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Summary
Previous research has shown that polygenic risk scores (PRSs) can be used to stratify women according to their risk of developing primary

invasive breast cancer. This study aimed to evaluate the association between a recently validated PRS of 313 germline variants (PRS313)

and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry diagnosed with first invasive breast cancer

from 1990 onward with follow-up from the Breast Cancer Association Consortium.Metachronous CBC risk (N¼ 1,027) according to the

distribution of PRS313 was quantified using Cox regression analyses. We assessed PRS313 interaction with age at first diagnosis, family

history, morphology, ER status, PR status, and HER2 status, and (neo)adjuvant therapy. In studies of Asian women, with limited

follow-up, CBC risk associated with PRS313 was assessed using logistic regression for 340 women with CBC compared with 12,133

women with unilateral breast cancer. Higher PRS313 was associated with increased CBC risk: hazard ratio per standard deviation (SD)

¼ 1.25 (95%CI ¼ 1.18–1.33) for Europeans, and an OR per SD ¼ 1.15 (95%CI ¼ 1.02–1.29) for Asians. The absolute lifetime risks of

CBC, accounting for death as competing risk, were 12.4% for European women at the 10th percentile and 20.5% at the 90th percentile

of PRS313. We found no evidence of confounding by or interaction with individual characteristics, characteristics of the primary tumor,

or treatment. The C-index for the PRS313 alone was 0.563 (95%CI ¼ 0.547–0.586). In conclusion, PRS313 is an independent factor asso-

ciated with CBC risk and can be incorporated into CBC risk prediction models to help improve stratification and optimize surveillance

and treatment strategies.
Introduction

Due to the high incidence of breast cancer and improving

survival, an increasing number of breast cancer survivors

are at risk of developing contralateral breast cancer
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(CBC). The 10-year cumulative incidence of CBC is

�4%,1,2 but estimates vary widely depending on factors

such as germline genetics, family history, and (neo)adju-

vant systemic therapy for the first breast cancer.3 The risk

of developing CBC is particularly high in women with
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rare mutations in certain genes including BRCA1, BRCA2,

and CHEK2, with approximately 2- to 4-fold higher risks

reported compared with women without these muta-

tions.3

Recently, genome-wide association studies (GWASs)

have identified multiple common germline variants that
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are associated with small differences in risk individually,

but their combined effects can be summarized in a poly-
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Association Consortium (BCAC), we previously developed

and validated a 313-variant PRS (PRS313) among women of

European descent. In independent prospective studies, this

PRS313 predicted the risk of primary invasive breast cancer

with an odds ratio (OR) per standard deviation (SD) of 1.61

(95% confidence interval (95%CI) ¼ 1.57–1.65).7 The

PRS313 has also been externally validated using the UK Bio-

bank cohort.

The aim of the current study was to evaluate the associ-

ation between PRS313 and CBC risk, using data from BCAC.

Other studies have shown associations between risk of

CBC and both a 67-variant PRS10 and individual vari-

ants,11 but not yet with PRS313, the most extensively vali-

dated PRS. Further, the dataset currently evaluated is larger

than those previously tested. We carried out two types of

analyses. We conducted a cohort study among studies of

European ancestry women with follow-up data available

and performed Cox regression analyses to estimate hazard

ratios (HRs) for CBC. Potential confounding and interac-

tion with characteristics of the individual, characteristics

of the primary tumor, or treatment were tested. In addi-

tion, to directly compare with the OR reported for PRS313
and first breast cancer, we selected case-case series and per-

formed logistic regression analyses comparing the PRS313
distribution in women with CBC versus those with unilat-

eral breast cancer. These analyses were conducted sepa-

rately in European and Asian women (follow-up was too

limited to perform a cohort study for the Asian popula-

tion). Use of PRS313 may lead to more accurate CBC risk

prediction to support decision making for women who

may or may not benefit from additional surveillance and

risk-reducing treatment strategies.
Material and Methods

Study Subjects
Case-Case Series

We selected women who were diagnosed with breast cancer and

women without any diagnosis of breast cancer from the BCAC

including all women of European ancestry, based on genotyping

data, and selecting only those studies which reported on CBC

(62 studies) (Figure S1A, Table S1 and S2). BCAC database

version freeze 12 was used. All women diagnosed with invasive

breast cancer as a first cancer were included in the analysis; the

small number of tumors with unknown invasiveness were

considered invasive (Table S2). In the case-case series, a CBC

was defined as a breast cancer (in situ or invasive) in the contra-

lateral breast irrespective of the time since the first breast cancer.

