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1 Cohort descriptions 

1.1 Case-control cohorts 

 

iPSYCH 

Sample description: The goal of the iPSYCH data collection was to study the genetic 

underpinnings of 6 psychiatric disorders1 (schizophrenia, bipolar disorder, major depressive 

disorder, ADHD, anorexia and autism spectrum disorder) and individuals were selected from a 

birth cohort comprising individuals born in Denmark between May 1, 1981, and December 31, 

2005, who were residents in Denmark on their first birthday and who have a known mother (N = 

1,472,762).  Psychiatric cases were identified based on information in the Danish Psychiatric 

Central Research Register2, and 30,000 randomly selected controls were identified from the same 

nationwide birth cohort in the Danish Civil Registration System. A biological sample from the 

study individuals were identified in the Danish New Born Screening Biobank3, that contains 

blood spot samples from nearly all babies born in Denmark since 1981. DNA collection and 

genotyping was done as described previously1,4,5. 

The study was approved by the Danish Research Ethics Committee and the Danish Data 

Protection Agency.  

 

Cannabis abuse/dependence measure: CUD cases were defined using ICD10 codes (F12.1-12.2) 

through information in the Danish Psychiatric Central Research Register as well as in the Danish 

National Patient Register using information up to 2016. Controls were individuals who did not 

have ICD10 codes related to CUD. 

 

deCODE 

Sample description: Cases were drawn from the largest addiction treatment center in Iceland, the 

SAA‐National Center of Addiction Medicine6. Controls were recruited as part of various genetic 

research programs at deCODE Genetics. Individuals diagnosed with substance use/abuse were 

excluded from controls. The deCODE Genetics study was approved by the Data Protection 

Commission of Iceland and the National Bioethics Committee of Iceland. 
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Cannabis abuse/dependence measure: Cannabis use disorder diagnoses in this treatment cohort 

were made, in the years 1977 – 2014, using DSM-IIIR, DSM-IV and DSM-5 criteria, by 

clinicians using the Diagnostic and Statistical Manual of Mental Disorders (DSM) system. 

 

Comorbidity and Trauma Study (CATS) 

Sample description: This study consisted of opioid dependent individuals aged 18 and older 

recruited from opioid substitution therapy clinics in the greater Sydney area and genetically 

unrelated individuals with little or no lifetime opioid misuse from neighborhoods in geographic 

proximity to these clinics. All subjects were of European-Australian descent. Additional details 

are available in 7. 

 

Cannabis abuse/dependence measure: All participants were assessed using a version of the 

Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). Cannabis abuse and 

dependence were defined using DSM-IV criteria. For the purposes of these analyses, controls 

were defined as anyone who did not meet criteria for cannabis abuse or dependence. No other 

comorbid diagnoses were excluded. 

 

Christchurch Health and Development study (CHDS) 

Sample description: The Christchurch Health and Development study (CHDS)8,9 is a 

longitudinal study of a birth cohort of 1,265 children collected in mid-1977 from urban 

Christchurch, New Zealand. Data on social circumstances, health, development and wellbeing of 

the participants was obtained from the cohort at birth, four months, one year, annually to age 16 

years, and at 18, 21, 25, 30, and 35 years. All study information was collected on the basis of 

signed consent from study participants and all information is fully confidential. All aspects of the 

study have been approved by the Canterbury (NZ) Ethics Committee. 

 

Cannabis abuse/dependence measure: At ages 18, 21, 25, 30 and 35 years cohort members were 

questioned about their substance use behaviours and problems associated with substance use 

since the previous assessment (alcohol, tobacco, cannabis, other illicit drugs), using the relevant 

sections of the Composite International Diagnostic Interview (CIDI) to assess DSM-IV symptom 

criteria for substance use disorders. Using this information, lifetime cannabis abuse or 

dependence was classified on the basis of whether the participant met DSM criteria for cannabis 

abuse or dependence at any assessment up to age 35.  

 

Study of Addiction: Genetics and Environment (SAGE), Collaborative Genetic Study of 

Nicotine Dependence (COGEND) & Family Study of Cocaine Dependence (FSCD) 

Sample description: Subjects for the Study of Addiction: Genetics and Environment (SAGE) 

were selected from three large, complementary studies: COGA10, Family Study of Cocaine 

Dependence (FSCD)11, and the Collaborative Genetic Study of Nicotine Dependence 

(COGEND)12. We analyze these subsets separately and remove overlap between cohorts 

(Supplementary Methods). COGA participants were assessed using the Semi-Structured 

Assessment for the Genetics of Alcoholism (SSAGA). FSCD and COGEND participants were 

assessed using polydiagnostic instruments closely based on the SSAGA. Genotyping was 

conducted using the Illumina Human1Mv1_C BeadChips. Further details of the SAGE samples 

are available in 13. 
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Cannabis abuse/dependence measure:  Cases reported a lifetime history of DSM-IV cannabis 

abuse or dependence. Genetically unrelated control subjects did not meet criteria for a diagnosis 

of cannabis abuse or dependence. 

 

Gene-Environment-Development Initiative (GEDI) – Duke University (GSMS) 

Sample description: The Duke arm of the NIDA-funded Gene-Environment-Development 

Initiative (GEDI) combined existing phenotypic and environmental data from two large 

prospective studies, the Great Smoky Mountains Study (GSMS) and the Caring for Children in 

the Community (CCC) study. For each of the two population-based contributing studies, 

genome-wide genotyping was conducted using a common platform (Illumina Human660W-

Quad v1), generating a total genotyped sample of ~1300 subjects. Further details of the GEDI-

Duke sample are available in 14,15. 

 

Cannabis abuse/dependence measure: Participants of both studies were assessed via structured 

interviewing using the Young Adult Psychiatric Assessment and its early life extension (i.e., 

YAPA and CAPA), yielding diagnoses and symptom scales for a wide range of substance use 

disorders (SUDs). Cannabis abuse or dependence was defined using DSM-IV criteria. For the 

purposes of these analyses, controls were defined as anyone who did not meet criteria for 

cannabis abuse or dependence. No other comorbid diagnoses were excluded. 

 

Center on Antisocial Drug Dependence (CADD) 

Sample description: The sample of 1,901 unrelated adolescents was aggregated from several 

studies described elsewhere16–19. This cohort was over-selected for adolescent behavioral 

disinhibition, with half of the participants ascertained specifically from high-risk populations (i.e. 

recruited through substance abuse treatment, special schools, or involvement with the criminal 

justice system; see supplement of 20 for additional criteria for clinical probands). CADD GWAS 

participants were an average age of 16.5 (SD = 1.4, range = 13.0–19.9), 28.9% were female, and 

37.3% of participants reported non-Caucasian ancestry.  

 

Cannabis abuse/dependence measure: Lifetime cannabis abuse or dependence was assessed with 

the CIDI-SAM and defined as meeting cannabis abuse or dependence at any wave for this 

longitudinal study.  

