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Summary
Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of African

ancestry (AA) experience the diseasemore severely andwith an increased co-morbidity burden compared to European ancestry (EA) pop-

ulations. We hypothesize that the disparities in disease prevalence, activity, and response to standard medications between AA and EA

populations is partially conferred by genomic influences on biological pathways. To address this, we applied a comprehensive approach

to identify all genes predicted from SNP-associated risk loci detected with the Immunochip. By combining genes predicted via eQTL

analysis, as well as those predicted from base-pair changes in intergenic enhancer sites, coding-region variants, and SNP-gene proximity,

we were able to identify 1,731 potential ancestry-specific and trans-ancestry genetic drivers of SLE. Gene associations were linked to up-

stream and downstream regulators using connectivity mapping, and predicted biological pathways were mined for candidate drug tar-

gets. Examination of trans-ancestral pathways reflect the well-defined role for interferons in SLE and revealed pathways associated with

tissue repair and remodeling. EA-dominant genetic drivers were more often associated with innate immune and myeloid cell function

pathways, whereas AA-dominant pathways mirror clinical findings in AA subjects, suggesting disease progression is driven by aberrant B

cell activity accompanied by ER stress and metabolic dysfunction. Finally, potential ancestry-specific and non-specific drug candidates

were identified. The integration of all SLE SNP-predicted genes into functional pathways revealed critical molecular pathways represen-

tative of each population, underscoring the influence of ancestry on disease mechanism and also providing key insight for therapeutic

selection.
Introduction

Systemic lupus erythematosus (SLE) (MIM: 152700) is a

multi-organ autoimmune disorder associated with signifi-

cant morbidity and mortality. SLE is strongly influenced

by genetic factors and recent candidate gene, Immuno-

chip, and genome-wide association studies (GWASs) have

identified more than 100 SLE susceptibility loci.1–6 Howev-

er, disease development is complex and unpredictable,

with considerable clinical heterogeneity among ancestral

groups. Specifically, individuals of African ancestry (AA)

experience more severe disease and more co-morbidities

compared to European ancestry (EA) populations.7–9

Furthermore, there seems to be variability in the response

of individuals within different ancestral groups to standard

medications, including cyclophosphamide, mycopheno-

late, rituximab, and belimumab. For example, belimumab,

a monoclonal antibody directed to TNFSF13B exhibiting

clinical benefit in moderately active SLE, was reported to

be less effective in treating AA populations.10–13

Although GWASs have achieved great success in map-

ping disease loci in polygenic autoimmune diseases, the

majority of GWAS findings have failed to impact clinical
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practice.14 Moreover, for many single-nucleotide poly-

morphisms (SNPs), the biologic implications have usu-

ally not been identified. Here we hypothesize that using

the more global approach of identifying all of the genes

implicated by GWASs and modeling them into biologic

pathways might provide a broader view of the impact

of genetics on SLE, and, also, an indication of the dispa-

rate genetic influences manifest in affected individuals of

different ancestries. Utilization of expression quantita-

tive trait loci (eQTL) mapping15–17 as well as identifica-

tion of variants disrupting transcription factor binding

site (TFBS) occupancy in active regulatory regions re-

sulted in the identification of genes implicated by

ancestry-specific and trans-ancestral SNP associations.

We then applied a comprehensive systems biology

approach to predict SLE-associated biological pathways.

Putative pathways were validated by connectivity map-

ping to differentially expressed genes (DEGs) in SLE

and candidate treatments for each ancestral group were

identified. Together, these genetic and gene expression

analyses have identified biological pathways common

to both EA and AA, as well as those implicated by the dif-

ferential strength of the ancestry-specific association as
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more dominant in either ancestry, and have helped iden-

tify novel drug candidates that might uniquely impact

EA and AA SLE.
Material and Methods

Identification of SLE-Associated SNPs and Predicted

Genes
The SLE Immunochip study18 identified single-nucleotide poly-

morphisms (SNPs) significantly associated with SLE in AA (2,970

case subjects, 2,452 control subjects) and EA (6,748 case subjects,

11,516 control subjects) cohorts. SNP proxies, identified via rAggr

(see Web Resources) in linkage disequilibrium (LD) (r2 > 0.5) with

these SLE-associated SNPs, were then determined, using the Cen-

tral European Utah (CEU) population as background for EA SNPs

and the Yoruban (YRI) population for AA SNPs. Expression quan-

titative trait loci (eQTLs) were then identified as previously

described18 using GTEx v.619 and the Blood eQTL browser data-

base20 and mapped to their associated eQTL expression genes (E-

Genes). In parallel, random E-Gene datasets were generated from

randomly selected SLE Immunochip SNPs using the samemethod-

ology. SNP proxies were then queried by GTEx to generate eQTLs

and matched to ENSEMBL gene IDs. To find SNPs in enhancers

and promoters and their associated transcription factors and

downstream target genes (T-Genes), we queried the atlas of Hu-

man Active Enhancers to interpret Regulatory variants

(HACER)21 and the GeneHancer database.22 To find structural

SNPs in protein-coding genes (C-Genes), we queried the human

Ensembl genome browser (GRCh38.p12) and dbSNP. Several addi-

tional databases were used to generate loss-of-function prediction

scores, including SIFT4G,23,24 PolyPhen-2,25 PROVEAN,26 and

PANTHER.27 All other SNPs were linked to the most proximal

gene (P-Gene) or gene region as previously detailed.18 For overlap

studies, Venn diagrams were computed and visualized using Inter-

actiVenn.28 All predicted genes were divided into an AA, EA, or

shared group depending on the ancestral designation of the orig-

inal SLE-associated SNP.
Statistical Analysis
The single-locus and multi-locus ancestry-specific tests of associa-

tion within each ancestral group have been previously reported.18

Specifically, to test for an association between a SNP and case/con-

trol status separately for the AA and EA ancestries, logistic regres-

sion models were computed adjusting for population substructure

using admixture factors as covariates. The Benjamini-Hochberg

false discovery rate adjusted p values (pFDR) were computed, and

SNPs were considered for subsequent analyses in this manuscript

if they met a pPDR < 0.05 threshold. The two ancestry-specific an-

alyses (i.e., AA and EA) were meta-analyzed using the weighted in-

verse normal (weighted by sample size) method and tested for het-

erogeneity also as previously described (pHET)
18). The following

algorithm was used to classify significant associations in either

ancestral group (pFDR < 0.05) as shared or ancestry specific (i.e.,

primarily driven by the EA or AA ancestry subpopulations). First,

if the pHET > 0.01 then the association was considered common

(shared) across the EA and AA ancestries. If the pHET < 0.01,

then we considered the direction (odds ratio: OR > 1, OR < 1)

and the ancestry-specific p values. If pHET < 0.01 and the OR was

in the same direction with suggestive evidence of association (p

< 0.05; not FDR adjusted), then the association was considered
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shared. If pHET < 0.01 and the OR was in the same or opposite di-

rections without at least suggestive evidence of association in both

populations (p < 0.05), then the association was considered

ancestry specific and driven by the ancestry with the significant as-

sociation (pFDR < 0.05). Finally, if pHET < 0.01 but the associations

were significant and in opposite directions, the association was

considered shared (noting the ancestry-specific direction of the as-

sociations). Graphpad PRISM 8.0 was used to perform mean, 95%

confidence intervals, and unpaired t test with Welch’s correction.