The case-case series comprised 81,000 women with unilateral

breast cancer, 3,607 women with CBC, and 62,830 women

without any diagnosis of breast cancer (Figure S1A). We also

compared women with unilateral breast cancer to women

without any diagnosis of breast cancer to reproduce the estimate

that was previously reported for first breast cancer risk7 in our

study selection.

We selected for a separate analysis women of Asian ancestry

from the BCAC data, comprising 12,133 women with unilateral

breast cancer, 340 women with CBC, and 13,398 women without
840 The American Journal of Human Genetics 107, 837–848, Novem
any diagnosis of breast cancer from eight studies (Figure S1B,

Table S2).

European Cohort

In the European cohort, we used metachronous CBC as the

outcome, defined as a breast cancer in the contralateral breast (in

situ or invasive) diagnosed at least 3 months after the first breast

cancer. We used a cut-off of 3 months to reduce the likelihood

that these CBCs represent metastases rather than true second pri-

mary tumors. We selected all women diagnosed with breast cancer

from the European case-case series and excluded four studies that

did not provide follow-up information on vital status (Figure S1A).

We did not include Asian women since follow-up was too limited

in these studies. We additionally excluded 6,207 women with no

follow-up and 2,208 women who developed synchronous CBC,

distant metastasis, or who died or were last known to be alive

within 3 months after the first breast cancer diagnosis. Since

BCAC also included prevalent cases, we excluded 3,796 women

who developed CBC or were censored before study entry. The

case-case series included women diagnosed between 1947 and

2018. In the European cohort, we excluded 2,235 women who

were diagnosed with their first breast cancer before 1990 or who

had missing year of first diagnosis. We restricted to women diag-

nosed from 1990 onward so that diagnostic procedures and treat-

ment would be more representative of current practice. Moreover,

clinico-pathological, treatment, and follow-up data were more

complete after 1990. In addition, we excluded 16 studies (9,783

women) without information about metachronous CBC events

(Figure S1A). After these exclusions, the cohort for this analysis

comprised data from 42 studies, including 56,068 women with

invasive breast cancer among whom 1,027 metachronous CBC

occurred (Table S2).

All individuals provided written informed consent, and all

studies were approved by the relevant institutional review

boards. BCAC data were centrally harmonized and cleaned in

communication with the study data managers and principal in-

vestigators. Data collection for individual studies is described in

Table S1.

Genotyping and PRSs
DNA samples from participants were genotyped using the iCOGS

array12,13 or the OncoArray,4,14 with genotypes for variants not on

the arrays estimated by imputation.4,13 The PRS313 was calculated

as a weighted sumof theminor allele dosages; the variant selection

and weights are as given by Mavaddat et al.7 We also calculated es-

timates for a previously published PRS77
6 and for estrogen receptor

(ER)-specific PRSs (ER-positive PRS313 and ER-negative PRS313).
7

The ER-specific PRSs were constructed by defining subtype-specific

weights for the 313 variants using a hybrid approach.7 Variants

and corresponding coefficients used to construct the PRS are

shown in Table S3. We standardized the PRS in our analyses by

dividing it by the SD of the PRS of the control subjects (PRS77 SD

¼ 0.45; PRS313 SD ¼ 0.61; ER-positive PRS313 SD ¼ 0.65; ER-nega-

tive PRS313 SD ¼ 0.59) exactly as was done in the analyses of the

PRS and first breast cancer risk.6,7 This allows a direct comparison

of the magnitude of the CBC relative risk estimation to that of the

first breast cancer.

For samples genotyped with both OncoArray and iCOGS array

(9,071 samples), OncoArray data were used in preference as the

imputation quality was generally higher. The intraclass correlation

coefficient (ICC) between the PRSs derived from the two platforms

was 0.99 (95%CI ¼ 0.99–0.99) for the PRS77 and 0.96 (95%CI ¼
0.95–0.96) for PRS313 (Figure S2). Given the high correlation
ber 5, 2020



between the two platforms, PRS measures from both platforms

were used in the analyses without adjustment.
Statistical Analysis
European Cohort

The primary outcome in the European cohort was the develop-

ment of metachronous CBC. Cox proportional hazards models

were used to estimate HRs for metachronous CBC risk by PRS,

stratified by country. Since previous studies have shown that age

at first breast cancer diagnosis is an important predictor of CBC,3

the analyses were performed with attained age as the timescale.