 

Alcohol Dependence in African Americans (ADAA) 

Sample description: Data from “Alcohol Dependence in African Americans: A Case-Control 

Genetic Study” (ADAA) was funded by NIH grant R01 AA017444. The data were collected 

between 2009 and 2013 and consisted of cases recruited from treatment centers in St. Louis, 

Missouri and controls screened for the absence of alcohol use disorder recruited from households 

selected from neighborhoods in proximity to neighborhoods of residence of case participants. 

 

Cannabis abuse/dependence measure: Cases met criteria for DSM-IV cannabis abuse or 

dependence. Controls were individuals who did not meet criteria for cannabis abuse or 

dependence (DSM-IV). 
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1.2 Family-based cohorts 

Brisbane Longitudinal Twin Study (BLTS) 

Sample description: Beginning in 1992, the Brisbane Longitudinal Twin Study (BLTS) consists 

of 3,561 individuals: 1,422 twin pairs and 717 additional siblings first enrolled at age 12 years 

and now aged 30 years and older21 (see also 22). The sample is: genetically informative (MZ and 

DZ twins, and often parents and siblings; genotyped for 610,000 common single nucleotide 

polymorphisms - SNPs); (b) large; (c) longitudinal with many participants having been assessed 

at 12, 14, 16 and 21 years of age; (d) well characterized for behavioral and brain-related 

outcomes; (e) rich in biological samples; and includes (f) a subgroup [n=969] who have 

undergone MRI scanning. As part of an ongoing US NIH/NIDA funded project beginning 2009, 

measures of lifetime cannabis use, abuse and dependence data are collected, along with 

diagnostic data for nicotine, alcohol, and other illicit substances, as well as pilot epidemiological 

data for ecstasy and methamphetamine use. The average age at interview is 25.65 years 

(SD=3.65, range=18-38yrs). The entire BLTS sample and 1,549 of their parents have GWAS 

data (Illumina 610k chip)23 imputed on the GRCh37 assembly.  

 

Cannabis abuse/dependence measure: DSM-IV cannabis abuse and/or dependence was coded as 

either the endorsement of one or more abuse criteria and/or the endorsement of three or more 

dependence criteria. Controls were any individuals who did not meet these criteria. 
 

Gene-Environment-Development Initiative (GEDI) – Virginia Commonwealth University 

(VTSABD) 

Sample description: The VCU arm of the NIDA-funded Gene-Environment-Development 

Initiative (GEDI) combined existing phenotypic and environmental data from the Virginia Twin 

Study of Adolescent Behavioral Development (VTSABD) study, a population-based multi-wave, 

cohort-sequential twin study of adolescent psychopathology and its risk factors, and two follow-

up studies, the Young Adult Follow Up (YAFU) and the Transitions to Substance Abuse (TSA) 

study. For each of the contributing studies, genome-wide genotyping was conducted using a 

common platform (Illumina Human660W-Quad v1), generating a total genotyped sample of 

~900 subjects. Further details of the GEDI-VCU sample are available in 14,24. 

 

Cannabis abuse/dependence measure:  Participants were assessed via structured interviewing 

using the Child Adult Psychiatric Assessment (CAPA), a Structured Clinical Interview for DSM-

IV (SCID)-based assessment of psycho-pathology in young adult twins for YAFU and the Life 

Experiences Interview (LEI) for TSA, yielding diagnoses and symptom scales for a wide range 

of substance use disorders (SUDs). Cannabis abuse/dependence was defined using DSM-IV 

criteria. No comorbid diagnoses were excluded. 
 

Collaborative Study on the Genetics of Alcoholism 

Sample description: COGA is a multi-site study of alcohol dependent probands and their family 

members. Alcohol dependent probands were recruited from inpatient and outpatient facilities. 

Community probands and their family members were also recruited from a variety of sources. 

The full sample of 12,145 individuals were genotyped on four different genome-wide genotyping 

arrays25. Among these arrays, two to 127 samples were genotyped on at least two different arrays 

with pairwise concordance rates all > 99.18%.  Due to the complex family structure and the 
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reconstruction of pedigrees that occurred after Mendelian checks were performed, COGA data 

were not subjected to re-imputation using the Picopili pipeline26. 

 

Cannabis abuse/dependence measure: All participants were assessed using the Semi-Structured 

Assessment for the Genetics of Alcoholism27,28. Cases met criteria for a lifetime history of DSM-

IV cannabis abuse or dependence. Individuals, including related and unrelated subjects, not 

meeting criteria for cannabis abuse/dependence were included as controls. 

 

Minnesota Center for Twin and Family Research (MCTFR) 

Sample description: The MCTFR is a community-based longitudinal sample including pedigrees 

designed to include two rearing parents and two offspring29. Assessments across subsets of the 

study varied but were readily harmonized to DSM-IIIR and DSM-IV diagnoses. As part of the 

Genes Environment Development Initiative (GEDI), genotyping was carried out using the 

Illumina Human660W-Quad array. The final GWAS sample included 1,631 genotyped spouse 

pairs and 1,404 families with genotyped parents and offspring (at least one).30 

 

Cannabis abuse/dependence measure: Cases met criteria for DSM-IIIR cannabis abuse or 

dependence.  
 

Center for Education and Drug Abuse Research (CEDAR) – Substance Abuse and the 

Dopamine System Study (SADS)  

Sample description: Participants were recruited from the Pittsburgh, Pennsylvania, metropolitan 

area through newspaper advertisements, social service agencies, substance abuse treatment 

programs and various other media. For this project, the sample is drawn from two combined 

studies with distinct but related ascertainment schemes, from the same Greater Pittsburgh 

population, joined in the Substance Use Disorder Liability: Candidate System Genes study (R01 

DA019157)31. CEDAR (P50 DA005605) is a longitudinal family/high-risk study of substance 

use disorder (SUD)32. Parents from a sample of nuclear families, ascertained in CEDAR through 

the father who did or did not have a DSM-III-R SUD (DSM-IV was introduced after this study 

started) related to illicit drugs (an illegal substance or nonmedical use of a prescribed 

psychoactive drug), provided a source for male and female cases and controls. All diagnoses 

have been revised using DSM-IV criteria; the SADS participants were also diagnosed 

accordingly. Control subjects had no substance (including alcohol) use disorder, or Axis I or II 

psychiatric disorder. Participants from the SADS study (R01 DA011922) were males 14-18 

years of age having a DSM-IV diagnosis of substance dependence related to use of illicit drugs. 

