_example  

 

6. The output should contain four files: 

a) control_example.rds. The Seurat R object storing example control data. 

b) control_example_expr.txt. Filtered gene expression matrix. 

c) control_example_cell_label.txt. The first column is the cell name, the second column 

is the cell type information. 

d) control_example_umap.png. UMAP plot of example control data colored by cell 

types. 

 

 

 

https://github.com/OSU-BMBL/scread/tree/master/script
https://www.fstpackage.org/


Transfer cell types based on control atlas 

1. Goal: Annotate cell type using control atlas as the reference, onto the disease gene 

expression matrix file. 

2. Put all code and data in a working directory. (e.g PATH_TO_WD), after you have 

generated the control atlas file (control_example.rds).  

3. build_control_atlas.R takes four parameters: 1. Working directory path; 2. Control atlas 

Seurat object file name; 3. Disease gene expression matrix name; 4. Output disease data 

ID. 

7. cd PATH_TO_WD   

8. Rscript transfer_cell_type.R PATH_TO_WD control_example.rds example_disease.fst 

disease_example  

 

9. The output should contain four files: 

e) disease_example.rds. The Seurat R object storing example disease data. 

f) disease_example_expr.txt. Filtered gene expression matrix. 

g) disease_example_cell_label.txt. The first column is the cell name, the second column 

is the cell type information. 

h) disease_example_umap.png. UMAP plot for both control and disease data colored by 

cell types. 

 

 

Run data analysis 

1. Goal: Perform analysis between disease and control data 

2. Put all code and data in a working directory. (e.g PATH_TO_WD), after you have 

generated the control atlas file (control_example.rds), and the disease file 

(disease_example.rds) 

3. run_analysis.R takes three parameters: 1. Working directory path; 2. Control Seurat object 

file name. 3. Disease Seurat object file name. 

4. cd PATH_TO_WD   

5. Rscript run_analysis.R PATH_TO_WD control_example disease_example 

 

6. The output should be stored in three folders: 



a) /de. Differential gene expression analysis results. 1. Cell-type-specific genes; 2. 

Sub-cluster specific genes; 3. Cell type DE genes between two conditions. 

b) /dimension. UMAP coordinates for two datasets. 

c) /subcluster_dimension. UMAP coordinates for each sub-clusters in two datasets. 

  



Table S1. The dataset source, Related to Figure 1. 

Species Data_ID Pubmed_ID 

Human GSE138852 31768052 

Human syn18485175 31042697 

Human GSE147528 https://www.biorxiv.org/content/10.1101/2020.04.04.025825v2 

Human syn21125841 31932797 

Human GSE129308 https://www.biorxiv.org/content/10.1101/2020.05.11.088591v1 

Human GSE146639 https://www.biorxiv.org/content/10.1101/2020.03.18.995332v1 

Mouse GSE98969 28602351 

Mouse GSE103334 29020624 

Mouse GSE130626 31902528 

Mouse GSE141044 31928331 

Mouse GSE140510 31932797 

Mouse GSE140399 31932797 

Mouse GSE143758 32341542 

Mouse GSE147495 32320664 

Mouse GSE150358 32579671 

Mouse GSE142853 32503894 

Mouse GSE142858 32503894 

 

  

https://www.biorxiv.org/content/10.1101/2020.04.04.025825v2


Table S2. The brain regions are covered in scREAD for human and mouse species, 

Related to Figure 2. 

Species Region Brodmann area 

Human Entorhinal cortex NA; NA 

Human Prefrontal cortex Area 9, Area 46; Area 10 

Human Superior frontal gyrus Area 8 

Human Superior parietal lobe NA 

Mouse Cortex NA 

Mouse Cerebellum NA 

Mouse Cerebral cortex NA 

Mouse Hippocampus NA 

Mouse Prefrontal cortex NA 

Mouse Subventricular zone NA 



Table S3. The definition of different mouse age stages in scREAD, Related to Figure 2. 

Age_Stage Range of ages 

2 months 1-2 months 

7 months 4-7 months 

15 months 10-15 months 

  



Table S4. The marker genes to assign eight major brain cell types, Related to Figure 1. 