Genomic Functional Categories
The Variant Effect Predictor (VEP) tool available on the Ensembl

genome browser 93 was used for annotation information to

specify SNPs located within non-coding regions, including micro

(mi)RNAs, long non-coding (lnc)RNAs, introns, and intergenic re-

gions. Regulatory regions include transcription factor binding sites

(TFBS), promoters, enhancers, repressors, promoter flanking re-

gions, and open chromatin. Coding regions were broken down

further and include 50 UTRs, 30 UTRs, and synonymous and non-

synonymous (missense and nonsense) mutations. The online

resource tool HaploReg (v.4.1)29 was also used to identify DNA fea-

tures and regulatory elements and to assess regulatory potential.

Differential Expression Analysis of E-Genes
Predicted genes were compared to multiple differential expression

datasets, as summarized in Table S1. These datasets include the

log-fold changes of all geneswith significant (FDR< 0.2) differential

expression in whole blood (WB), peripheral blood mononuclear

cells (PBMC), B cells, T cells, myeloid cells, synovium, skin, kidney

glomerulus (G), and kidney tubulointerstitium (TI). The FDR was

selected a priori to avoid excluding false negatives from the analysis.

Cohorts are SLE versus control (CTL) unless noted otherwise. Addi-

tional cohorts include SLE synovium versus oseteoarthritis (OA)

synovium, discoid lupus erythematosus (DLE) skin versus CTL

skin, and subacute cutaneous lupus erythematosus (CLE) skin

versus CTL skin. Datasets include GEO: GSE88884 (Illuminate 1

and 2), GSE49454, GSE22908, GSE61635, GSE29536, GSE39088,

GSE50772, FDABMC3, EMTAB2713, GSE10325, GSE4588,

GSE38351, GSE36700, GSE52471, GSE72535, GSE81071, and

GSE32591.

Functional Gene Set Analysis and Identification of

Upstream Regulators (UPRs)
For both ancestral groups, predicted gene lists were examined us-

ing Biologically Informed Gene Clustering (BIG-C; v.4.4.). BIG-C

is a custom functional clustering tool developed to annotate the

biological meaning of large lists of genes. Genes are sorted into

54 categories based on their most likely biological function and/

or cellular localization based on information frommultiple online

tools and databases including UniProtKB/Swiss-Prot, gene

ontology (GO) Terms, MGI database, KEGG pathways, NCBI,

PubMed, and the Interactome and has been previously

described.30,31

I-Scope is a custom clustering tool used to identify immune in-

filtrates in large gene datasets and has been described previously.32

Briefly, I-Scope was created through an iterative search of more

than 17,000 genes identified in more than 50 microarray datasets.

These genes were researched for immune cell-specific expression

in 30 hematopoietic sub-categories: T cells, regulatory T cells, acti-

vated T cells, anergic cells, CD4 T cells, CD8 T cells, gamma-delta

T cells, NK/NKT cells, T and B cells, B cells, activated B cells, T
Journal of Human Genetics 107, 864–881, November 5, 2020 865



and B and monocytes, monocytes and B cells, MHC class II ex-

pressing cells, monocyte dendritic cells, dendritic cells, plasmacy-

toid dendritic cells, Langerhans cells, myeloid cells, plasma cells,

erythrocytes, neutrophils, low-density granulocytes, granulocytes,

platelets, and all hematopoietic stem cells.

Enrichment of GO Biological Processes (BP) using the Database

for Annotation, Visualization and Integrated Discovery (DAVID)

and the Ingenuity Pathway Analysis (IPA) platform provided addi-

tional genetic pathway identification. IPA upstream regulator

(UPR) analysis was also used to identify potential transcription fac-

tors, cytokines, chemokines, etc. that can contribute to the

observed gene expression pattern in the input dataset.
Network Analysis and Visualization
Visualization of protein-protein interaction and relationships be-

tween genes within datasets was done using Cytoscape (v.3.6.1)

software. Briefly, STRING (v.1.3.2)-generated networks were im-

ported into Cytoscape (v.3.8.1) and partitioned with MCODE via

the clusterMaker2 (v.1.2.1) plugin. The resulting networks were

further simplified into metastructures defined by the number of

genes in each cluster, the number of significant intra-cluster con-

nections predicted by MCODE, and the strength of associations

connecting members of different clusters to each other.
Gene Set Variation Analysis (GSVA)
The GSVA33 (v.1.25.0) software package for R/Bioconductor and has

been described previously.30,34 Briefly, GSVA is a non-parametric,

unsupervised method for estimating the variation of pre-defined

gene sets in case and control samples of microarray expression data-

sets. The input for theGSVA algorithmwas a gene expressionmatrix

of log2 microarray of expression values and a collection of pre-

defined gene signatures. Enrichment scores (GSVA scores) were

calculated non-parametrically using a Kolmogorov-Smirnoff (KS)-

like random walk statistic and a negative value for each gene set.

EA and AA SNP-predicted genes were used to create GSVA gene sig-

natures (official gene symbols for each signature are listed in Table

S2). In the case of leukotriene biosynthesis, cell cycle, ubiquitylation

and sumoylation, apoptosis signaling, nuclear receptor signaling,

and PKA signaling, genes were initially identified following pro-

tein-protein interaction network construction and MCODE clus-

tering. Cluster identity was determined by BIG-C and/or IPA canon-

ical pathway analysis, where each cluster was used as a GSVA probe.

Gene signatures for diapedesis, TH1 activation pathway, unfolded

protein and stress, T cell exhaustion, and SLE in B cell signaling

were all informed by established IPA canonical pathways. The signa-

ture for lysosome was derived from the Lysosome BIG-C category.