In both CEDAR and SADS subsamples, probands having a psychiatric disorder other than SUD 

qualified for the study unless they had a lifetime history of psychosis or any other condition 

where valid reporting was uncertain. The vocabulary subscale of WISC-III (subjects below age 

16) or WAIS-III (age 16 and older) was administered prior to implementation of the protocol and 

was required to be in the normal range (>70). Since psychiatric comorbidity is common among 

substance abusers, cases were not excluded for any Axis I or Axis II disorders. The CEDAR and 

SADS subjects were self-identified European-Americans from the same Greater Pittsburgh 

geographic area, and the genomic inflation factor based on all genotyped SNPs, evaluating the 

excess false-positive rate, was satisfactory at .9812.  
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Cannabis abuse/dependence measure: Lifetime cannabis abuse and dependence were diagnosed 

using an expanded version of the Structured Clinical Interview for DSM-III-R-outpatient version 

(SCID-OP). Controls did not meet criteria for cannabis abuse or dependence. 
 

Yale-Penn 1 

Sample description: Yale-Penn subjects were recruited in the eastern US, predominantly in 

Connecticut and Pennsylvania. They were administered the Semi-Structured Assessment for 

Drug Dependence and Alcoholism (SSADDA)33 to derive DSM-IV diagnoses of lifetime alcohol 

and drug dependence (and other major psychiatric traits). The study received IRB approval from 

all participating institutions and written informed consent was obtained from all study 

participants. Additional information is available in the relevant GWAS publications (e.g. 34–37). 

 

Cannabis abuse/dependence measure: DSM-IV diagnoses from the Semi-Structured Assessment 

for Drug Dependence and Alcoholism (SSADDA). 

 

Yale-Penn 2 

Sample description: Participants of Yale-Penn 2 were recruited and ascertained following the 

same protocol as Yale-Penn 1, described above, with a larger proportion of samples coming from 

unrelated individuals rather than families. Genotyping was performed using Illumina 

HumanCoreExome. Participants were grouped separately from Yale-Penn 1 based on the epoch 

of recruitment and the platform used for genotyping. Written informed consent was obtained 

from subjects as approved at each site by the respective institutional review boards, and 

certificates of confidentiality were obtained from NIDA and NIAAA.    

 

Cannabis abuse/dependence measure: DSM-IV diagnoses of lifetime cannabis dependence were 

derived from the Semi-Structured Assessment for Drug Dependence and Alcoholism 

(SSADDA)34. 

 

Australian Alcohol and Nicotine Studies (OZ-ALC-NAG) 

Sample description: Participants were recruited from twins and their relatives who had 

participated in questionnaire- and interview-based studies on alcohol and nicotine use and 

alcohol-related events or symptoms (as described in 38). They were living in Australia and of 

predominantly European ancestry.  

 

Cannabis abuse/dependence measure: Assessed using DSM-IV criteria.  

 

Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD) 

Sample description: Participants in the Irish Affected Sib Pair Study of Alcohol Dependence 

(IASPSAD)39 were recruited in Ireland and Northern Ireland between 1998 and 2002. Briefly, 

probands were ascertained in community alcoholism treatment facilities and public and private 

hospitals. Probands were eligible for inclusion if they met DSM-IV criteria for lifetime alcohol 

dependence and if all four grandparents had been born in Ireland, Northern Ireland, Scotland, 

Wales, or England. Probands, siblings, and parents were interviewed by clinically trained 

research interviewers, most of whom had extensive clinical experience with alcoholism. We 

assessed lifetime history of alcohol and drug dependence using a modified version of the Semi-

Structured Assessment of the Genetics of Alcoholism (SSAGA) interview, version II27, 
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demographic characteristics, other comorbid conditions, alcohol-related traits, personality 

features, and clinical records. All participants provided informed consent. We included 815 

probands and siblings in genotyping. Controls were genotyped from 2,048 DNA samples from 

healthy, unpaid volunteers donating blood at the Irish Blood Transfusion Service and obtained 

from the Trinity College Biobank https://www.tcd.ie/ttmi/facilities/trinity-biobank/ at Trinity 

College Dublin. Biobank controls were eligible if they denied any problems with alcohol or 

history of mental illness and if all four grandparents had been born in Ireland, Northern Ireland, 

Scotland, Wales, or England. Information about age and sex was available for these subjects. 

 

Cannabis abuse/dependence measure: DSM-IV criteria for lifetime cannabis abuse and 

dependence. Because of the sample source, controls were not formally screened for cannabis use. 

 

1.3 Summary statistics cohorts  

 

National Longitudinal Study of Adolescent to Adult Health (Add Health) 

Sample description: The National Longitudinal Study of Adolescent to Adult Health (Add 

Health) is an ongoing, nationally-representative longitudinal cohort study of 20,000+ adolescents 

followed into adulthood for 20+ years across five interview waves from 1994-2018. Extensive 

longitudinal social, behavioral, environmental, and biological data are available, and the design 

included an embedded genetic subsample of MZ and DZ twins, full sibs, half sibs, and unrelated 

adolescents in the same household. Genome-wide data are available on 9,975 individuals using 

two Illumina platforms (Human Omni1-Quad BeadChip, Human Omni-2.5 Quad BeadChip) 

consisting of 631,990 SNPs. Add Health is a multiracial and multiethnic sample with substantial 

numbers of individuals with Hispanic and Asian ancestry. For more information about the design 

of Add Health see 40,41.  

 

Cannabis abuse/dependence measure:  Lifetime DSM-IV cannabis abuse and dependence was 

assessed using a questionnaire modeled on the Composite-International Diagnostic Interview, 

Substance Abuse Module (CIDI-SAM). 

 

 

2 Quality control 

2.1 Case-control cohorts 

Quality control (QC) was performed separately for each case/control cohort using ricopili42 

(https://github.com/Nealelab/ricopili).  

 

Following the standardized ricopili pipeline, variants in each cohort were first filtered for call 

rate (<5% missingness), followed by individual-level filters for call rate (<2% missingness) and 

heterozygosity (|Fhet| > .20). If chromosome X variants were available for the cohort, sex checks 

were also performed to ensure concordance with reported sex. Variants were then filtered for call 

rate (<2% missingness), differential missingness between cases and controls (absolute difference 

< 2%), invariant markers, and departure from Hardy-Weinberg equilibrium in cases (P > 1e-10) 

or controls (P > 1e-6). In cohorts involving multiple genotyping batches, variants were also 

filtered for association with batch controlling for the phenotype. 

 

https://www.tcd.ie/ttmi/facilities/trinity-biobank/
https://github.com/Nealelab/ricopili
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Quality Control (QC) was performed prior to estimation of relatedness and principal components 

(described below). In cases of cryptic relatedness or ancestry outliers, QC was repeated after 

outlier removal to ensure no additional variants or individuals failed QC after removal of the 

affected individuals. 

 

Stringent quality control was applied to the iPSYCH cohort and only samples with an individual 

call rate (>0.95) and genotypes with high call rate (>0.98), no strong deviation from Hardy–

Weinberg equilibrium (p > 1e−6 in controls or p > 1e−10 in cases) and low heterozygosity rates 

(Fhet < 0.2) were included. 