Time at risk started 3 months after the first breast cancer diagnosis

and ended at the age of CBC diagnosis, distant metastasis (where

available), death, or end of follow-up, whichever came first. For

women who had a study entry more than 3 months after first

breast cancer diagnosis, follow-up started at the age of study entry.

We also performed a fixed-effect meta-analysis of country-specific

effects using the STATA commandmetan. We performed a fixed-ef-

fect meta-analysis over a random-effect meta-analysis since there

was no evidence for heterogeneity in effect sizes between coun-

tries (I-squared ¼ 0%, Figure S3). For some analyses, only invasive

CBC was used as the outcome; in these analyses we censored on in

situ CBC. Separate analyses were conducted for ER-positive CBC

(censored on ER-negative and ER-unknown CBC) and ER-negative

CBC (censored on ER-positive and ER-unknown CBC).

We evaluated the linearity of the association between PRS313 per

unit SD and CBC risk using restricted cubic splines with three

knots. There was no evidence for violation of the linearity assump-

tion. Therefore, in the main analysis, the PRS313 was treated as a

continuous covariate, and estimated the HR per unit SD of the

PRS313. Violation of the proportional hazard assumption was as-

sessed by inspection of the Schoenfeld residuals.15 As a second

analysis, we used the per SD log HR of the PRS313 to calculate

the predicted HR at different percentiles of the PRS313, compared

to the 50th percentile. Third, the PRS313 was categorized into

percentile groups (0th to 10th, 10th to 20th, 20th to 40th, 40th to

60th, 60th to 80th, 80th to 90th, 90th to 100th) to illustrate the differ-

ences between PRS313 subgroups, with the middle quintile (40th to

60th) as the reference.

We also performed multivariable Cox regression analyses to

determine whether the log HR of CBC risk by PRS changed

when adjusting for year of first breast cancer diagnosis, family his-

tory of breast cancer in a first degree relative, and several clinical

characteristics of the first breast cancer such as nodal status, tumor

size, morphology, ER status, progesterone receptor (PR) status,

human epidermal growth factor receptor 2 (HER2) status, (neo)

adjuvant chemotherapy, adjuvant endocrine therapy, and radio-

therapy. These analyses were performed in all women, a complete

case set (excluding those with unknown values for the covariates),

and in a set excluding studies oversampling case subjects with

family history. Potential effect modification of the PRS313 effect

by the same variables was evaluated by fitting interaction terms

in different models using complete case sets, including the stan-

dardized PRS313, modifier, and interaction.

The discriminative ability of different models (model 1: PRS313
alone; model 2: other risk factors [the adjustment variables from

the multivariable Cox regression analyses]; model 3: PRS313 þ
other risk factors) was calculated using Harrell’s C-index.16 Since

no standard performance measures are currently available to ac-

count for left-truncated follow-up time (i.e., to start analyses at
The American
age at study entry), we used time since first breast cancer as the

timescale to calculate the C-index.

Absolute Risks

Absolute risks of developing CBC at PRS313 percentiles were calcu-

lated using the estimated log HRs per SD from the breast cancer

cohort (BCAC)under the log-linearmodel, assuming thePRS isnor-

mally distributed. The PRS313- and age-specific incidences were

constrained to the age-specific CBC incidences from women diag-

nosed with a first invasive breast cancer in the period 2003–2010

from the Netherlands Cancer Registry (NCR).1 The procedure for

constraining the incidences has been previously described.17 The

age-specificCBC incidenceswere calculated overall and for age-spe-

cific groups, censoring on death and distant metastasis. We used

data from the NCR since this registry has complete coverage of all

newly diagnosed cancers in the Netherlands. The NCR cohort

included all females agedR18 years and follow-up for second can-

cers was complete until February 1, 2016.1 We then applied the

competing risk of dying on the absolute CBC risks. The absolute

CBC risk (ARg) by age t in PRS313 category g, taking into account

the competing risk of dying was calculated by:

ARgðtÞ¼
Xt�1

u¼0

mgðuÞSgðuÞSmðuÞ

where mg (t) is the CBC incidence associated with PRS313 category

g, Sg (t) the probability of being free of CBC to age t, and Sm (t) the

probability of surviving to age t.

Case-Case Series

For the case-case series (European and Asian), logistic regression

models were used to estimate the ORs for CBC risk (comparing

with unilateral breast cancer) and for unilateral breast cancer risk

(comparing with women without any diagnosis of breast cancer)

associatedwithPRS313.All analyseswereadjustedforageandcountry

(Table S1). For all unilateral- and contralateral breast cancer patients,

we used age at first breast cancer diagnosis, and for women without

any diagnosis of breast cancer we used age at baseline questionnaire.