All interferon and cytokine signatures (core IFN, IFNB1, IFNA2,

IFNW, IFNG, IL12, and TNF) have been described previously.30

Metabolic signatures for oxidative phosphorylation and glycolysis

were based on literaturemining and established IPA canonical path-

ways. Enrichment of each signature was examined in EA and AA

SLE subjects and healthy control subject whole blood from GEO:

GSE88884. Differences between control subjects and SLE-affected

subject GSVA enrichment scores were determined using theWelch’s

t test for unequal variances in Graphpad PRISM 8.0.
Drug Candidate Identification and CoLT Scoring
Drug candidates were identified using LINCS, STITCH (v.5.0), and

IPA. Each of these tools includes either a programmatic method of

matching existing therapeutics to their targets or else is a list of

drugs and targets for achieving the same end. In addition to iden-
866 The American Journal of Human Genetics 107, 864–881, Novem
tifying drugs targeting predicted genes directly, these tools were

also used to identify drugs targeting select upstream regulators.

Where information was available, drugs were assessed by CoLT

scoring to rank potential drug candidates for repositioning in

SLE as previously described.35
Results

SLE-Associated Variants Predict Downstream Target

Genes

We examined the distribution (e.g., coding, non-coding) of

834 non-HLA single-nucleotide polymorphisms (SNP) re-

ported as significantly associated with SLE in a large

trans-ancestral genetic association study18 (Figure 1A; Ta-

ble S3). The majority of SNPs were found in intronic

(43.1%) or intergenic (24.4%) regions. Approximately

26% of SLE-associated SNPs mapped to regions encoding

transcripts (7.8% exons, 50 UTRs, 30 UTRs) or known regu-

latory regions (18.8%; TFBS, promoters, enhancers, etc.).

5.7% of SNPs mapped to regions containing long non-cod-

ing (lnc)RNAs or micro (mi)RNAs.

The reported test of SNP-by-ancestry (i.e., heterogeneity)

from the meta-analysis and ancestry-specific effect size al-

lowed determination of whether the SNP was more associ-

ated with only one ancestry (e.g., AA specific) or was a

trans-ancestry association (i.e., comparable effect size

across AA and EA)18 (Table S4). Next, we attempted to iden-

tify the most plausible gene(s) affected by the SLE-SNP as-

sociation (Figure 1B). Using the GTEx and Blood eQTL

browser databases,19,20 we identified 78 EA and 21 AA-

related eQTLs linked to 207 and 29 expression genes (E-

Genes) primarily associated with EA and AA, respectively.

A total of 148 eQTL were common to both ancestries and

were associated with 523 shared E-Genes (Table S5). Inter-

estingly, we observed that E-Genes predicted by a single

SNP tended to be enriched for a common molecular func-

tion (Figure S1; Table S6). The remaining 587 SNPs that

were not associated with eQTLs were assigned to the

closest proximal gene (P-Gene), revealing 520 P-Genes

(465 EA, 34 AA, and 21 shared) (Figures 1C and 1D;

Table S5)

Since variants that alter or disrupt transcription factor

binding are also known to dysregulate gene expression,36

we sought to identify SNPs within regulatory elements

(e.g., enhancers and promoters). Computational tools,

including GeneHancer and HACER that connect putative

regulatory SNPs with transcription factors and downstream

target genes (T-Genes),21,22 were used to identify 64 SNPs

overlapping regulatory elements or promoters predicted to

impact the expression of 627 T-Genes (475 EA, 9 AA, and

143 shared) and the action of 95 transcription factors (Ta-

bles S5 and S7). For variants located in coding regions, 23

SNPs (14 EA, 2 AA, 7 shared) were associated with either

non-synonymous or nonsense changes, affecting 22 genes

(C-Genes; 14 EA, 2 AA, and 6 shared) (Table S8).

Figure 1C depicts the overlap between SNPs based on

discovery method, whereas Figure 1D shows the overlap
ber 5, 2020



Figure 1. Mapping the Functional Genes Predicted by SLE-Associated SNPs
(A) Distribution of genomic functional categories for all ancestry-specific non-HLA-associated SLE SNPs (tiers 1–3). Non-coding regions
include micro (mi)RNAs, long non-coding (lnc)RNAs, introns, and intergenic regions. Regulatory regions include transcription factor
binding sites (TFBS), promoters, enhancers, repressors, promoter flanking regions, and open chromatin. Coding regions were broken
down further and include 50 UTRs, 30 UTRs, and synonymous and nonsynonymous (missense and nonsense) mutations.
(B) Functional genes predicted by SNPs are derived from four sources including regulatory elements (T-Genes), eQTL analysis (E-Genes),
coding regions (C-Genes), and proximal gene-SNP annotation (P-Genes).
(C and D) Venn diagram depicting the overlap of all SLE-associated SNPs (C) and all predicted E-, T-, P-, and C- Genes (D).
between the corresponding SNP-predicted E-, T-, C-,

and P-Genes. No genes were shared within all four

groups, and we observed limited commonality between

T-, P-, and E-Genes, with only 21 genes shared among

the three groups. Despite the overall diversity of genes

observed in each list, significant overlap was observed

in the number of genes shared between ancestries

(Figure S2, Table S5).
The American
Characterization of Gene Signatures

We next carried out a series of bioinformatics analyses to

determine the biological function of the full array of EA

(1,676) and AA (725) SNP-predicted genes (Figure S2). P-

Genes were analyzed separately from E-T-C-Genes to avoid

overrepresentation of immune-based processes because of

the Immunochip design bias.37 Both the EA and AA gene

sets exhibited similarity in biological function reflected
Journal of Human Genetics 107, 864–881, November 5, 2020 867



in the number of matching functional pathways (immune

signaling), IPA canonical pathways (TH1 pathway, IFN

signaling pathway, glucocorticoid receptor signaling, etc.),

and GO terms (epidermis development [GO: 0008544], im-

mune response [GO: 0006955]), but also a number of clear

differences. In addition, EA and AA gene sets were exam-

ined using a clustering program (I-Scope, see Material

and Methods) that detects immune and inflammatory

cell type signatures within large gene lists to identify domi-

nant immune cell populations contributing to disease pa-

thology within each ancestry.32 Both AA and EA exhibited

enrichment of B cell genes, with AA exhibiting a signifi-

cantly greater B cell signal. As a control, genes derived

from non-associated Immunochip SNPs (‘‘random’’) were

examined and found to be modestly enriched in some

biosynthesis and metabolic pathways but did not overlap

with any EA or AA pathways, nor did they exhibit enrich-

ment in cellular categories.