 

Quality control for the deCODE Genetics sample was performed as described previously43. 

 

2.2 Family-based cohorts  

QC for family-based cohorts was performed using picopili26 

(https://github.com/Nealelab/picopili). This QC, imputation, and analysis pipeline was developed 

for the current analysis with the aim of paralleling the functionality of ricopili 

(https://github.com/Nealelab/ricopili) with appropriate modifications for the analysis of family-

based GWAS cohorts. 

 

QC of the family-based cohorts applied the same basic filters as the case/control QC pipeline 

(i.e. call rates, heterozygosity, discordant sex checks, differential missingness, and departure 

from Hardy-Weinberg equilibrium). Where applicable, tests were based on allele frequencies 

computed from founders in the family-based cohort using PLINK 1.944. In addition, family-

based cohorts were QCed to remove individuals or variants with excessive Mendelian error rates. 

After QC, remaining Mendelian errors were set to missing. 

 

As in the case/control cohorts, QC was repeated after stratification by ancestry and removal of 

ancestry outliers and instances of cryptic relatedness.  

 

For COGA, with its complex family structure and genotyping on different arrays, detailed QC 

are described in Lai et al. 201925. Initial QC used a set of 47,000 high quality variants genotyped 

on all arrays to assess duplicate samples and confirm the pedigree structure. Family structures 

were altered as needed, and genotypes were checked for Mendelian inconsistencies using 

Pedcheck45; inconsistencies were set to missing. Based on the first two PCs, each individual was 

then assigned a race classification (AFR, EUR, and Other). Families were assigned a family-

based race, according to the majority of individual-based race in that family. Following this QC, 

all samples were imputed to 1000 Genomes using the cosmopolitan reference panel (Phase 3, 

version 5, NCBI GRCh37) using SHAPEIT246 then Minimac347 within each array. Imputed 

variants with R2 < 0.30 were excluded, and genotype probabilities were converted to genotypes if 

probabilities ≥ 0.90. Pedcheck45 was used again to detect and clean Mendelian inconsistences for 

imputed variants. All genotyped and imputed variants with missing rates <25%, MAF ≥ 1% and 

HWE p values > 1e-6 were included in family-based analyses.  

 

2.3 Summary statistics cohorts 

For cohorts contributing summary statistics, pre-imputation QC was performed by the respective 

studies according to their chosen analysis protocols. For Add Health, mismatches on 

https://github.com/Nealelab/picopili
https://github.com/Nealelab/ricopili
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heterozygosity and sex were removed but no additional sample filtering was conducted prior to 

imputation.  

 

3 Principal components analysis and relatedness estimation 

3.1 Case-control and family-based cohorts 

Principal components analysis (PCA) and relatedness estimation were performed within each 

cohort using a more stringently QCed set of variants, as detailed in 26 (for PGC) and 48 (for 

iPSYCH). PCA and relatedness estimation for the family-based cohorts was performed using 

picopili (https://github.com/Nealelab/picopili).  

 

After stratification by ancestry, the full ricopili pipeline of QC, relatedness estimation, and PCA 

was repeated within each ancestry stratum of each cohort. Remaining PCA outliers within each 

ancestry group were removed as necessary. 

 

In iPSYCH, relatedness and population stratification were evaluated using a set of high-quality 

markers (genotyped autosomal markers with a MAF > 0.05, Hardy–Weinberg equilibrium 

P > 1e−4 and SNP call rate > 0.98), which were pruned for linkage disequilibrium (r2 < 0.075) 

resulting in a set of 37,425 pruned markers. (Markers located in the long-range linkage 

disequilibrium regions defined by Price et al.49 were excluded.) Genetic relatedness was 

estimated using PLINK v.1.944,50 to identify first- and second-degree relatives (π > 0.2); one 

individual was excluded from each related pair (cases preferred over controls). Genetic outliers 

were identified for exclusion based on principal component analysis (PCA) using EIGENSOFT 

7.2.1.51,52 A genetically homogenous sample was defined based on a subsample of individuals 

being Danes for three generations (identified based on register information about the birth 

country of the individuals, their parents and grandparents). The subsample of Danes was used to 

define the center based on the mean values of principal components 1 and 2. Subsequently, 

principal components 1 and 2 were used to define a genetically homogenous population by 

excluding individuals outside an ellipsoid with the axes greater than 6 SD from the mean. After 

outlier exclusion, PCA was redone and the principal components from this analysis were 

included in the association analysis. 

 

Details regarding the deCODE sample are in 6.4. 

 

3.2 Summary statistics cohorts 

In Add Health, a genetic relationship matrix (GRM) was computed in GCTA53 to account for 

admixture within specified ancestral groups. 

 

4 Imputation 

4.1 Case-control cohorts 

Imputation of case/control cohorts was performed using ricopili42 

(https://github.com/Nealelab/ricopili) for case-control data. 

 

Prior to imputation, each cohort was aligned to 1000 Genomes Project Phase 3 reference 

data54,55. LiftOver56 to human genome build hg19 was performed if needed, and matching of 

chromosome, position, and alleles to the reference data was verified. To assist with strand flips 

https://github.com/Nealelab/picopili
https://github.com/Nealelab/ricopili
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and strand ambiguous SNPs, allele frequencies were also checked against 1000 Genomes 

reference data. For European ancestry cohorts, SNPs were excluded if their allele frequency 

difference by more than 0.15 from 1000 Genomes European ancestry individuals; for African 

ancestry individuals, SNPs were filtered for allele frequency differences greater than 0.25 

compared to 1000 Genomes African ancestry individuals. The looser threshold was specified in 

African ancestry cohorts to account for varying degrees of admixture, and generally yielded 

higher quality imputation results (data not shown). 

 

After alignment to the 1000 Genomes Project Phase 3 reference55, each cohort was phased using 

SHAPEIT57 and imputed using IMPUTE258,59. Imputation dosages and best-guess genotypes 

were saved for analysis. PCA was performed within each cohort using best-guess genotypes to 

compute principal components (PCs) for use as covariates in GWAS following the same 

procedure described above. For this post-imputation PCA, best-guess genotypes were strictly 

filtered for quality (call rate > 99% for genotype calls with posterior probabilities > 0.8, MAF > 

5%) and more stringently pruned for LD (pairwise r2 < 0.1, and removal of additional 

previously-identified regions of high LD49). 

 

In the iPSYCH cohort, genotypes were phased and imputed using phase 3 of the 1000 Genomes 

Project54 imputation reference panel and SHAPEIT46 and IMPUTE259. 