For direct comparison with the estimate reported for PRS313 and

first breast cancer, we also performed logistic regression analyses in

the same BCAC study participants included in the validation of

the association between PRS313 and first breast cancer risk.7 This

validation set comprised a subsample from 24 studies and

included 3,781 women with unilateral breast cancer, 94 women

with CBC, and 3,753 women without any diagnosis of breast can-

cer (Table S2). For this analysis, we adjusted for 10 principal com-

ponents, in line with Mavaddat et al.7

For European women who had follow-up time available more

than 3 months after the first breast cancer diagnosis, a sensitivity

analysis was performed for metachronous CBC (1,702 CBCs). We

also did a separate analysis for invasive CBC (N ¼ 3,246), by

excluding CBC in situ.

All p values are two sided; tests with p< .05 are referred to as sta-

tistically significant. Analyses were performed using STATA, v.13.1

(StataCorp) and R v.3.3.2.
Results

European (Cohort) Cox Regression Analyses

TheEuropeancohort included56,068womendiagnosedwith

first invasive breast cancer with 1,027 metachronous CBC

events. Median follow-up was 8.4 years. Patient, tumor, and

treatment characteristics are summarized in Table S4.
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Table 1. Association between PRSs and Contralateral Breast
Cancer Risk in the European Cohort (N ¼ 56,068)

Polygenic Risk
Score (PRS)

No. of
CBC

HR per
Unit SDa 95%CI p Value

PRS77
b

All CBC 1,027 1.21 1.14–1.29 <.001

Invasive CBC 923 1.21 1.13–1.29 <.001

PRS313
b

All CBC 1,027 1.25 1.18–1.33 <.001

Invasive CBC 923 1.24 1.16–1.32 <.001

ER-positive
invasive CBCd

275 1.38 1.23–1.55 <.001

ER-negative
invasive CBCd

97 0.92 0.75–1.12 .39

ER-Positive PRS313
b,c

All CBC 1,027 1.23 1.16–1.31 <.001

Invasive CBC 923 1.22 1.15–1.30 <.001

ER-positive
invasive CBCd

275 1.37 1.22–1.54 <.001

ER-Negative PRS313
b,c

All CBC 1,027 1.25 1.17–1.33 <.001

Invasive CBC 923 1.24 1.16–1.33 <.001

ER-negative
invasive CBCd

97 1.06 0.86–1.30 .58

Abbreviations: PRS, polygenic risk score; No., number; CBC, contralateral
breast cancer; HR, hazard ratio; CI, confidence interval; ER, estrogen receptor;
SD, standard deviation.
aAll analyses were performed with attained age as timescale.
bCoefficients to construct the PRSs are shown in Table S3. All PRSs were stan-
dardized by the same SD as was used by Mavaddat et al.7 The SD was 0.45
for overall breast cancer PRS77, 0.61 for overall breast cancer PRS313, 0.65 for
ER-positive PRS313, and 0.59 for ER-negative PRS313.
cER-specific PRSs were constructed using a hybrid method, as described by Ma-
vaddat et al.7
dWomen with ER-unknown CBC (N ¼ 551) were censored in these analyses.

Figure 1. Estimates for Contralateral Breast Cancer Risk by
Percentile Categories of the 313-Variant PRS (PRS313)
The figure shows the hazard ratios per SD and 95% confidence in-
tervals for percentiles of the PRS313 relative to the middle quintile
(underlying table can be found in Table S5). The solid line denotes
the estimates for contralateral breast cancer risk with the PRS313
fitted as a continuous covariate. Coefficients to construct the
PRS313 are shown in Table S3. The PRS313 was standardized by
SD ¼ 0.61, in line with Mavaddat et al.7 The analyses were per-
formed with attained age as timescale. PRS, polygenic risk score;
SD, standard deviation.
The associations between the different PRSs andCBC risk

are shown in Table 1. The HR for CBC per SD of PRS313 was

1.25 (95%CI ¼ 1.18–1.33). For comparison, the HR per SD

for PRS77 was 1.21 (95%CI ¼ 1.14–1.29). Women within

the 0th to 10th and the 90th to 100th percentile of the

PRS313 had 0.59-fold (95%CI ¼ 0.45–0.78) and 1.38-fold

(95%CI ¼ 1.13–1.69) risk of CBC, respectively, compared

with women within the 40th to 60th percentile (Figure 1,

Table S5). The predicted HRs of CBC for women at the

10th and 90th percentile of the PRS313 were 0.75 and 1.33,

respectively, compared to the 50th percentile (Figure 1).