Parallel analyses were also conducted examining associ-

ations that were more strongly linked to one ancestry over

the other (because of higher allelic frequency), indepen-

dent of the shared gene cohort. Analysis of representative

EA genes revealed enrichment in processes related to

innate immune function, including the functional cate-

gory for pattern recognition receptors, GO terms for the

cellular response to LPS (GO:007122), canonical pathways

for JAK/STAT signaling and agranulocyte adherence and diape-

desis, and cellular categories for myeloid cells and T and B

cells (Figures 2A–2D and S3). AA-associated genes were

differentially enriched in the adaptive immune response

reflected by the cellular categories for anergic or activated

T cells and GO terms for B cell activation (GO:0042113)

and T cell co-stimulation (GO: 0031295), with additional

enrichment in biological processes for degradation,

including the functional category lysosome, and IPA path-

ways for autophagy and phagosome maturation (Figures 2A–

2D and S3). To establish that ancestry-driven differences

were not related to inequality in the number of SNPs

used to predict genes for analysis (604 EA SNPs versus 77

AA SNPs), we directly compared all genes associated with

AA SNPs to those predicted by the 77 most significant EA

SNPs to generate an approximately equal cohort of genes.

Overall, limited overlap was observed in the number of

genes (3 total; c7orf72, FIGNL1, and IKZF1) and enriched

pathways shared between ancestries (Figure S4).

Protein Interaction-Based Clustering of SNP-Associated

Genes

We next sought to assess the relationship between all SNP-

associated genes regardless of ancestral origin to obtain in-

formation about the likely nature of the molecular path-

ways driving SLE. Overall, 52.7% of E-T-C-Genes (701/

1,330) and 53.2% of P-Genes (272/520) were incorporated

into protein-protein interaction (PPI) networks with the

majority of E-T-C-Genes coalescing into several large,

multi-functional clusters. The integration of all EA and

AA genes into the same network highlights the overall
868 The American Journal of Human Genetics 107, 864–881, Novem
commonality in gene function and connectivity observed

among the ancestries, including cluster 7 enriched in mol-

ecules associated with immune signaling and Golgi func-

tion, cluster 15 dominated by metabolic processes, and

cluster 3 containing a robust interferon signature (Figures

3A and S5). Networks constructed of all P-Genes revealed

the predominance of immune function with seven out of

ten of the largest, intra-connected clusters enriched in im-

mune activity (Figure 3B).

To confirm that the predicted molecular pathways

derived from SNP-predicted genes were specific for SLE

and not related by chance, we carried out a parallel analysis

examining PPI networks composed of genes derived from

non-associated (random) Immunochip SNPs (Figure 3C;

Table S9). Examination of meta-structures reveals that

random gene networks incorporated fewer genes overall

(258/1,033; 24.9%) and exhibited significantly fewer in-

ter-cluster connections and fewer intra-cluster connec-

tions, appearing as independent entities lacking robust

functional relationships with neighboring clusters

(Figure 3D).

Predicted Functional Genes Are Associated with Altered

Expression in SLE and Are Enriched in Differential

Expression Datasets

To determine whether genes more frequently linked to spe-

cific ancestries exhibited altered expression in SLE,

ancestry-driven SNP-predicted genes were matched to

differentially expressed gene (DEGs) in independent SLE

datasets from various tissues, including whole blood,

PBMCs, B cells, T cells, synovium, skin, and kidney (Table

S10). We observed that 63% of EA and 70% of AA SNP-pre-

dicted genes were identified as DEGs across all datasets

(Figures 4A and 4B; Tables S10 and S11). Of the 661 genes

shared between ancestries, 441 genes (66.7%) were identi-

fied as DEGs, with the interferon-stimulated genes

(HERC5, IFI35, IFI44L, IFI6, IFIT1, MX1, and SPATSL2L),

interferon-regulatory factors (IRF4, IRF5, and IRF7), and

PRRs (OAS1, OAS2, OAS3, and SLC15A4) differentially ex-

pressed across all datasets (Figure 4C; Table S12).

Relationship of SNP-Predicted Genes and Upstream

Regulators of Gene Expression Profiles

Using IPA, DEGs were used to identify potential biologic

upstream regulators (UPRs) with the goal of determining

whether UPRs of the altered gene expression profile in

SLE were SNP-predicted genes. Overall, 141 UPRs predicted

from the altered SLE gene expression profiles were also

SNP-associated genes, including surface receptors,

signaling molecules, cytokines, and transcription factors,

many with known roles in SLE such as IRF7, ITGAM,

IFNG, IKZF1, and CD40 (Table S13). In addition, 41 UPRs

were transcription factors predicted to interact with tran-

scription factor binding sites altered by an SLE-associated

SNP, including MYC, EZH2, NFATC1, STAT3, STAT5a, Fos,

JunB, and RelA. Thus, of the 1,238 UPRs predicted to drive

SLE gene expression, 181 were SNP-predicted genes.
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Figure 2. Functional Characterization of Predicted Genes
(A) Ancestry-dependent and -independent SNP-predicted genes were analyzed to determine enrichment using functional definitions
from the BIG-C (Biologically Informed Gene Clustering) annotation library. E-, T-, and C-Genes were analyzed together; P-Genes
were examined separately. Enrichment was defined as any category with an odds ratio (OR) > 1 and –log10(p value) > 1.33.
(B and C) Heatmap visualization of the top five significant IPA canonical pathways and gene ontogeny (GO) terms for each gene list (E-T-
C-Genes and P-Genes) organized by ancestry. Top pathways with –log10(p value) > 1.33 are listed.
(D) I-Scope hematopoietic cell enrichment defined as any category with an OR > 1, indicated by the dotted line, and –log10(p value) >
1.33.
Delineation of Signaling Pathways Identified by

Ancestry Specific SNP-Associated Genes and UPRs

Connectivitymapping of SNP-associated genes and all UPRs

predicted from SLE gene expression profiles were used as

input to build more complete PPI networks, and individual

gene clusters were analyzed by BIG-C and IPA to identify

those molecules and pathways highly associated with dis-

ease. A total of 45 pathways were representative of EA genes
The American
and UPRs, with the largest clusters (1 and 3) heavily

involved in pattern recognition receptor signaling (Figures

5A and 5B; Table S14). Clusters 4 and 5 revealed enrichment

in lymphocyte activation and differentiation pathways that

were also common to both the AA and shared gene net-

works. Twenty pathways were detected only in EA,

including several involved in cellular communication, cyto-

kine signaling, and migration. The AA network was smaller
Journal of Human Genetics 107, 864–881, November 5, 2020 869