Cell type Genes 

Astrocytes GFAP, EAAT1, AQP4, LCN2, GJA1, SLC1A2, FGFR3, NKAIN4 

Endothelial cells FLT1, CLDN5, VTN, ITM2A, VWF, FAM167B, BMX, CLEC1B 

Excitatory neurons 

Pericytes 

SLC17A6, SLC17A7, NRGN, CAMK2A, SATB2, COL5A1, 

SDK2, NEFM 

Inhibitory neurons SLC32A1, GAD1, GAD2, TAC1, PENK, SST, NPY, MYBPC1, 

PVALB, GABBR2 

Microglia IBA-1, P2RY12, CSF1R, CD74, C3, CST3, HEXB, C1QA, 

CX3CR1, AIF-1 

Oligodendrocytes OLIG2, MBP, MOBP, PLP1, MOG, CLDN11, MYRF, GALC, 

ERMN, MAG 

Oligodendrocyte precursor 

cells 

VCAN, CSPG4, PDGFRA, SOX10, NEU4, PCDG15, GPR37L1, 

C1QL1, CDO1, EPN2 

Pericytes AMBP, HIGD1B, COX4I2, AOC3, PDE5A, PTH1R, P2RY14, 

ABCC9, KCNJ8, CD248 



Table S5. The selection of differential gene expression analysis between different 

conditions (Condition 1 v.s. Condition 2) for diverse cell types in scREAD, Related to 

Figure 4. 

Species If in the same region Condition 1 Condition 2 

Human Yes Disease Control 

Mouse Yes Disease Control 

Human Yes Disease Disease 

Mouse Yes Disease Disease 

Human No Disease Disease 

Mouse No Disease Disease 

*The comparisons are all in the same gender and age. 

  



Table S6. The computational tools used in scREAD, Related to Figure 1. 

Tools Source code Version Language 

IRIS3 https://github.com/OSU-BMBL/IRIS3 v1.2.4 R  

Seurat https://github.com/satijalab/seurat v3.2 R  

Harmony https://github.com/immunogenomics/harmony v0.1 R/Python 

Polychrome https://github.com/cran/Polychrome v1.2.5 R 

SCINA https://github.com/jcao89757/SCINA v1.2.0 R 

 



Table S7. The datasets information of control atlas used in scREAD, Related to Figure 1. 

Control atlas Data_id Geo/Synapse_id 

H-H-Prefrontal cortex-Male AD00101 
syn18485175; 

syn21125841 

H-H-Prefrontal cortex-Female AD00106 
syn18485175; 

syn21125841 

H-H-Entorhinal Cortex-Male AD00201 GSE138852; GSE147528 

H-H-Entorhinal Cortex-Female AD00202 GSE138852 

M-H-Cortex-Male-7m AD00301 GSE98969; GSE140510 

M-H-Cortex-Male-15m AD00302 GSE140399 

M-H-Cerebral cortex-Female-15m AD00401 GSE147495 

M-H-Cerebellum-Male-7m AD00501 GSE98969 

M-H-Prefrontal cortex-Male-7m AD00601 GSE143758 

M-H-Prefrontal cortex-Male-15m AD00602 GSE143758 

M-H-Hippocampus-Male-7m AD00702 GSE141044 

M-H-Hippocampus-Male-15m AD00703 GSE130626; GSE140399 

M-H-Hippocampus-Female-7m AD00704 GSE141044 

M-H-Hippocampus-Female-20m AD00705 GSE141044 

H-H-Superior frontal gyrus-Male AD00801 GSE147528 

M-H-cortex_and_hippocampus-Female-7m_001 AD00901 GSE150358 

M-H-cortex_and_hippocampus-Female-7m_002 AD00902 GSE150358 

M-H-subventricular_zone_and_hippocampus-Fe

male-7m_001 
AD01001 GSE142853 

M-H-subventricular_zone_and_hippocampus-Fe

male-7m_002 
AD01002 GSE142858 

H-H-Prefrontal_cortex-Male_BA9 AD01101 GSE129308 

H-H-Prefrontal_cortex-Female_BA9 AD01102 GSE129308 

H-H-Superior_parietal_lobe-Male AD01201 GSE146639 

H-H-Superior_parietal_lobe-Female AD01202 GSE146639 

 

  



Table S8. The information of disease datasets used in scREAD, Related to Figure 1. 