Since we observed evidence of departure from the propor-

tional hazards assumption (p ¼ 0.02),15 we also calculated

HRs stratified for follow-up duration (<5 and R5 years).

The HR by SD of the PRS313 was 1.21 (95%CI ¼ 1.10–1.32)

for CBC diagnosed %5 years after first breast cancer diag-

nosis (CBC N ¼ 428) and 1.28 (95%CI ¼ 1.18–1.38) for

CBCdiagnosed>5 years after first diagnosis (CBCN¼ 599).

The HR per SD of PRS313 for ER-positive invasive CBC

was 1.38 (95%CI ¼ 1.23–1.55) compared to a HR per SD
842 The American Journal of Human Genetics 107, 837–848, Novem
of the ER-positive PRS313 of 1.37 (95%CI ¼ 1.22–1.54)

(Table 1). For ER-negative invasive CBC, the HR per SD

was 0.92 (95%CI ¼ 0.75–1.12) for PRS313 and 1.06 (95%

CI ¼ 0.86–1.30) for the ER-negative PRS313.

Sensitivity analysis using the overall PRS313 showed a HR

per SD of 1.24 (95%CI ¼ 1.16–1.32) for invasive CBC risk.

When we used time since first breast cancer as the time-

scale, we found similar results (HR per SD ¼ 1.25, 95%

CI ¼ 1.18–1.33). Meta-analysis of country-specific effects

showed a HR per SD of 1.25 (95%CI ¼ 1.18–1.33) for

CBC risk by PRS313 (Figure S3).

The association between the PRS313 and CBC risk did not

changewhen adjusting for characteristics of the individual,

tumor, or treatment, nor when excluding studies oversam-

pling case subjects with a family history (Table S6). When

considering potential modifiers of the effect of the PRS313
on CBC risk (Table 2), we found that the HR was the lowest

inwomenaged<40years atfirst breast cancerdiagnosis (HR

per SD ¼ 1.13; 95%CI ¼ 0.98–1.31) and tended to increase

with age, although these effects were not statistically

significant (Pheterogeneity ¼ 0.26; Ptrend ¼ 0.05). We found

no indication for effect modification by family history

(Pheterogeneity ¼ 0.63), morphology (Pheterogeneity ¼ 0.14),

ER status (Pheterogeneity ¼ 0.13), PR status (p ¼ 0.26), HER2

status (Pheterogeneity ¼ 0.42), chemotherapy (Pheterogeneity ¼
0.60), endocrine therapy (Pheterogeneity ¼ 0.79), or radio-

therapy (Pheterogeneity ¼ 0.40) (Table 2).

The C-index was 0.563 (95%CI ¼ 0.547–0.586) for the

model only including PRS313, 0.605 (95%CI ¼ 0.591–0.629)
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Table 2. Association between the 313-Variant PRS (PRS313) and Contralateral Breast Cancer Risk for Subgroups

Subgroups No. of Patients No. of CBC
HR per
Unit SDa,b 95%CI p Value Phetero-geneity

c,d Ptrend
c,e

All patients 56,068 1,027 1.25 1.18–1.33 <.001 - -

Age at First Breast Cancer Diagnosis
(Years)