Figure 3. Cluster Metastructures for SLE-Predicted and Randomly Generated Genes
(A–C) Cluster metastructures were generated based on PPI networks, clustered usingMCODE, and visualized in CytoScape. Size indicates
the number of genes per cluster, edge weight indicates the number of inter-cluster connections, and color indicates the number of intra-
cluster connections. Cluster number is indicatedwithin eachmetacluster. A random gene network (1,033 genes) was clustered along-side
networks for E-T-C-Genes and P-Genes. Functional enrichment for each cluster was determined using BIG-C.
(D) Quantitation of cluster size, intra-cluster connections, inter-cluster connections, and the percent of genes incorporated into each
network is displayed. Error bars represent the 95% confidence interval; asterisks (*) indicate a p value < 0.05 using Welch’s t test.
(Figure 6; Table S14), with fewer SNP-predicted genes and

associated UPRs, yet contained genes critical for T cell re-

sponses such as PRDM1 and IKZF1. Pathways differentially

associated with AA were overwhelmingly represented by

processes related to degradation and cellular stress, found

in clusters 5, 3, and 11, as well as metabolic processes in

cluster 6 (Figure 6B). In general, we observed good agree-

ment between enrichment tools, with BIG-C functional cat-

egories similar or complementary to the listed canonical

pathways. Discrepancies were usually the result of the wider

range of pathways described by IPA utilizing a subset of
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genes captured by BIG-C. This was apparent in cluster 2 of

the EA network (Figure 5B), where top-ranked pathways

for Glucocorticoid signaling and Hepatic fibrosis include

numerous genes related to the immune-secreted and im-

mune cell surface BIG-C categories (i.e., CXCL8, CCL5,

IL6, etc.). This was also the case for cluster 11 in the AA

network (Figure 6B) where functional enrichment in auto-

phagy is driven by GABARAP, a multifunctional ATG-8 sub-

familymember involved in both autophagosome formation

as well as functioning upstream of OPRK1 (Opioid Receptor

Kappa 1) within the Opioid signaling pathway.
ber 5, 2020



Figure 4. Comparison of EA, AA, and Shared SNP-Predicted Genes with SLE Differential Expression Datasets
SNP-predicted genes were matched with SLE differential expression (DE) data and organized by ancestry. The fold-change variation of
EA, AA, and shared genes is shown. Heatmaps are organized by BIG-C category. Enriched categories indicated with an asterisk. Enrich-
ment was defined as any category with an OR > 1 and –log10(p value) > 1.33.
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Figure 5. Key Pathways Determined by EA Genes and Upstream Regulators
(A) Differentially expressed EA genes and their upstream regulators (UPRs) were used to create STRING-based PPI networks. DE EA genes
identified as UPRs and SNP-predicted TFs are indicated. Clusters were generated via CytoScape using the MCODE plugin.

(legend continued on next page)
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Pathways that were enriched in both EA and AA

(shared) included IL12 signaling and production by macro-

phages, TLR signaling, and activation of IRFs by cytosolic

PRRs, as well as PRRs in the recognition of bacteria and virus

(Figure 7). Figure 8A depicts both the unique and over-

lapping canonical pathways predicted by the EA and

AA gene sets, whereas Figure 8B shows the broad overall

pathway categories shared between EA and AA and those

that are differentially enriched within each ancestral

group.

To support our pathway predictions, Gene Set Varia-

tion Analysis (GSVA)33 was applied to identify differen-

tially enriched gene signatures in whole blood (WB) sam-

ples from SLE-affected subjects (EA and AA) and control

subjects (Table S15). SNP-associated genes were used to

create a collection of signatures informed by protein-pro-

tein interaction networks and IPA canonical pathways,

or were previously defined as SLE associated (Table

S2).30 As shown in Figure 8C (and Figure S6), enrichment

of a number of pathways in both EA and AA SLE was

noted, including TH1 activation pathway, cell cycle,

and lysosome, as well as cytokine-based signatures for

core interferon (IFN), IFNG, IL12, and the IFN subtypes

IFNA2, IFNB1, and IFNW. GSVA enrichment scores using

signatures for leukotriene biosynthesis and diapedesis

were able to separate EA SLE-affected individuals, but

not AA subjects, from healthy control subjects

(Figure 8D), whereas signatures for unfolded protein

response, T cell exhaustion, and B cell signaling were spe-

cifically enriched in AA SLE (Figure 8E). A number of

pathways including ubiquitylation and sumoylation,

apoptosis signaling, nuclear receptor signaling, and

TNF separated SLE-affected individuals from control sub-

jects with additional enrichment observed in AA (versus

EA) SLE (Figure 8F).

Gene signatures for metabolic pathways, including

mitochondrial oxidative phosphorylation and glycolysis,

were also investigated but did not demonstrate any sig-

nificant change between SLE-affected individuals and

control subjects or between ancestries, although there

was a trend toward enrichment in SLE-affected individ-

uals (Figure S6). It is possible that the relatively few con-

trol samples available in this dataset may have masked

subtle differences between disease and control. In

contrast, GSVA scores for the PKA signaling gene signa-

ture were significantly lower in SLE-affected individuals

compared to control subjects.

Pathway Analysis Facilitates Drug Prediction

Identified pathways were employed to facilitate identifica-

tion of possible new therapeutic interventions and

numerous drug candidates were predicted. Canonical
(B) Top IPA canonical pathways representing individual clusters and
map depicts the –log(p value) for significant IPA pathways. Unique
drugs acting on direct gene targets or on any of the pathways are
approved drugs,^denotes drugs in development. SOC, standard of ca

The American
pathways related to T cell function are shared among an-

cestries, as are many predicted drugs targeting T cell activ-

ity including abatacept, theralizumab, and AMG-811

(Figure 8B). Broader analysis of common pathway cate-

gories also suggested the utility of targeting Tcell signaling,

as well as cytokine pathways such as IL12/23 signaling

with ustekinumab and/or interferon signaling with anifro-

limab (Figure 8B). Drugs targeting pathways associated

with EA include BMS-986165, a small molecular inhibitor

of TYK2 (Figure 5B). Therapeutic candidates targeting

pathways representative of AA include the proteasome in-

hibitor bortezomib, as well as PF-06650833, an IRAK4-spe-

cific inhibitor (Figure 6B). Unique pathway categories iden-

tified for EA and AA suggest additional ancestry-driven

interventions, such as the small molecule inhibitor of

sphingosine-1-phosphate receptor 1 (S1PR1) siponimod

for EA (prevents leukocyte egress) and the HDAC inhibitor

vorinostat for AA SLE (Figure 8B).
Discussion

SLE is a chronic autoimmune disease with a strong genetic

component.38 Although socioeconomic disparities are

also known to impact disease development,39,40 genetic

heterogeneity between ancestral populations is widely

acknowledged to be important in SLE risk, since affected

individuals of African descent have a higher prevalence

of lupus and experience the disease more severely than

those of European ancestry.7,8 Despite improved under-

standing of how inherited genetic variation impacts dis-

ease risk, genetic analyses to date have failed to provide

a clear path toward novel therapeutic development.