Disease datasets Data_id Geo/Synapse_id 

H-AD.late-Prefrontal cortex-Male_001 AD00102 syn18485175 

H-AD.late-Prefrontal cortex-Female_001 AD00103 syn18485175 

H-AD.early-Prefrontal cortex-Male_001 AD00104 syn18485175 

H-AD.early-Prefrontal cortex-Female_001 AD00105 syn18485175 

H-AD-Prefrontal cortex-Male_001 AD00107 syn21125841 

H-AD-Prefrontal cortex-Male_002 AD00108 syn21125841 

H-AD-Prefrontal cortex-Female_001 AD00109 syn21125841 

H-AD-Prefrontal cortex-Female_002 AD00110 syn21125841 

H-AD-Entorhinal Cortex-Male_001 AD00203 GSE138852 

H-AD-Entorhinal Cortex-Female_001 AD00204 GSE138852 

H-AD.Braak 2-Entorhinal cortex -Male_001 AD00205 GSE147528 

H-AD.Braak 6-Entorhinal cortex -Male_001 AD00206 GSE147528 

M-AD-Cortex-Male-7m_001 AD00303 GSE98969 

M-AD-Cortex-Male-7m_002 AD00304 GSE140510 

M-AD-Cortex-Male-7m_003 AD00305 GSE140510 

M-AD-Cortex-Male-7m_004 AD00306 GSE140510 

M-AD-Cortex-Male-15m_001 AD00307 GSE140399 

M-AD-Cortex-Male-15m_002 AD00308 GSE140399 

M-AD-Cortex-Male-15m_003 AD00309 GSE140399 

M-AD-Cerebral cortex-Female-15m_001 AD00402 GSE147495 

M-AD-Cerebral cortex-Female-15m_002 AD00403 GSE147495 

M-AD-Cerebral cortex-Male-15m_001 AD00404 GSE147495 

M-AD-Cerebral cortex-Male-15m_002 AD00405 GSE147495 

M-AD-Cerebellum-Male-7m_001 AD00502 GSE98969 

M-AD-Prefrontal cortex-Male-7m_001 AD00603 GSE143758 

M-AD-Prefrontal cortex-Male-15m_001 AD00604 GSE143758 

M-AD-Hippocampus-Male-7m_001 AD00708 GSE103334 

M-AD-Hippocampus-Male-7m_002 AD00709 GSE103334 

M-AD-Hippocampus-Male-7m_003 AD00710 GSE141044 

M-AD-Hippocampus-Male-15m_001 AD00711 GSE130626 

M-AD-Hippocampus-Male-15m_002 AD00712 GSE130626 

M-AD-Hippocampus-Male-15m_003 AD00713 GSE130626 

M-AD-Hippocampus-Male-15m_006 AD00714 GSE140399 

M-AD-Hippocampus-Male-15m_007 AD00715 GSE140399 

M-AD-Hippocampus-Male-15m_008 AD00716 GSE140399 

M-AD-Hippocampus-Male-20m_002 AD00717 GSE141044 

M-AD-Hippocampus-Female-7m_001 AD00718 GSE141044 

M-AD-Hippocampus-Female-20m_001 AD00719 GSE141044 

H-AD.Braak 2-Superior frontal gyrus-Male_001 AD00802 GSE147528 

H-AD.Braak 6-Superior frontal gyrus-Male_001 AD00803 GSE147528 



M-AD-cortex_and_hippocampus-Female-7m_001 AD00903 GSE150358 

M-AD-cortex_and_hippocampus-Female-7m_002 AD00904 GSE150358 

M-AD-subventricular_zone_and_hippocampus-Female-7m

_001 
AD01003 GSE142853 

M-AD-subventricular_zone_and_hippocampus-Female-7m

_002 
AD01004 GSE142858 

H-AD-Prefrontal_cortex_BA9-Male_001 AD01103 GSE129308 

H-AD-Prefrontal_cortex_BA9-Female_001 AD01104 GSE129308 

H-AD-Superior_parietal_lobe-Male_001 AD01203 GSE146639 

H-AD-Superior_parietal_lobe-Female_001 AD01204 GSE146639 

H-AD-Superior_parietal_lobe-Male_002 AD01205 GSE146639 

H-AD-Superior_parietal_lobe-Female_002 AD01206 GSE146639 

  



Table S9. The definition of AD individuals and AD-like animal models across all datasets 

used  in scREAD, Related to Figure 1. 

 

 

Data_ID The pathology of AD Symptoms 

GSE138852 

Accumulation of amyloid-beta plaques  

and tau pathology (Braak stages V and 

VI) 

Dementia 