.26 .05

<40 5,877 171 1.13 0.98–1.31 .09

40–49 11,928 265 1.25 1.11–1.41 <.001

50–59 16,882 320 1.22 1.09–1.36 <.001

60þ 21,381 271 1.36 1.21–1.52 <.001

Family History (First Degree Relative) .63 -

No 33,623 618 1.26 1.16–1.36 <.001

Yes 10,369 302 1.22 1.09–1.36 <.001

Morphology .14 -

Ductal 37,324 621 1.21 1.12–1.31 <.001

Lobular 5,878 118 1.32 1.10–1.59 .002

Mixed (ductal and lobular) 2,174 46 1.52 1.15–2.02 .004

Other 3,344 70 1.20 0.96–1.50 .11

ER Status .13 -

Negative 9,527 194 1.13 0.98–1.30 .08

Positive 38,090 670 1.28 1.19–1.38 <.001

PR Status .26 -

Negative 13,098 244 1.16 1.03–1.32 .02

Positive 27,044 554 1.27 1.17–1.38 <.001

HER2 Status .42 -

Negative 23,787 352 1.29 1.17–1.44 <.001

Positive 4,969 60 1.45 1.13–1.85 .004

(Neo)adjuvant Chemotherapy .60 -

No 18,110 361 1.28 1.16–1.42 <.001

Yes 18,559 363 1.24 1.12–1.37 <.001

(Neo)adjuvant Endocrine Therapy .79 -

No 10,781 242 1.28 1.13–1.44 <.001

Yes 27,322 460 1.30 1.19–1.43 <.001

Radiotherapy .40 -

No 11,023 188 1.33 1.15–1.53 <.001

Yes 29,142 617 1.24 1.15–1.34 <.001

Abbreviations: PRS, polygenic risk score; No., number; CBC, contralateral breast cancer; HR, hazard ratio; CI, confidence interval; ER, estrogen receptor; PR, pro-
gesterone receptor; HER2, human epidermal growth factor receptor 2.
aHR for CBC risk by unit SD of PRS313. All analyses were performed with attained age as timescale.
bCoefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by standard deviation ¼ 0.61, in line with Mavaddat et al.7
cThe interaction between the PRS313 and each subgroup was tested in different models including the standardized PRS313, modifier, and interaction. Patients with
unknown values were excluded from these analyses. Since attained age was used as timescale in all models, the model with age at first breast cancer only included
the PRS313 and interaction.
dP for interaction based on test for heterogeneity across categories.
eP for interaction based on a trend test with age as continuous variable.
for the model only including other risk factors, and

0.623 (95%CI ¼ 0.608–0.645) for the complete model

(Table 3).
The American
Absolute Risks

Based on the HR estimates for PRS313, the predicted CBC

risk by age 80 years was 12.4% at the 10th percentile of
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Table 3. Discriminatory Ability (C-Index) of the 313-Variant PRS
(PRS313) and Other Risk Factors for Contralateral Breast Cancer Risk
in the European Cohort

C-Index (95%CI)a,b

Model 1: PRS313
c alone 0.563 (0.547–0.586)

Model 2: Other risk factorsd 0.605 (0.591–0.629)

Model 3: PRS313
c þ other risk factorsd 0.623 (0.608–0.645)

Abbreviations: PRS, polygenic risk score; CI, confidence interval.
aThe Harrell’s C-index was obtained by the STATA stcox postestimation com-
mand ‘‘estat concordance,’’ using time since first breast cancer on the time-
scale without taking delayed entry (prevalent cases) into account. We did
not consider delayed entry since no standard performance measures are
currently available in the statistical literature to account for left-truncated
follow-up time. The median of delayed entry was 0.4 years (standard deviation
¼ 2.7) in our study.
bThe 95% CIs were obtained by use of the somersd package in STATA.
cCoefficients to construct the PRS313 are shown in Table S3. The PRS313 was
standardized by SD ¼ 0.61, in line with Mavaddat et al.7
dIncluding age at first diagnosis, year of first diagnosis, family history for breast
cancer in a first degree relative, and clinical characteristics of the first breast
cancer (nodal status, tumor size, differentiation grade, morphology, estrogen
receptor status, human epidermal growth factor receptor 2 status, chemo-
therapy, endocrine therapy, radiotherapy).

Figure 2. Predicted Contralateral Breast Cancer Risk by Percen-
tile of the 313-Variant PRS (PRS313) with Death as Competing Risk
Coefficients to construct the PRS313 are shown in Table S3. The
PRS313 was standardized by SD ¼ 0.61, in line with Mavaddat
et al.7 The CBC incidences were calculated based on incidence
data from the Netherlands Cancer Registry1 and relative risks esti-
mated as described in the Material and Methods. PRS, polygenic
risk score; CBC, contralateral breast cancer.
the PRS313, compared with 20.5% at the 90th percentile of

the PRS313 (Figure 2), accounting for death as competing

risk. When death was not taken into account as competing

risk, the corresponding predicted risks by age 80 were

17.0% at the 10th percentile and 27.9% at the 90th percen-

tile of the PRS313 (Figure S4). Table 4 shows the 5- and 10-

year cumulative CBC risks by PRS313 for different age

groups, accounting for death as competing risk (Table S7

shows results without competing risks).