 

For the deCODE Genetics cohort, variant imputation was performed based on the IMPUTE 

HMM model and long-range phasing, as described previously43 

 

4.2 Family-based cohorts 

Family-based cohorts were imputed using picopili26 (https://github.com/Nealelab/picopili) 

paralleling the same procedure described above for case/control cohorts. (COGA was treated 

separately, as described above and in Lai et al. (2019)25.) Each cohort was matched to the 1000 

Genomes Project Phase 354 imputation reference data following the same set of heuristics as are 

implemented in ricopili. Pre-phasing and imputation were then performed with SHAPEIT57 and 

IMPUTE258,59 with two primary changes to accommodate the family data. First, phasing was 

performed for each chromosome rather than in 3 MB genomic chunks in order to assist in 

identifying any long regions of haplotype sharing between family members. Second, the 

duoHMM algorithm in SHAPEIT60 was enabled to allow use of pedigree information in refining 

haplotype calls. 

 

After imputation, best-guess genotypes were called (minimum posterior probability > 0.8) and 

QCed for call rate (missingness < 2%), INFO score > 0.6, and allele frequency > 0.005. 

(Additional filtering was applied prior to meta-analysis, see below.) Any apparent Mendelian 

errors in the imputed pedigrees were set as missing. After QC, post-imputation PCA was then 

performed to compute PCs for use as covariates in the GWAS using the same protocol as the 

PCA performed in the family-based cohorts prior to imputation (see above). 

 

4.3 Summary statistics cohorts 

Add Health data were imputed using the Haplotype Reference Consortium61 on the Michigan 

Imputation Server47. 

 

https://github.com/Nealelab/picopili
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5 Cross-cohort relatedness and ancestry confirmation 
After imputation, QCed best-guess genotypes from each cohort were merged to allow filtering 

for cryptic relatedness between cohorts. Imputed genotypes were filtered for allele frequency and 

imputation quality (i.e. INFO score, call rate at posterior probability > 0.80) within each cohort, 

and then merged and filtered to variants passing QC across cohorts. As in the within-cohort 

relatedness checks, the passing variants were then pruned for LD and used to estimate genetic 

relatedness between all pairs of individuals. Relatedness among EUR cohorts was estimated 

using PLINK44, while relatedness with AFR cohorts was estimated using REAP62 to account for 

varying admixture. 

 

In cases of observed cross-cohort cryptic relatedness (𝜋 > 0.1), individuals were removed from 

each related pair as in the within-cohort relatedness filtering. In order to maximize effective 

sample size, priority was given to keeping individuals with a CUD diagnosis, individuals in 

cohorts with small sample sizes, and individuals who were part of a pedigree in a family-based 

study. Individuals with cryptic relatedness to a large number of other samples were prioritized 

for removal. Instances of known overlap between the cohorts (e.g. among the cohorts in SAGE) 

were also verified and filtered accordingly. 

 

Unrelated individuals were also used to verify ancestry assignment of the EUR and AFR cohorts, 

respectively, by merging the cohorts of each ancestry with 1000 Genomes Project reference 

samples and performing PCA.  

 

Table 1 reports final sample sizes for analysis after filtering for cross-cohort relatedness. GWAS 

were performed separately in each cohort (and for EUR and AFR within a cohort) using the set 

of individuals who passed this relatedness check. 

 

6 Genome-wide association 
 

6.1 Case-control cohorts 

Genome-wide association studies (GWAS) were performed in each case/control cohort using 

PLINK44. Logistic regression was performed to test association between CUD and the imputed 

additive dosage of each variant, controlling for sex and principal components (PCs).  

 

The number of PCs included as covariates to control for confounding from population structure 

varied by ancestry and sample size. In EUR cohorts, the number of PC covariates was 

determined by cohort sample size in order to reflect differential power of PCA to detect true 

population structure63. Specifically, in EUR cohorts with fewer than 2000 samples or fewer than 

500 cases, the first 5 PCs were included as covariates; larger cohorts included the first 10 PCs. 

The number of cases was included as a criterion to prevent over-fitting to PCs in large cohorts 

with strongly skewed case/control ratios. 

 

In AFR cohorts, we included as covariates the top PCs associated with genome-wide population 

structure, as opposed to local ancestry tracts26, up to a maximum of 5 or 10 PCs based on the 

same sample size thresholds as in EUR cohorts. In practice, this resulted in the use of between 1 

and 5 PCs in each cohort.  
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The association analysis in the iPSYCH cohort was done using logistic regression and imputed 

marker dosages. The following covariates were used: principal components 1–4, and additionally 

one principal component from the PCA associated with case-control status; the 19 data 

processing waves; and diagnosis of major psychiatric disorders studied by iPSYCH. Results for 

9,729,295 markers were generated; subsequently, markers with an imputation INFO score < 0.7 

(n = 608,367), markers with a MAF < 0.01 (n = 10,220) and multiallelic markers (n = 143,083) 

were removed. In total, after filtering, 8,969,939 markers remained for further analysis. All 

analyses of the iPSYCH sample were performed at the secured national GenomeDK high-

performance computing cluster in Denmark. 

 

6.2 Family-based cohorts 

GWAS was performed in each family-based cohort using best-guess imputed genotypes for each 

variant. The association model used to test association for each variant was selected based on the 

complexity of the pedigree structure in each cohort’s family-based design. Cohorts with a simple 

pedigree structure were tested using generalized estimating equations (GEE). Cohorts with more 

complex pedigrees that performed poorly in the GEE model (e.g., COGA) were tested using 

generalized linear mixed models (GLMM). Both models are described in detail in 26. Sex and PC 

covariates were included following the same protocol as described above for case/control 

cohorts. 

 

GWAS of Case-control Individuals 

In addition to the primary family-based analyses, a subset of unrelated individuals was selected 

from each family-based cohort to perform a conventional case/control GWAS. Unrelated 

individuals were chosen to maximize the effective sample size for case/control analysis for CUD 

within each cohort. GWAS was then performed using logistic regression with the best-guess 

imputed genotypes in PLINK44. Sex and PC covariates were included following the same 

protocol as the case/control GWAS, as described above.  

 

6.3 Summary statistics cohorts 

GWAS was performed within the Add Health cohort following standard protocols (analyzed 

using a mixed linear model association framework within GCTA53,64 with sex as a covariate.)  

 

6.4 Population stratification in deCODE 

In the deCODE sample, population stratification was accounted for by dividing by an inflation 

factor estimated from LD score regression (LDSR)65. Price et al.66 found that “the divergence 

time of Icelandic regions has been too short for differential selective forces to have had a 

significant impact on allele frequencies”, and “A consequence of these findings is that whenever 

λ is close to 1 in a disease association study involving the Icelandic population, false positive 

associations due to population stratification can be conclusively ruled out. If λ is greater than 1, 

then dividing association statistics by λ will still prevent false positive associations.” Because 

county of origin predicts more variance due to genetic drift than genetic PCs, this covariate was 

included in the logistic regression models in lieu of PCs.  