syn18485175 
Accumulation of amyloid-beta plaques 

and tau pathology (Braak stages III-VI) 

Mild cognitive 

impairment and 

dementia 

GSE147528 

Accumulation of amyloid-beta plaques 

and tau pathology (Braak stages II and 

VI) 

Mild cognitive 

impairment and 

dementia 

syn21125841 
Accumulation of amyloid-beta plaques 

and tau pathology (Braak stages III-V) 

Mild cognitive 

impairment and 

dementia 

GSE129308 
Accumulation of tau pathology (Braak 

stage VI) 

Dementia 

GSE146639 
Accumulation of amyloid-beta plaques in 

the brain vasculature 

Mild cognitive 

impairment 

GSE98969 
Parenchymal deposition of amyloid-beta 

plaques 

Severe cognitive 

dysfunction 

GSE103334 Accumulation of amyloid-beta plaques  Cognitive impairment 

GSE130626 Severe amyloid-beta pathology Dementia 

GSE141044 Accumulation of amyloid-beta plaques Cognitive dysfunction 

GSE140510 Accumulation of amyloid-beta plaques 
Mild cognitive 

impairment 

GSE140399 Accumulation of amyloid-beta plaques 
Mild cognitive 

impairment 

GSE143758 Accumulation of amyloid-beta plaques Cognitive decline 

GSE147495 Accumulation of amyloid-beta plaques Cognitive decline 

GSE142853 Accumulation of amyloid-beta plaques Cognitive decline 

GSE142858 Accumulation of amyloid-beta plaques Cognitive decline 

GSE150358 Accumulation of amyloid-beta plaques Cognitive decline 



 

Figure S1. The number of cells in each of the 73 files, Related to Figure 2. The x-axis 

represents the number of cells of each file, and the y-axis represents the file names of these 73 

files. The color intensity of the bar stands for the number of cells, i.e. the darker of the color 

represents the more cell numbers in the corresponding file. 

  



 

Figure S2. The distribution of the species, gender, condition, and brain region for 73 

files, Related to Figure 2. For each panel in this figure, the color of the bar stands for the 

number of files, the darker the color is the more files in the corresponding factor. 

 

  



 

Figure S3. The ARI scores of Harmony and Seurat calculating on six human datasets, 

Related to Figure 4.  

  



Transparent Methods 

Data collection 

We manually curated 15 AD related studies, six scRNA-Seq datasets, and 11 snRNA-Seq 

datasets were retrieved with the following factors well-annotated, i.e., organism, gender, brain 

region, disease/control, and age information. scREAD redefines the 17 scRNA-Seq & 

snRNA-Seq datasets into 73 datasets (in total 713,640 cells and nine cell types), each of which 

corresponds to a specific organism (human or mouse), gender (male or female), brain region 

(entorhinal cortex, prefrontal cortex, superior frontal gyrus, cortex, cerebellum, cerebral cortex, 

subventricular zone, superior parietal lobe, or hippocampus), disease or control, and age stage 

(seven months, 15 months, or 20 months for mice, and 50-100+ years old for human). These 

datasets have been published and freely accessible in the public domain as of September 22nd, 

2020 (Barrett et al., 2013). 