European and Asian (Case-Case Series) Logistic

Regression Analyses

Figure 3 shows the distribution of the PRS313 per SD in the

European case-case series. Median PRS313 was �0.4 (inter-

quartile range [IQR] ¼ 1.35) for control women without

any diagnosis of breast cancer (N ¼ 81,000), 0.2 (IQR ¼
1.36) for women with unilateral breast cancer (N ¼
62,830), and 0.5 (IQR ¼ 1.40) for women with CBC (N ¼
3,607). The OR for unilateral breast cancer per SD of the

PRS313, compared to control women, was 1.82 (95%CI ¼
1.80–1.84) (Table S8). The OR for CBC per SD of PRS313,

compared to unilateral breast cancer, was 1.30 (95%CI ¼
1.26–1.35).

In sensitivity analyses, the OR per SD of PRS313 was 1.27

(95%CI ¼ 1.21–1.33) for metachronous CBC and the OR

per SD was 1.29 (95%CI ¼ 1.24–1.33) for invasive CBC,

compared to unilateral breast cancer. When analyses

were restricted to the validation set of Mavaddat et al.,7

the OR for unilateral breast cancer per SD of the PRS313
was 1.67 (95%CI ¼ 1.59–1.76) compared to control

women, and the OR for CBC per SD of PRS313 was 1.39

(95%CI ¼ 1.13–1.70) compared to unilateral breast cancer

(Table S8).

For women of Asian descent, the OR for unilateral breast

cancer per SD of the PRS313 was 1.56 (95%CI ¼ 1.52–1.60)
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compared to control women, and the OR for CBC per SD of

PRS313 was 1.15 (95%CI ¼ 1.02–1.29) compared to women

with unilateral breast cancer (Table S8).
Discussion

Previous studies have shown that a PRS, summarizing the

effects of common germline variants, can be used to strat-

ify women with respect to their risk to develop a primary

breast cancer.6–9 In this study, we observed a clear associa-

tion between the PRS313 and CBC risk in women of both

European and Asian ancestry. The association was

observed in both the case-case series and the European

cohort. The HRs per SD of CBC for women at the 10th

and 90th percentile of the continuous predicted PRS313
were 0.75 and 1.33, respectively, compared to the 50th

percentile. This translates to absolute risks at the 10th

and the 90th percentile of the PRS313 of 12.4% and

20.5%, respectively, by age 80 years. We estimated a C-in-

dex for the PRS313, summarizing its discriminatory ability,

of 0.563 in the European cohort.

One previous study has investigated the effect of a PRS,

including 67 variants, and CBC risk.10 This study found a

risk ratio of 1.75 (95%CI ¼ 1.41–2.18) for women in the

upper quartile of the PRS compared with women in the

lowest quartile. To facilitate comparison, we performed a

similar analysis in our case-case series, showing an OR of

1.98 (95%CI ¼ 1.79–2.18), adjusted for country and age

at first diagnosis, for women in the upper quartile of the

PRS313. This indicates that the PRS313 improves stratifica-

tion relative to PRSs including fewer variants. Moreover,

in our European cohort, the C-index for the PRS alone
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Table 4. 5- and 10-Year Cumulative Risks of Contralateral Breast Cancer by the 313-Variant PRS (PRS313) for Different Age Groups with
Death as Competing Risk

5-Year Cumulative CBC Risks (%) Range by Age 10-Year Cumulative CBC risks (%) Range by Age

Age at First
Breast
Cancer
Diagnosis
(years)

5th

Percentile
PRS313

10th

Percentile
PRS313

50th

Percentile
PRS313

90th

Percentile
PRS313

95th

Percentile
PRS313

5th

Percentile
PRS313

10th

Percentile
PRS313

50th

Percentile
PRS313

90th

Percentile
PRS313

95th

Percentile
PRS313

30–34 1.9–3.1 2.1–3.4 2.7–4.5 3.6–5.9 4.0–6.5 3.1–4.1 3.4–4.5 4.5–5.9 5.9–7.7 6.5–8.5

35–39 0.8–2.1 0.9–2.3 1.2–3.0 1.5–3.9 1.7–4.3 2.1–3.5 2.3–3.8 3.0–5.0 3.9–6.6 4.3–7.2

40–44 1.5–2.8 1.7–3.1 2.2–4.1 2.9–5.3 3.2–5.9 2.8–4.6 3.1–5.0 4.1–6.6 5.3–8.6 5.9–9.4

45–49 1.4–2.5 1.5–2.7 2.0–3.6 2.6–4.7 2.9–5.2 2.5–3.9 2.7–4.3 3.6–5.6 4.7–7.4 5.2–8.1