This is of particular concern with respect to AA popula-

tions where the control of disease activity remains subop-

timal.10–12 Furthermore, most GWASs only consider the

most significant variants (lead SNP, marker with the

lowest p value), typically following-up on those that are

novel.2 Here, we propose a novel strategy employing inte-

gration of all SLE SNP association-predicted genes into

functional pathways to identify the genetic contributions

to SLE disease pathogenesis and possible differences

contributed by ancestry. To accomplish this, we em-

ployed statistical and computational analyses along

with data acquired from functional genomic assays and

differential gene expression studies to map the global

gene expression landscape of SLE and further define the

disease-associated pathways responsible for the inherent

disparities influencing SLE progression.

It is important to reiterate that the SNPs examined here

are generally present in both ancestral populations and are

associated with a significant cohort of common genes.
enriched (OR > 1, p value < 0.05) BIG-C categories are listed; heat-
pathways are indicated by asterisks. Predicted EA genes and select
listed. CoLT scores (�16-þ11) are in superscript; # denotes FDA-
re.
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Figure 6. Key Pathways Determined by AA Genes and Upstream Regulators
(A) Differentially expressed AA genes and their upstream regulators (UPRs) were used to create STRING-based PPI networks. DE AA genes
identified as UPRs are indicated. Clusters were generated via CytoScape using the MCODE plugin.

(legend continued on next page)

874 The American Journal of Human Genetics 107, 864–881, November 5, 2020



However, differences in allele frequencies suggest that

some SNP associations and pathways may be more repre-

sentative of one ancestry over another. Here, eQTL analysis

identified 247 tagging SNPs associated with 759 E-Genes

(77 EA, 21 AA, 523 shared). Given that the majority of

eQTLs identified here map to multiple E-Genes (many

within the same functional network), eQTL-based gene

prediction may be particularly valuable for network

modeling and disease analysis. Recent studies have also

shown that disease-susceptibility variants frequently lie

in regulatory enhancer elements.41 However, only 20%

(157) of SNPs analyzed here were located in known regula-

tory regions.While othermethodologies, such as promoter

capture Hi-C, link regulatory SNPs to putative target

genes,42 we were particularly interested in predicting the

effect of variants in non-coding regions, especially since

themajority of SNPs examined here were intergenic. Using

computational gene prediction algorithms that incorpo-

rate chromatin interaction data and intergenic enhancer

annotation from several hundred cell lines,21 additional

regulatory SNPs were identified that were predicted to

change transcription factor binding and were associated

with 627 downstream targets (T-Genes; 472 EA, 9 AA,

143 shared). Although some regulatory SNPs also exhibit

eQTL effects, we nonetheless uncovered 496 unique T-

Genes enriched in a diverse array of functional categories.

Finally, we identified 23 variants resulting in nonsense or

non-synonymous amino acid changes affecting 22 genes

(C-Genes), 12 of which were predicted to negatively

impact protein function. The remaining 587 risk SNPs

were mapped to the nearest, most proximal gene, resulting

in 520 P-Genes (465 EA, 34 AA, 21 shared).

One major limitation to the current study is that all

computational and experimental approaches outlined

here are inferential; by attempting to provide a more

comprehensive translation of GWAS findings, a major chal-

lenge remains in determining those genes that are causa-

tive. To address this, PPI networks and clustering based on

interaction strength helped exclude those genes lacking

strong connections to molecules within or between simi-

larly functioning clusters. Compared to SNP-predicted E-,

T-, C-, and P-Genes where we observed large, highly con-

nected clusters, randomly generated genes generally formed

smaller clusters, exhibited fewer intra- and inter-cluster con-

nections, and ultimately appeared as independent entities.

In addition, SNP-predicted genes were compared to SLE da-

tasets (SLE versus control) to determine those genes that

were differentially expressed in active disease. This was

important to amplify the GTEx predictions that were based

on data from a collection of cell lines and not primary SLE

cells.19 We observed a high percentage of SNP-predicted

genes differentially expressed across all datasets, although
(B) Top IPA canonical pathways representing individual clusters and
map depicts the –log(p value) for significant IPA pathways. Unique p
drugs acting on direct gene targets or on any of the pathways are li
approved drugs;^denotes drugs in development. SOC, standard of ca

The American
expression was not always in the same direction (i.e., all up-

regulated or all downregulated). In EA, for example, func-

tionally enriched categories included immune signaling

and immune cell surfacewhereas DE genes falling into these

categories were more upregulated in the tissues (synovium,

skin, and kidney) and predominantly downregulated in the

periphery (WB, PBMC, T cells, B cells, and myeloid cells).

This could reflect a cellular response to different inflamma-

tory stimuli, such as the enhanced recruitment of myeloid

cells to tissue in response to immune complex deposition.

All DE genes were then used as input into IPA to generate

upstream and downstream regulators and combined for

further network and clustering analysis. This allowed us to

identify biologically relevant pathways unique to each

ancestry, a strategy that revealed essential differences be-

tween EA and AA SLE, as well as many pathways that

were shared.

A second caveat to the current study is the use of the Im-

munochip which was constructed to cover multiple major

autoimmune diseases and enable the identification of top-

ranked SNPs associated with disease.37 This platform was

designed for use in EA populations and is therefore less

informative for other ancestral groups, especially in non-

HLA-associated regions. Furthermore, as chip coverage

was confined to autoimmune and inflammatory diseases,

SNPs affecting non-immune-related processes could be un-

der-represented.