 

Construction of human and mouse control atlas 

Human and Mouse control atlases come from the 15 scRNA-Seq & snRNA-Seq studies. Genes 

detected in less than 3 cells and cells detected in less than 200 genes were filtered out. 

Principal component analysis (PCA) was performed to obtain a small number of principal 

components, 25 PCA components were used as input of Uniform Manifold Approximation and 

Projection (UMAP) (Becht et al., 2018). Initial clustering was performed using Seurat's v3.1.5 

SNN graph clustering using the FindClusters function with a resolution of 0.8 (Stuart et al., 

2019). Seurat is a widely used R toolkit to identify and interpret sources of heterogeneity from 

single-cell transcriptomic measurements, and to integrate diverse types of single-cell data 

(Zhang et al., 2019).  

 

SCINA is an R package that leverages prior marker genes information and simultaneously 

performs cell type clustering and assignment for known cell types (Zhang et al., 2019). 

Furthermore, SCINA shows good performances among prior-knowledge classifiers when 

high-quality marker genes are provided (Abdelaal et al., 2019). Each cell was assigned a cell 

type based on a manually created marker gene list file (Table S4) using SCINA v1.2.0, whereas 

the cells with unknown labels marked by SCINA were first compared with predicted clusters 

from Seurat, and then the unknown labels were assigned to the most dominate cell types within 

the predicted clusters (Zhang et al., 2019). 

 

Evaluation indexes of identified cell types 

If benchmark labels are provided from the original study, the identified cell labels will be 

evaluated by the Adjusted Rand Index (ARI) (Steinley et al., 2016). To calculate 𝐴𝑅𝐼, a 

contingency table is built to summarize the overlaps between the two cell label lists with n 

elements (cells). Each entry denotes the number of objects in common between the two label 

lists. The 𝐴𝑅𝐼 score can be calculated as:   
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where 𝑛𝑖𝑗 are values from the contingency table, ai is the sum of the 𝑖th row of the contingency 

table, 𝑏𝑗 is the sum of the 𝑗th column of the contingency table. 

 

If benchmark labels are not provided from the original study, the predicted cell types will be 

evaluated by calculating the silhouette score that measures how similar a cell is to its type 

compared to other clusters (Lovmar et al., 2005). The silhouette ranges from −1 to +1, where a 

high value indicates that the object is well matched to its cluster and poorly matched to 

neighboring clusters. The silhouette score can be calculated by: 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}
=

{
 
 

 
 1 −

𝑎(𝑖)

𝑏(𝑖)
,𝑖𝑓𝑎(𝑖) < 𝑏(𝑖)

0,𝑖𝑓𝑎(𝑖) = 𝑏(𝑖)

𝑏(𝑖)

𝑎(𝑖)
− 1,𝑖𝑓𝑎(𝑖) > 𝑏(𝑖)

 

where 𝑎(𝑖) be the average distance between a sample 𝑖 and all the rest samples in the same 

cluster, and 𝑏(𝑖) be the smallest average distance of 𝑖 to all samples. 

 

Identification of human and mouse disease cell types based on the control atlas 

Not all cells collected from patient samples are malignant, and there are heterogeneous cells 

within individual patients, that is, normal healthy cells are included. In Granja et al.’s research 

(Granja et al., 2019), they defined these healthy cells as control-like cells. These control-like 

cells maintain distinct regulatory mechanisms and gene expression patterns compared to 

disease cells and will disturb the accurate identification of cancer cell clusters. Thus, the 

removal of control-like cells from disease data is critical to identify real disease-associated cells. 

Granja et al. used this strategy to remove control-like cells and then identify cancer cells, and 

we used this strategy in scREAD to identify AD-associated cells. For each of the AD datasets in 

scREAD, the ratio of the control-like cells out of all the cells in this dataset is about 10%. We 

tested at Mathys et al.’s dataset (Mathys et al., 2019), and found out the ARI scores between 

with control-like cells and without control-like cells has no significant difference. However, the 

ARI score of without control-like cells datasets is higher than with control-like cells datasets. 