 

7 Genome-wide meta-analysis 
We performed two batches of primary meta-analyses. First, we perform meta-analysis of all 

samples (including related individuals and summary statistic cohorts). Second, we perform meta-
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analysis of case-control genotyped samples only (i.e. excluding family-based samples and 

summary statistic cohorts) within the PGC, meta-analyzing with iPSYCH and deCODE. The full 

set of meta-analysis designs is described in Table S1.  

 

7.1 Meta-analysis with related samples 

The primary discovery meta-analysis was performed using all available EUR-only samples, 

including related individuals and summary statistic cohorts (17,068, cases, 357,219 controls). 

These meta-analyses were performed using p-values with weights defined by the effective 

sample size of each cohort. These weights were defined to account for the differences in 

case/control balance and degree of relatedness within each cohort, while allowing meta-analysis 

without comparable effect size estimates from the GLMM or summary statistic cohorts. 

 

For meta-analysis, results from each cohort were filtered for imputation INFO score (> 0.8), 

minor allele frequency (> 1%), and expected minor allele count (MAC) in cases and controls (> 

5). In the PGC, the summary statistics from each sample were also filtered to only report results 

for variants present in an effective sample size > 1000 and > 15% of the maximum effective 

sample size for the meta-analysis. GWAS results from the AddHealth summary statistics cohort 

were filtered according to the same criteria after being aligned to match the same genomic 

reference as the genotyped cohorts (e.g. matching rsids, positions, and alleles), except for INFO 

score > 0.8, as this information was not available. 

 

The final meta-analysis summary statistics were further filtered to only report results for variants 

present in an effective sample size > 1000 and > 15% of the maximum effective sample size for 

the meta-analysis. The summary statistics were also filtered such that a SNP had to be present in 

at least two of the three contributing GWAS (deCODE, iPSYCH, and PGC) for further 

annotation. 

 

In addition to this primary meta-analysis within ancestries, meta-analysis was also performed 

across ancestries (20,916 cases, 363,116 controls). In the trans-ancestral meta-analysis, long, 

highly significant, likely false-positive indels in the deCODE summary statistics were excluded, 

but SNPs were not required to be present in at least two of the three samples, as only the PGC 

contained AFR-ancestry individuals. 

 

7.2 Meta-analysis with case-control genotyped samples 

Meta-analysis of case-control genotyped samples was performed using conventional inverse-

variance weighted fixed effects meta-analysis in METAL67. This analysis excluded the summary 

statistic cohort (AddHealth) and restricted the family-based cohorts from the PGC to unrelated 

individuals only. Meta-analysis was performed for only the European (EUR) cohorts. Total 

sample sizes for this meta-analysis were 14,080 cases, 343,726 controls in EUR cohorts. 

 

This analysis was primarily intended to provide estimates of variant effect sizes, as well as the 

computation of polygenic risk scores. This restricted set of samples is necessary for estimation of 

effect sizes because many of the summary statistic cohorts relied on GWAS with a linear rather 

than logistic link function and thus do not have comparable effect sizes to the genotyped cohorts, 

and because effects sizes are unavailable for the family-based cohorts with complex pedigrees 

analyzed using the GLMM score test. 
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8 FUMA annotation 
In FUMA68 v1.3.5e, we specified that the annotation should only include SNPs independent at 

R2 < 0.1 as “independent significant SNPs”, rather than the default parameter of R2 < 0.6.  

We used the 1000 Genomes Phase 3 reference panel, and used data from BrainSpan69, for gene 

mapping using MAGMA70, data from PsychENCODE71, Common Mind Consortium72, 

BRAINEAC73, and GTEx74 for eQTL mapping, and PsychENCODE and Hi-C datasets from 

Giusti-Rodriguez et al.75 for chromatin interaction mapping.  

 

9 H-MAGMA analyses  
Besides the classic MAGMA analyses conducted via FUMA, we also used an alternative 

approach, Hi-C coupled MAGMA76 (H-MAGMA). H-MAGMA takes into account long-range 

regulatory interaction effects to assign non-coding SNPs (intergenic and intronic) to genes based 

on their chromatin interactions (exonic and promoter SNPs are still assigned to genes based on 

genomic location). Four Hi-C datasets were used: one for fetal brain tissue77, one for adult brain 

tissue78, one for iPSC-derived astrocytes79, and one for iPSC-derived neurons79 (all available for 

download: https://github.com/thewonlab/H-MAGMA).  

 

10 Genetic correlation analyses  
Table S2 outlines the measures that were selected for genetic correlation analyses using LD 

Score Regression65,80 (LDSR). LDSR analyses were performed using the subset of SNPs 

available in HapMap3 and LD scores that were computed using the 1000 Genomes Project Phase 

3 reference panel for European populations (pre-computed scores available for download were 

taken from https://data.broadinstitute.org/alkesgroup/LDSCORE/). To minimize the multiple 

testing burden, we only examined 22 robustly heritable measures that have been previously 

associated with CUD from a phenotypic perspective. Within each domain, we prioritized for 

GWAS with higher heritability reflecting adequate power. For psychiatric disorders, 

schizophrenia, bipolar disorder, major depression, posttraumatic stress disorder and ADHD have 

been previously associated with cannabis use and CUD81. There has also been some evidence of 

an association between cannabis use and anorexia nervosa82; thus we included this disorder as 

well. Despite associations between CUD and anxiety disorders, summary statistics were not 

available for download from the current largest GWAS of anxiety, and previous studies were not 

well-powered enough for LDSR. For substance use and disorder, no other illicit drugs were 

included as those GWAS do not demonstrate adequate power83. We included alcohol use 

disorder84, cigarettes per day85, drinks per week85, the Fagerström Test for Nicotine 

Dependence83, and smoking initiation85 (as well as a comparison with cannabis use81). The 

personality measure of risk tolerance is amongst the strongest phenotypic correlates of substance 

use86. We also included age at first birth, which is an index of reproductive tempo and has been 

associated with precocious engagement in sexual activity as well as experimentation with 

substances87. Several psychosocial indices were studied. We included correlations with body 

mass index, which has been repeatedly linked to cannabis use in epidemiological analyses with 

associations attributed to peripheral effects of THC on satiety and energy regulation88. Likewise, 

several epidemiological studies indicate sleep disruption in heavy cannabis users, hence we 

selected chronotype as the most well-powered index of sleep, and also because it was previously 

found to be associated with substance use, including cannabis use89. In addition, measures of 

https://github.com/thewonlab/H-MAGMA
https://data.broadinstitute.org/alkesgroup/LDSCORE/
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socio-economic status, such as educational attainment and neighborhood deprivation, were also 

included as they have been repeatedly linked to addictions26. The summary statistics for 

Townsend Deprivation Index and age at first birth were taken from a phenome-wide analysis 

conducted on 361,194 genotyped individuals in the UK Biobank by the Neale lab 

(https://github.com/Nealelab/UK_Biobank_GWAS). Finally, as the present study examines the 

association between CUD and brain volume, we assessed the genetic correlation with intracranial 

volume as well as volume of the nucleus accumbens, caudate and putamen, all striatal regions 

that have been robustly implicated in the neural circuitry underpinning addictions, as well as the 

hippocampal region.  