Despite these drawbacks, the pathway-based analysis of

predicted genes and their upstream regulators presented

here helps clarify the complex polygenic risk associated

with SLE in multiple ancestries. We observed key dysregu-

lated EA pathways centered around innate immune func-

tion and the response to inflammation, including cell

movement, cytokine signaling, and cell-cell communica-

tion. Remarkably, GSVA gene signatures for leukotriene

biosynthesis and diapedesis were sufficiently selective to

separate EA SLE-affected individuals from control subjects,

providing additional evidence for these pathways in SLE

pathogenesis. Furthermore, SNP-predicted EA genes were

enriched in myeloid and NK cell signatures, along with T

and B cell signatures, findings that are consistent with pre-

vious reports showing increased myeloid lineage cell mod-

ules in EA subjects.43,44

Pathways identified by AA-associated SNPs included

those linked to protein degradation, such as the sumoyla-

tion pathway, ubiquitylation signaling, the ER stress

pathway, unfolded protein response, osteoarthritis

pathway (cell stress), and the neuroprotective role of

THOP1 in Alzheimer disease, a pathway involved in the

presentation of antigen generated by the proteasome. To

ensure that the differences in ancestrally related genes

were not related to imbalances in the number of SNPs
enriched (OR > 1, p value < 0.05) BIG-C categories are listed; heat-
athways are indicated by asterisks. Predicted AA genes and select

sted. CoLT scores (�16 to þ11) are in superscript; # denotes FDA-
re.
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Figure 7. Key Pathways Determined by Shared Genes and Upstream Regulators
(A) Differentially expressed shared genes and their upstream regulators (UPRs) were used to create STRING-based PPI networks. DE
shared genes identified as UPRs and SNP-predicted TFs are indicated. Clusters were generated via CytoScape using the MCODE plugin.

(legend continued on next page)
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assessed, we separately looked only at the most highly

associated genes in AA and EA populations and still were

able to detect ancestry-related pathway differences. The

importance of these pathways was confirmed by GSVA

which demonstrated the unique enrichment of cellular

stress mechanisms and B cell signaling in AA SLE-affected

indviduals. These observations are in line with reports

showing increased B cell activation and plasma cells in

AA case subjects.43–45 In fact, a recent comprehensive anal-

ysis of gene expression profiling in whole blood44 showed

that a major AA ancestral difference is related to the pro-

pensity to form autoantibodies to RNP and Sm and to

have more types of autoantibodies in general. With these

results together with the data presented in the current

study demonstrating an underlying genetic predisposition

toward B cell-driven disease, dysregulated B cell responses

in AA case subjects likely contribute to the overall higher

prevalence of tissue damage in this ancestral population.

The increase in B cell-driven responses in AA subjects man-

ifested by an increase in circulating B lineage cells was

determined by the use of I-Scope, a validated analytic

tool that converts gene expression profiles from bulk

mRNA into the most likely cellular constituents.44 Finally,

it is increasingly recognized that ER stress and the UPR

signaling pathway in dysregulated immune responses is

closely tied to aberrant B cell activity in SLE.46,47

Gene signatures representing cellular processes shared

between ancestries provide further validation for our

comprehensive pathway analysis. GSVA enrichment scores

for the interferon response (IFN core, IFNA2, IFNB1,

IFNW1, and IFNG) and inflammatory cytokines (IL-12

and TNF) exhibited the greatest difference between SLE

and control, independent of ancestry. In line with this,

work by Catalina et al.30 showed that multiple IFN signa-

tures are operative in an array of SLE subject samples

from whole blood and tissues. Despite the report that

metabolic abnormalities, including heightened glycolysis

and mitochondrial glucose oxidation,48 are associated

with SLE, metabolic gene signatures for OXPHOS and

glycolysis did not distinguish SLE-affected individuals

from control subjects. However, examination of protein ki-

nase A (PKA) signaling, a pathway that participates in the

regulation of immune effector functions in T cells,49

demonstrated significantly lower GSVA scores for the

PKA signaling signature in both EA and AA SLE-affected in-

dividuals compared to control subjects. Consistent with

these findings, previous reports have shown that T cells

from SLE-affected individuals have a metabolic disorder

of the PKA pathway characterized by markedly diminished

PKA activity and dysfunctional T cell activity.50,51

By focusing on pathways instead of individual genes, the

current approach identified ‘‘actionable’’ points of thera-
(B) Top IPA canonical pathways representing individual clusters and
map depicts the –log(p value) for significant IPA pathways. Unique pa
drugs acting on direct gene targets or on any of the pathways are li
approved drugs;^denotes drugs in development. SOC, standard of ca

The American
peutic intervention with the potential to impact EA and

AA SLE specifically. Thus, EA subjects may derive particular

benefit from treatments that prevent leukocyte or lympho-

cyte infiltration into tissues, highlighting drugs that

modulate this process. For example, sphingosine-1 phos-

phate receptor (S1PR) is a pleiotropic lipid mediator

involved in the regulation of many cellular functions,

including proliferation, survival, and cell motility.52,53 Si-

ponimod, an FDA-approved treatment for multiple scle-

rosis, promotes the internalization of S1PR expressed on

lymphocytes preventing cell migration to sites of inflam-

mation.54–56 Given its high combined lupus treatment

score (CoLTS),34,35,57 siponimod represents a high-priority

small-molecule drug with potential for repurposing in SLE.

Similarly, given the enrichment of pathways linked to

proteasomal and degradative processes in AA, therapeutic

intervention may include proteasome inhibitors, such as

bortezomib (BZ), an FDA-approved drug formantle cell lym-

phoma and multiple myeloma,58 as well as B cell-targeting

therapies. Despite reports of adverse events, BZ was claimed

to have efficacy in treating refractory SLE in a small, uncon-

trolled clinical trial and was shown to deplete bone marrow

and peripheral plasma cells.59 In addition, AA SLE-affected

individuals showed a better response to rituximab (RTX),

an anti-CD20 inhibitor,60 and a trend toward better

response in AA subjects with lupus nephritis.61 However,

the anti-BAFF inhibitor belimumab (BEL) failed to demon-

strate a positive effect among AA subjects. The reasons for

this discrepancy are unclear but may be related to the fact

that anti-CD20 therapies like RTX induce a broad and

deep B cell depletion, whereas BEL has a significantly

more restricted and/or attenuated B cell effect.62,63 Together,

these data indicate the possibility that BZ (and/or more se-

lective immunoproteasome inhibitors), and therapies

broadly targeting B cell may hold promise for AA subjects

who respond poorly to conventional therapies.