 

To determine whether cells from disease datasets are control-like, Harmony R package (v1.0) 

was first used to integrate the disease dataset with its corresponding control atlas. Harmony 

shows similar ARI scores (Supplementary Figure S3), but it has a significantly shorter run-time 

compared to other data integration tools (Tran et al., 2020). After the integration, cells were 

clustered using Seurat’s FindClusters function with a resolution of 4. A hypergeometric test was 

performed for each cluster using the number of cells from disease cells and the number of cells 

from the control atlas. Clusters were considered to be control-like if the hypergeometric test 

result was significant (p-value < 0.0001, Benjamini-Hochberg adjusted), and the cells from the 

disease dataset in control-like clusters were removed from the downstream analyses. 

https://pubmed.ncbi.nlm.nih.gov/31042697/


 

For the remaining disease cells, Seurat’s FindTransferAnchors function was used to find 

transfer anchors using PCA to project the control-atlas onto the disease dataset. Cell types 

were transferred using the TransferData function with PCA embeddings as the weighting 

anchors. The subclusters for each cell type were designated using Seurat’s FindClusters 

function for all cells in each identified cell type with a resolution of 0.8. 

 

Differential expression and gene set enrichment analysis 

MAST is an R package that uses a hurdle model to single-cell RNA-seq data (Finak et al., 2015) 

and was recommended for single-cell differential expression (DE) testing (Luecken and Theis, 

2019; Soneson and Robinson, 2018). Seurat’s FindAllMarkers and FindMarkers functions that 

utilizes the MAST package were used to run DE testing on normalized gene expression data. 

Cell-type-specific genes were identified by performing DE testing between the cell type of 

interest and the average of the remaining cell types. Subcluster-specific genes were identified 

by performing DE testing between the subcluster of interest and the average of the remaining 

subclusters from the same cell type. For each cell type, several DE comparisons were 

performed within two different datasets, categorized from AD versus control, and AD versus AD 

in the same species under the same gender, brain region, and age. To regress out technical 

biases from different datasets, the dataset latent variables were added in all cross-dataset DE 

testing. All of the above-mentioned DE results can be sent to the Enrichr web server in real-time 

compared to different functional annotation databases to identify the enriched KEGG pathways, 

Gene Ontology (GO), etc.  

 

Identification of CTSRs 

The CTSRs analysis is performed using IRIS3 (Integrative Cell-type-specific Regulon Inference 

Server from Single-cell RNA-Seq), a highly effective and easy-to-use web server for biologically 

meaningful CTSR inference from human or mouse scRNA-Seq data (Ma et al., 2020). An 

empirical p-value of a regulon’s RSS can be estimated by comparing it with the RSSs of 

randomly selected gene sets (having the same number of genes in this regulon through a 

bootstrap method) in the same cell type for 10,000 times. Regulon p-values will be 

Bonferroni-adjusted by multiplying the number of all the identified regulons in the exact cell type. 

Regulons with adjusted p-values less than 0.05 were considered as cell type-specific regulons. 

 

Implementation 

scREAD consolidates a variety of web frameworks to provide user-friendly interactive 

visualizations. The front end was built on top of Nuxt.js (https://nuxtjs.org/) and utilized libraries 

such as Vuetify (https://vuetifyjs.com/en/) and Plotly.js (https://plotly.com/). Koa.js 

(https://koajs.com/) serves as the REST API back-end server for data query and custom job 

submission. All data are stored and managed using a MySQL database. The entire web 

application is managed by PM2 (https://pm2.keymetrics.io/) and deploys on a Red Hat 

Enterprise seven Linux system with 28-core Intel Xeon E5–2650 CPU and 64GB RAM. All 

integrated tools are listed in Table S6. 

https://nuxtjs.org/
https://vuetifyjs.com/en/
https://plotly.com/
https://koajs.com/
https://pm2.keymetrics.io/


 

The browsers that scREAD supported are Google Chrome, Safari, and Firefox. The scREAD is 

not supported by the Internet Explorer browser. 
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