 

11 Latent causal variable analyses  
 

We conducted latent causal variable (LCV) analyses on CUD and the top genetically correlated 

traits: educational attainment, age at first birth, Townsend Deprivation Index (TDI), smoking 

initiation, and ADHD. LCV is an approach related to Mendelian Randomization but potentially 

more robust in the presence of genetic correlation102. Additionally, LCV permits us to remove 

the bias of sample overlap among the GWAS datasets investigated.  

 

12 Polygenic risk score analyses  
12.1 UK Biobank  

The UK Biobank is a national volunteer health resource which gathers genotypic and phenotypic 

data on a representative population of the United Kingdom90,91. Cannabis use was ascertained in 

the UK Biobank using an online mental health questionnaire92 which was completed by 157,366 

individuals over a 1-year period in 2017. Using a white British unrelated subset of the UK 

Biobank (removing third degree relatives or closer (using a kinship coefficient > 0.044)) Field 

20453 "Have you taken CANNABIS (marijuana, grass, hash, ganja, blow, draw, skunk, weed, 

spliff, dope), even if it was a long time ago?" and field 20454 "Considering when you were 

taking cannabis most regularly, how often did you take it?" were used to create a numerical 

variable corresponding to 0 – Never used cannabis (N=85214), 1 – Used cannabis 1-2 times but 

not daily (N=9410), 2 – Used cannabis 3-10 times but not daily (N=5566), 3 – Used cannabis 11-

100 times but less than daily (N=4316), 4 – Used cannabis over 100 times or daily (N=2692). 

Polygenic risk scores were created in the imputed UK Biobank data using PRSice-293, based on 

effect sizes derived from the EUR meta-analysis of unrelated, genotyped individuals (NCUD = 

14,080, Ncontrol = 343,726). Nine PRS were generated using different p-value thresholds (pT) in 

the discovery GWAS (p ≤ 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0 (all LD-independent 

SNPs)). 

Using linear regression, cannabis use frequency was tested for association with PRS using age, 

sex, and 20 genetic principal components as covariates. Variance explained was calculated by 

subtracting the adjusted R2 from a null model (linear model excluding PRS) from the adjusted R2 

from the full model (including PRS).  

This research was conducted using the UK Biobank Resource, application numbers 4844 and 

58146 (each site conducted analyses independently).  

 

12.2 BioVU biobank  

Polygenic scores for CUD were computed using the PRS-CS94 “auto” version (i.e., the global 

shrinkage parameter phi was learnt from the data in a Bayesian approach) for each of the 66,915 

https://github.com/Nealelab/UK_Biobank_GWAS
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genotyped individuals of European descent in BioVU. Genotyping and QC of this sample have 

been described elsewhere95,96. In the genotyped BioVU sample, a logistic regression model was 

fitted to each of 1,335 case/control phenotypes to estimate the odds of each diagnosis given the 

CUD polygenic score, after adjustment for sex, median age of the longitudinal EHR 

measurements, top 10 principal components of ancestry. The disease phenotypes included 171 

circulatory system, 170 genitourinary, 169 endocrine/metabolic, 162 digestive, 140 neoplasms, 

132 musculoskeletal, 127 sense organs, 126 injuries & poisonings, 90 dermatologic, 85 

respiratory, 84 neurological, 76 mental disorders, 69 infectious diseases, 62 hematopoietic, 56 

congenital anomalies, 49 symptoms, 46 pregnancy complications. We required the presence of at 

least two International Classification of Disease (ICD) codes that mapped to a PheWAS disease 

category (Phecode Map 1.2 (https://phewascatalog.org/phecodes) to assign “case” status97. We 

analyzed 1,335 phecodes (a “phecode” is a phenotype code, created by aggregating one or more 

related ICD codes into distinct diseases) with at least 100 cases, and used a Bonferroni-corrected 

phenome-wide significance threshold of 𝛼 < .05 / 1335 = 3.74e-5. PheWAS analyses were run 

using the PheWAS R package v0.12.98  

 

12.3. Adolescent Brain and Cognitive Development (ABCD)  

Data from the ongoing Adolescent Brain Cognitive Development (ABCD) study99 (data release 

2.0.1; https://abcdstudy.org/) were used to test whether CUD PRS are associated with brain 

structure among 4,539 cannabis-naïve (via self-report or toxicology) children of European 

ancestry (mean age = 9.93±0.63 years; 46.82% girls). All parents provided written informed 

consent, and all children provided verbal assent to a research protocol approved by the 

institutional review board at each data collection site (N = 22) throughout the United States 

(https://abcdstudy.org/sites/abcd-sites.html). Genetic QC followed the Ricopili pipeline42.Total 

bilateral white matter volume, gray matter volume, and intracranial volume were estimated using 

FreeSurfer100 5.3. PRS from the CUD GWAS were generated at nine p-value thresholds (i.e., PT 

= 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, and 1). Linear mixed-effects models were used to 

include scanner (for imaging analyses) and family as nested random effects, conducted using the 

lme4 package in R101, version 3.6.0. All analyses also included the following fixed effect 

covariates: first 20 ancestry principal components, age, sex, age by sex, parents combined 

income, caregiver education, genotyping batch, caregiver’s marital status, prenatal cannabis 

exposure before and after knowledge of pregnancy, and twin status.  Multiple testing was 

accounted for by applying random field theory correction across p-value thresholds. 

 

13 Supplemental tables 
  Link to downloadable online Excel spreadsheet of supplemental tables:  Online Supplemental 

Tables  

 

CONTENTS: 

 

Table S1. Overview of different meta-analytic designs. 

Table S2. Traits examined in genetic correlation analyses. 

Table S3. All SNPs within the two genomic risk loci with p < 0.05 for the trans-ancestral meta-

analysis. 

Table S4. All cis-eQTL SNP-gene-tissue pairs within the two genome-wide significant loci. 

https://phewascatalog.org/phecodes)
https://app.box.com/s/3hjxc6kb3kagzm7ldsrtz37y0wrexlqj
https://app.box.com/s/3hjxc6kb3kagzm7ldsrtz37y0wrexlqj
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Table S5. All SNPs within the two genomic risk loci with p < 0.05 for the European-ancestry 

meta-analysis. 

Table S6. All genes mapped by MAGMA for the EUR-ancestry summary statistics.  

Table S7. Results of pathway analysis through PASCAL (alpha level after multiple testing 

correction = 4.6e-5). 

Table S8. Significant findings from S-PrediXcan Analyses. 

Table S9.  All S-PrediXcan results. 

Table S10. Hi-C coupled MAGMA (H-MAGMA) results for adult brain tissue. Genes above 

dashed line pass multiple testing corrections. 