In conclusion, our study demonstrates that multilevel

analysis is capable of defining gene regulatory pathways

which not only reflect differences in EA and AA popula-

tions but also represents candidate pathways that may be

the target of ancestry-specific therapies. Indeed, the ances-

tral SNP-associated predicted genes and gene expression

profiles outlined here illustrate fundamental differences

in lupus molecular pathways between ancestries and indi-

cate that unique sets of drugs may be particularly effective

at treating lupus within each ancestral group.
Data and Code Availability

Allmicroarray datasets listed in this publication are available

on the NCBI’s database Gene Expression Omnibus (GEO).
enriched (OR > 1, p value < 0.05) BIG-C categories are listed; heat-
thways are indicated by asterisks. Predicted shared genes and select
sted. CoLT scores (�16 to þ11) are in superscript; # denotes FDA-
re.
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Figure 8. Overlapping Pathways and Categories Defining the EA and AA Predicted Gene Sets
(A) Venn diagram showing the number of overlapping pathways between EA and AA predicted genes and their UPRs. Representative IPA
canonical pathways are indicated.
(B) Overall pathway categories are defined; shared categories are between the arrows, EA-specific (left) and AA-specific categories (right)
are indicated. Select drugs at points of intervention are noted. Superscript denotes CoLT score.

(legend continued on next page)
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CytoScape, https://cytoscape.org

DAVID, https://david.ncifcrf.gov/

dbSNP, https://www.ncbi.nlm.nih.gov/snp/

Ensembl, http://www.ensembl.org

GeneHancer, https://genome.ucsc.edu/cgi-bin/hgTrackUi?db¼
hg19&g¼geneHancer

GeneCards, https://www.genecards.org

Genotype-Tissue Expression (GTEx) project portal, http://www.

gtexportal.org

Gene Expression Omnibus (GEO), https://www.ncbi.nlm.nih.

gov/geo/

Human Active Enhancer to Interpret Regulatory variants

(HACER), http://bioinfo.vanderbilt.edu/AE/HACER

HaploReg, https://pubs.broadinstitute.org/mammals/haploreg/

haploreg.php

InteractiVenn, http://www.interactivenn.net

Ingenuity Pathway Analysis (IPA), https://www.

qiagenbioinformatics.com

John and Marcia Goldman Foundation, jmgoldmanfoundation.

org

Library of Integrated Network-based Cellular Signatures (LINCS),

http://www.lincsproject.org/

Lupus Research Alliance, lupusresearch.org

OMIM, https://www.omim.org/

Protein Analysis Through Evolutionary Relationships (PANTHER),

http://www.pantherdb.org

Polymorphisms Phenotyping v2 (PolyPhen-2), genetics.bwh.

harvard.edu

PROVEAN, http://provean.jcvi.org
(C–F) GSVA enrichment scores were calculated for ancestry-specific a
GSVA signature scores (C) separating SLE-affected individuals (EA and
SLE-affected individuals from AA subjects and/or healthy control sub
uals from EA subjects or control subjects, and signature scores (F) sep
and that are additionally elevated in AA subjects compared to EA subj
cate a p value < 0.05 using Welch’s t test comparing SLE to control;^i

The American
rAggr (site no longer live; please use SNiPA instead), http://raggr.

usc.edu

SNiPA, https://snipa.helmholtz-muenchen.de/snipa3/index.php?

task¼proxy_search

Sorting Intolerant From Tolerant (SIFT-4G), http://sift-dna.org/

sift4g

STITCH, http://stitch.embl.de

Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING), https://string-db.org

Variant Effect Predictor (VEP), http://www.ensembl.org
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Figure S1. SNPs impact multiple E-Genes within a functional protein-protein interaction-
based molecular network. Protein-protein interaction networks consisting of E-Genes were 
generated using STRING, clustered using MCODE and visualized using Cytoscape. Grouped E-
Genes linked to a SNP are indicated with boxing. SNPs linked to groups of genes in multiple 
clusters are indicated with an asterisk. Functional BIG-C category annotation is provided for 
select clusters.  

 



 

Figure S2. Overlap and functional characterization of all EA and AA-associated genes. 
(A) Venn diagram showing the overlap between the full cohort of EA (EA + shared; 1676) and 
AA genes (AA + shared; 725). (B-D) EA, AA and a cohort of random (499 genes) SNP-
predicted genes were analyzed to determine enrichment using functional definitions from the 
BIG-C annotation library, IPA canonical pathways and GO terms. E-T- and C-Genes were 
analyzed together; P-Genes were examined separately. Enrichment was defined as any 
category with an odds ratio (OR) >1 and –log10(p-value) >1.33. (E) I-Scope hematopoietic cell 
enrichment defined as any category with an OR >1, indicated by the dotted line, and –log10(p-
value) >1.33. 



 
 
Figure S3. Functional characterization of predicted genes by discovery method.  (A) 
Ancestry-dependent and independent E-, T- and C-Genes were independently analyzed by 
discovery method (source) to determine enrichment using functional definitions from the BIG-C 
annotation library. Enrichment was defined as any category with an odds ratio (OR) >1 and –
log10(p-value) >1.33. (B-F) Heatmap visualization of the top five significant IPA canonical 
pathways (B-D) and the top five significant gene ontogeny (GO) terms (D-F) for E- and T-Genes 
organized by ancestry. Due to the smaller number of C-Genes, this gene set was analyzed 
together. Top pathways with –log10(p-value) >1.33 are listed. 



 
 

 
 

 
 
 
 
Figure S4. Overlap and functional characterization of 101 EA and 71 AA SNP-predicted 
genes. (A) 77 of the most significantly associated SLE-EA SNPs were used to predict 101 EA 
(E-T-C-P) genes. These genes were directly compared to the 71 genes predicted by 77 AA SLE 
SNPs. Venn diagram depicts the overlap between the gene sets. (B-D) Heatmap visualization of 
EA and AA functional categories, the top five significant IPA canonical pathways and GO terms 
for each gene list. Top pathways with –log10(p-value) >1.33 are listed.   
 
 
 
 
 
 
 
 
 
 



 
 
 
Figure S5. Protein-protein interaction-based clustering of predicted and random genes. 
PPIs and clusters were generated via CytoScape using the STRING and MCODE plugins. 
Clusters are determined by the strength of protein-protein interactions, calculated by pooling 
information from publicly available literature. (A-C) Numbered clusters composed of individual 
predicted genes; ancestry indicated by node color in legend. 
 
 
 



 
 
 

Figure S6. GSVA enrichment scores for interferon and metabolic pathways. GSVA 
signature scores distinguishing SLE patients from healthy controls using gene modules defining 
IFNA2, IFNB1, IFNW1, oxidative phosphorylation, glycolysis and PKA signaling. Asterisks (*) 
indicate a p-value <0.05 using Welch’s t-test comparing SLE to control. 
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