

Supplementary Material

1 Supplementary Figures

Figure S1 | Aerobic fermentor growth of $\Delta ssaACB$ and WT strains. Representative charts for fermentor growth of *S. sanguinis* (**A**) $\Delta ssaACB$ and (**B**) WT cells. Each color represents a different parameter: cyan - air flow (liters per min; lpm), pink - optical density (840-910 nm; absorbance units; AU), dark green - pH, light green - base input (KOH), purple - media input (mL; total volume). Each color represents a different parameter as labeled at the top of the figure. The scale for each parameter is indicated by the values under each respective parameter label (minimum at the bottom, maximum at the top). The time scale is indicated by the bar in the bottom right portion of each chart. Cells were grown under aerobic conditions with EDTA added 80 mins (T₀) after the media input and output pumps were turned on and the air flow was set to 0.5 lpm. Each sample time point is labeled.

Figure S2 | Addition of metals to fermentor-grown $\Delta ssaACB$ cells post-EDTA. Fermentor growth of $\Delta ssaACB$ with the addition of 100 µM EDTA at T₀ as described previously, with 100 µM of either Mn²⁺ (**A**) or Fe²⁺ (**B**) added at T₇₀. Colors and labels are as in Fig. S1. The time scale is indicated by the bar in the bottom right portion of the each chart. Each chart is representative of at least three replicates.

Figure S3 | Metal content of fermentor-grown $\Delta ssaACB$ cells post-EDTA and metal supplementation. Samples of $\Delta ssaACB$ cells were collected from the fermentor at each time point and analyzed for cellular metal content using ICP-OES. The T₈₀ time point is 10 mins after the addition of 100 µM of either Mn²⁺ (**A**) or Fe²⁺ (**B**) added at T₇₀ as depicted in Figure S2. Means and standard deviations of three replicates are shown. Significance was determined for each metal by repeated measures ANOVA or one-way ANOVA if matching was not effective. A Tukey-Kramer multiple comparisons test was used for comparison to T₋₂₀ for each metal; **P* ≤ 0.05, ****P* ≤ 0.0001.

Figure S4 | Validation of RNA-Seq trends using qRT-PCR. (A) The average \log_2 fold change values of select genes of interest from the DESeq2 RNA-Seq analysis, comparing each post-EDTA time point to T₋₂₀. The average is from four biological replicates. (B) Log₂ fold change values of the same genes as determined by qRT-PCR of two additional Δ *ssaACB* fermentor run samples. Mean and standard error for each time point are depicted. Horizontal dashed lines indicate \log_2 fold changes in expression of ± 1 .

Figure S5 | Aerobic fermentor growth of the $\Delta sodA$ mutant. The $\Delta sodA$ mutant grown under aerobic fermentor conditions as described previously, without EDTA. Each color represents a different parameter, labeled at the top of the figure. The scale for each parameter is indicated by the values under each respective parameter (minimum at the bottom, maximum at the top). The time scale is indicated by the bar in the bottom right portion of the chart. Representative chart from three replicates.