Table S11. Hi-C coupled MAGMA (H-MAGMA) results for fetal brain tissue. Genes above 

dashed line pass multiple testing corrections. 

Table S12. Hi-C coupled MAGMA (H-MAGMA) results for iPSC-derived astrocytes. Genes 

above dashed line pass multiple testing corrections. 

Table S13. Hi-C coupled MAGMA (H-MAGMA) results for iPSC-derived neurons. Genes 

above dashed line pass multiple testing corrections. 

Table S14. Genetic correlations with traits of interest from LD Score Regression. 

Table S15. Comparison of genome-wide SNPs in Pasman et al. cannabis use study with the 

current CUD GWAS meta-analysis. 

Table S16. Results for top two SNPs after conditioning CUD on cannabis use using mtCOJO. 

Table S17. Genetic correlations between cannabis use and traits of interest from LD Score 

Regression. 

Table S18. Comparison of genetic correlations between relevant traits and CUD vs. CUD after 

covarying on cannabis use. 

Table S19. Results of latent causal variable analyses with CUD and top correlated traits. 

Table S20. Association between CUD PRS and cannabis use in the UK Biobank (N=107,198) at 

9 different p-value threshold cut-offs. Most significant association is indicated in bold text. 

Table S21. Results of PRSet gene-set enrichment test. 

Table S22. Association between CUD PRS and phecodes in the BioVU biobank. 

Table S23. Association between CUD PRS and phecodes in the BioVU biobank, after 

conditioning the CUD summary statistics for smoking intitiation loci using mtCOJO. 

Table S24. Association between CUD PRS and phecodes in the BioVU biobank, covarying for 

tobacco use disorder (TUD) phecode. 

Table S25. Association between PRS (for both CUD and cannabis use) and white matter volume 

in the ABCD sample at 9 different p-value threshold cut-offs. Most significant association is 

indicated in bold text. 

Table S26. Association between PRS (for both CUD and cannabis use) and gray matter volume 

in the ABCD sample at 9 different p-value threshold cut-offs. Most significant association is 

indicated in bold text. 

Table S27. Results for top two SNPs after conditioning CUD on schizophrenia using mtCOJO. 
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Table S28. Results for top two SNPs after conditioning CUD on cigarettes per day using 

mtCOJO. 

Table S29. Results for top two SNPs after conditioning CUD on smoking initiation using 

mtCOJO. 

14 Supplemental figures 
 

CONTENTS: 

Figure S1. SNP-level Manhattan plot for CUD (Trans-ancestral). 

Figure S2. Regional association plots for genome-wide significant loci in the EUR-only GWAS 

meta-analysis. 

Figure S3. Forest plot of study-specific and meta-analytic association statistics at the risk locus 

on chromosome 8. 

Figure S4. Circos plot showing eQTL and chromatin interactions at the genomic risk locus on 

chromosome 8.  

Figure S5. Forest plot of study-specific and meta-analytic association statistics at the risk locus 

on chromosome 7. 

Figure S6. Circos plot showing eQTL and chromatin interactions at the genomic risk locus on 

chromosome 7.  

Figure S7. Gene-level Manhattan plot (EUR-only). 

Figure S8. S-PrediXcan results.  

Figure S9. Overview of overlapping findings from different gene-based approaches. 

Figure S10. Associations between CUD PRS and cannabis use frequency in the UK Biobank.  

Figure S11. Associations between total gray matter volume, CUD PRS, and cannabis use PRS. 
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Figure S1. SNP-level Manhattan plot for CUD (Trans-ancestral). 

 

  



21 

 

 

 

A. 

 

B. 
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Figure S2. Regional association plots for genome-wide significant loci in the EUR-only 

GWAS meta-analysis. A. Regional association plot of chromosome 8 risk locus, with eQTLs 

displayed in bottom panel B. Regional association plot of chromosome 7 risk locus, showing 

eQTLs in bottom panel. 
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Figure S3. Forest plot of study-specific and meta-analytic association statistics (odds ratios 

with 95% confidence intervals) in the European ancestry genotyped case-control individuals at 

the lead SNP, rs4732724, at the genomic risk locus on chromosome 8. 
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Figure S4. Circos plot showing eQTL and chromatin interactions at the genomic risk locus 

on chromosome 8. The most outer layer of the plot shows the Manhattan plot of SNP 

associations (-log10(p-value)), but only SNPs with p < 0.05 are displayed. The rsID of the top 

SNPs in each risk locus are displayed in the most outer layer. The second layer shows the 

genomic risk locus highlighted in blue. Only mapped genes by either chromatin interaction 

and/or eQTLs are displayed. If the gene is mapped only by chromatin interactions or only by 

eQTLs, it is colored orange or green, respectively. When the gene is mapped by both, it is 

colored red. Chromatin interaction links are colored orange, while eQTL links are colored green. 
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Figure S5. Forest plot of study-specific and meta-analytic association statistics (odds ratios 

with 95% confidence intervals) in the European ancestry genotyped case-control individuals at 

the lead SNP, rs7783012, at the genomic risk locus on chromosome 7. 
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Figure S6. Circos plot showing eQTL and chromatin interactions at the genomic risk locus 

on chromosome 7. The most outer layer of the plot shows the Manhattan plot of SNP 

associations (-log10(p-value)), but only SNPs with p < 0.05 are displayed. The rsID of the top 

SNPs in each risk locus are displayed in the most outer layer. The second layer shows the 

genomic risk locus highlighted in blue. Only mapped genes by either chromatin interaction 

and/or eQTLs are displayed. If the gene is mapped only by chromatin interactions or only by 

eQTLs, it is colored orange or green, respectively. When the gene is mapped by both, it is 

colored red. Chromatin interaction links are colored orange, while eQTL links are colored green. 
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Figure S7. Gene-level Manhattan plot (EUR-only). 
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Figure S8. S-PrediXcan results. All genes shown are significant after correcting for the total 

number of genes tested (16,903), while genes above the dashed line are significant after 

correcting for the number of unique gene-tissue pairwise comparisons (75,684). 
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Figure S9. Overview of overlapping findings from different gene-based approaches. 
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Figure S10. Associations between CUD PRS and cannabis use frequency in the UK 

Biobank. PRSice-2 was used to perform gene-set enrichment using gene sets and pathways from 

the Molecular Signatures Database (MSigDB103). (H) hallmark biological processes or states, 

(C1) positional sets from cytogenetic maps, (C2) chemical or genetic perturbations and canonical 

pathways, (C3) regulatory processes, (C4) computationally derived gene sets of cancer gene 

neighborhoods and modules, (C5) biological process, cellular component, and molecular 

function gene ontologies, (C6) oncogenic signatures, and (C7) immunologic signatures. 
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Figure S11. Associations between total gray matter volume, CUD PRS, and cannabis use 

PRS. 
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