Supplementary Material

Locus	Annotation	ТРМ	Log ₂ Ratio			
Tag		T ₋₂₀	T ₁₀ /T ₋₂₀	T ₂₅ /T ₋₂₀	T ₅₀ /T ₋₂₀	Log ₂ Ratio
SSA_0363	dagA, sodium:alanine symporter family protein	120	0.23	1.26	1.22	2.5
SSA_0364	dctA, serine/threonine transporter	102	0.30	1.16	1.14	2.0
SSA_0369	NADP oxidoreductase	767	0.52	1.02	1.68	1.5
SSA_0370	GNAT family N-acetyltransferase	1070	0.48	1.00	1.61	1.0
SSA_0371	gdhA, NADP-specific glutamate dehydrogenase	1079	0.29	0.84	1.41	0.5
SSA_0385	opuAb, ABC transporter permease/substrate binding protein	275	-0.03	-1.09	-1.74	0.0
SSA_0386	opuAa, glycine betaine/L-proline ABC transporter ATP-binding protein	287	-0.26	-1.32	-2.00	-0.5
SSA_0572	2,3-butanediol dehydrogenase	147	0.10	-0.19	-1.75	-1.0
SSA_0635	<i>trpC</i> , indole-3-glycerol phosphate synthase	18	0.26	-0.02	-1.03	-1.5
SSA_0637	<i>trpB</i> , tryptophan synthase subunit beta	55	1.22	1.25	1.38	-2.0
SSA_0638	<i>trpA</i> , tryptophan synthase subunit alpha	83	1.30	1.28	1.07	-2.5
SSA_0703	citrate synthase	4	-0.10	0.56	1.54	-3.0
SSA_0704	NADP-dependent isocitrate dehydrogenase	7	-0.51	0.44	1.03	-3.5
SSA_0737	sagP, arginine deiminase	292	1.17	0.09	-1.92	-4.0
SSA_0738	arc, ornithine carbamoyltransferase	666	0.47	-0.93	-2.40	-4.5
SSA_0739	arcC , carbamate kinase	58	0.24	-1.45	-3.15	
SSA_0741	<i>arcT</i> , acetylornithine deacetylase/succinyl-diaminopimelate desuccinylase	76	-0.01	-1.49	-2.99	
SSA_0917	5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase	5	0.17	0.33	1.34	
SSA_0921	adhB, alcohol dehydrogenase catalytic domain-containing protein	128	-0.04	0.75	1.23	
SSA_1341	carB, carbamoyl-phosphate synthase large subunit	23	-0.03	0.65	1.31	
SSA_1342	carA, glutamine-hydrolyzing carbamoyl-phosphate synthase small subunit	20	0.27	0.77	1.26	
SSA_1360	amino acid ABC transporter ATP-binding protein	724	0.50	0.81	1.16	
SSA_1401	PLP-dependent aminotransferase family protein	17	-0.09	0.24	1.05	
SSA_1439	hisK, hypothetical protein	73	0.62	0.78	1.41	
SSA_1440	hisE, phosphoribosyl-ATP diphosphatase	75	0.16	0.47	1.11	
SSA_1569	amino acid ABC transporter permease	112	0.77	0.91	1.01	
SSA_1615	alanine dehydrogenase	368	0.88	-0.35	-3.45	
SSA_1621	amino acid permease	80	0.28	-1.19	-3.17	
SSA_1713	serA, D-3-phosphoglycerate dehydrogenase	51	0.36	1.37	2.22	
SSA_1715	serC, 3-phosphoserine/phosphohydroxythreonine transaminase	40	0.05	1.07	2.03	
SSA_1949	peptide ABC transporter substrate-binding protein	182	0.40	-0.95	-2.27	
SSA_1950	peptide ABC transporter ATP-binding protein	95	-0.16	-0.68	-1.38	
SSA_1967	ilvA, threonine ammonia-lyase	58	0.21	0.81	1.32	
SSA_1968	ilvC, ketol-acid reductoisomerase	210	0.31	0.88	1.39	
SSA_1969	ilvH, acetolactate synthase small subunit	108	-0.09	0.57	1.09	
SSA_1970	ilvB, acetolactate synthase large subunit	114	-0.34	0.49	1.01	
SSA_2039	amino acid permease	23	0.01	-0.97	-1.18	
SSA_2141	argH, argininosuccinate lyase	14	0.06	0.39	1.24	

Figure S6 | Impact of Mn depletion on amino acid transport and synthesis genes. Expression of amino acid transport and synthesis genes in the $\Delta ssaACB$ mutant are depicted with their average TPM at T₋₂₀ and log₂ fold change values for each post-EDTA time point. Only genes with |log₂ fold change values| \geq 1 are depicted in this chart. For expression of all amino acid transport and synthesis genes, see Table S1. TPM values greater than 1000 are full saturation (green). Positive log₂ fold change values (red) are upregulated in post-EDTA samples as compared to T₋₂₀, while negative values (blue) are downregulated. Values in bold are significant by adjusted *P*-value (\leq 0.05).

Figure S7 | Transcriptomic heatmap of $\Delta ssaACB$ aerobic fermentor grown cells. Heatmap displaying the log₂ fold change values of each gene at the time indicated as compared to T₋₂₀. Positive log₂ fold change values (red) are upregulated in later samples as compared to T₋₂₀, while negative values (blue) are downregulated. Select genes are depicted with their average TPM at T₋₂₀ and log₂ fold change values for each post-EDTA time point. TPM values greater than 1000 are full saturation (green). Log₂ fold change values follow the same color scale as depicted in the heatmap. Values in bold are significant by adjusted *P*-value (≤ 0.05).

2 Supplementary Methods

Fermentor set up

BHI was prepared in a polypropylene carboy to a final volume of 5 L. Antifoam (Sigma) was added to 25 ppm and the carboy was autoclaved for 2 h at 128°C. Aeration was achieved by the controlled addition of compressed N₂ and air delivered through a ring sparger, augmented by stirring at 250 rpm; vessel temperature was controlled via an external heating blanket. The DO, OD, and temperature were also measured by indwelling probes. Constant volume in the vessel was maintained by the placement of the opening of a harvest tube at the 800 mL level. Detailed protocol is described in Puccio and Kitten (2020).

Quantitative reverse transcriptase polymerase chain reaction

RNA was collected as described in the main text. cDNA libraries were created using SensiFAST cDNA Synthesis Kit (Bioline). Control reactions without reverse transcriptase were conducted to confirm the absence of contaminating DNA in all samples. qRT-PCR was performed using SYBR Green Supermix (Applied Biosystems) on an Applied Biosystems 7500 Fast Real Time PCR System using the primers listed in Table S3. Relative gene expression was analyzed using the $2^{-\Delta\Delta CT}$ method (Livak and Schmittgen, 2001) with *gapA* serving as the internal control (Rodriguez et al., 2011).

Heatmap generation

The heatmap was generated in GraphPad Prism¹ using the log_2 fold change values of the RNA-Seq data calculated using DESeq2 in Geneious², as described in the main text.

Putative cre site identification

Putative *cre* sites identified in the SK36 genome by RegPrecise³ (RRID:SCR_002149) (Novichkov et al., 2013) and listed within the "propagated regulon" collection⁴ were collected. Further analyses were performed by obtaining non-overlapping sequences ≤ 250 bp in length upstream of all SK36 genes using RSAT⁵ (RRID:SCR_008560) (van Helden et al., 2000; Nguyen et al., 2018), then searching for putative *Streptococcus suis* pseudopalindromic *cre* and *cre2* motifs (Willenborg et al., 2014) in these sequences using FIMO from MEME Suite⁶ (RRID:SCR_001783) (Grant et al., 2011). Motifs used for each search, as well as scores given for the RegPrecise and FIMO outputs, are listed in Table S2. Due to the variable length of the *cre*_{var} sites (Yang et al., 2017), seqinR v. 3.6-1 (Charif and Lobry, 2007) was used for this search. The FIMO cutoff was set to *P*-value $\leq 10^{-4}$. Putative sites located within 10 bp of the start site of the corresponding gene were removed from the list.

¹ https://www.graphpad.com/

² https://www.geneious.com/

³ https://enigma.lbl.gov/regprecise/

⁴ http://regprecise.sbpdiscovery.org:8080/WebRegPrecise/regulon.jsp?regulon_id=35148

⁵ http://rsat.sb-roscoff.fr/

⁶ http://meme-suite.org/doc/fimo.html

3 Supplementary References

- Charif, D., and Lobry, J.R. (2007). "SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis," in *Structural Approaches to Sequence Evolution: Molecules, Networks, Populations,* eds. U. Bastolla, M. Porto, H.E. Roman & M. Vendruscolo. (Berlin, Heidelberg: Springer Berlin Heidelberg), 207-232.
- Grant, C.E., Bailey, T.L., and Noble, W.S. (2011). FIMO: scanning for occurrences of a given motif. *Bioinformatics* 27(7), 1017-1018. doi: 10.1093/bioinformatics/btr064.
- Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the $2^{(-\Delta\Delta CT)}$ method. *Methods* 25(4), 402-408. doi: 10.1006/meth.2001.1262.
- Nguyen, N.T.T., Contreras-Moreira, B., Castro-Mondragon, J.A., Santana-Garcia, W., Ossio, R., Robles-Espinoza, C.D., et al. (2018). RSAT 2018: regulatory sequence analysis tools 20th anniversary. *Nucleic Acids Res* 46(W1), W209-w214. doi: 10.1093/nar/gky317.
- Novichkov, P.S., Kazakov, A.E., Ravcheev, D.A., Leyn, S.A., Kovaleva, G.Y., Sutormin, R.A., et al. (2013). RegPrecise 3.0 - A resource for genome-scale exploration of transcriptional regulation in bacteria. *BMC Genomics* 14, 745. doi: 10.1186/1471-2164-14-745.
- Puccio, T., and Kitten, T. (2020). Fermentor growth of *Streptococcus sanguinis*. *protocols.io*. doi: dx.doi.org/10.17504/protocols.io.bkayksfw.
- Rodriguez, A.M., Callahan, J.E., Fawcett, P., Ge, X., Xu, P., and Kitten, T. (2011). Physiological and molecular characterization of genetic competence in *Streptococcus sanguinis*. *Mol Oral Microbiol* 26(2), 99-116. doi: 10.1111/j.2041-1014.2011.00606.x.
- van Helden, J., André, B., and Collado-Vides, J. (2000). A web site for the computational analysis of yeast regulatory sequences. *Yeast* 16(2), 177-187. doi: 10.1002/(sici)1097-0061(20000130)16:2.
- Willenborg, J., de Greeff, A., Jarek, M., Valentin-Weigand, P., and Goethe, R. (2014). The CcpA regulon of *Streptococcus suis* reveals novel insights into the regulation of the streptococcal central carbon metabolism by binding of CcpA to two distinct binding motifs. *Mol Microbiol* 92(1), 61-83. doi: 10.1111/mmi.12537.
- Yang, Y., Zhang, L., Huang, H., Yang, C., Yang, S., Gu, Y., et al. (2017). A flexible binding site architecture provides new insights into CcpA global regulation in gram-positive bacteria. *mBio* 8(1). doi: 10.1128/mBio.02004-16.