50–54 1.4–2.8 1.5–3.0 1.9–4.0 2.6–5.2 2.8–5.8 2.8–4.5 3.0–4.9 4.0–6.4 5.2–8.4 5.8–9.3

55–59 1.6–3.1 1.8–3.4 2.3–4.5 3.1–5.9 3.4–6.5 3.1–4.8 3.4–5.2 4.5–6.9 5.9–9.0 6.5–9.9

60–64 1.7–3.3 1.9–3.6 2.5–4.7 3.3–6.2 3.6–6.8 3.3–5.0 3.6–5.4 4.7–7.1 6.2–9.3 6.8–10.2

65–70 1.5–3.2 1.6–3.5 2.1–4.6 2.8–6.1 3.1–6.7 3.2–4.1 3.5–4.5 4.6–5.9 6.1–7.7 6.7–8.5

Abbreviations: PRS, polygenic risk score; CBC, contralateral breast cancer. Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized
by SD¼ 0.61, in line withMavaddat et al.7 The CBC incidences for each age group were calculated based on incidence data from the Netherlands Cancer Registry1

and relative risks estimated as described in the Material and Methods. Death was taken into account as competing risk.
improved from 0.547 (95%CI¼ 0.536–0.575) for the previ-

ously reported PRS77
6 to 0.563 (95%CI ¼ 0.547–0.586) for

the PRS313.

We found no evidence that the association between the

PRS313 and CBC risk was confounded by family history,

adjuvant therapy, morphology, age, or tumor receptor sta-

tus of the first breast cancer, nor that there was effect modi-

fication by those factors. The absence of notable effect

modification is in line with the abovementioned study of

a 67-variant PRS and CBC risk; no heterogeneity in associ-

ation was found by age, family history, morphology, ER

status, and adjuvant treatment.10

To provide an external validation of our findings, we

examined data from UK Biobank, which includes many
Figure 3. Distribution of the 313-Variant PRS (PRS313) in 62,830
Control Women without Any Diagnosis of Breast Cancer, 81,000
Women with Unilateral Breast Cancer, and 3,607 Women with
Contralateral Breast Cancer
Coefficients to construct the PRS313 are shown in Table S3. The
PRS313 was standardized by SD ¼ 0.61, in line with Mavaddat
et al.7 PRS, polygenic risk score; BC, breast cancer; CBC, contralat-
eral breast cancer; SD, standard deviation.

The American
women diagnosed with breast cancer with data available

on the PRS313 (Supplemental Note). Unfortunately, UK

Biobank has no information available on the laterality of

the tumor, and it is, therefore, not possible to distinguish

between contralateral and ipsilateral breast cancers. We

therefore performed analyses using any second breast can-

cer as the endpoint. This secondary analysis did confirm

the association between the PRS313 and second breast can-

cer risk (HR per SD ¼ 1.13, 95%CI ¼ 1.01–1.27), but with a

lower estimate than in our European cohort. The lower es-

timate may be explained by the inclusion of the ipsilateral

breast cancers, which may be more likely to be recurrences

than new primary breast cancers compared to CBCs.

Indeed, when we used ipsilateral breast cancer as the

outcome in our European cohort, we found no association

with the PRS313 (HR ¼ 1.02, 95%CI ¼ 0.90–1.15).

The association between the PRS313 and CBC risk (OR

per SD ¼ 1.30; 95%CI ¼ 1.26–1.35) in the BCAC database

was weaker (expressed in terms of an OR) than was found

for first breast cancer among independent prospective

studies (OR per SD ¼ 1.61; 95%CI ¼ 1.57–1.65). Under a

simple polygenic model, the relative risk would be ex-

pected to be similar for the second breast cancer. The atten-

uated estimate for CBC might however be explained by

several factors. Some attenuation of the estimate might

have been due to dilution in the end-point definition,

i.e., if some of the CBCs were metastases. Previous studies

investigating the clonal relatedness of first breast cancers

and CBCs using tumor sequencing have shown that 6%–

12% of CBCs represent metastases.18,19 This hypothesis

would be consistent with our finding of a slightly stronger

association between the PRS313 and late CBCs, diagnosed

>5 years after the first breast cancer, than for early CBCs,

diagnosed R5 years after the first cancer, since the latter

are more likely to be metastases. In addition, 3%–5% of
Journal of Human Genetics 107, 837–848, November 5, 2020 845



the women with breast cancer will have a mutation in

BRCA1 or BRCA2,20,21 who have high CBC risks. It has

been shown that the relative risk associated with PRS is

lower (for the first breast cancer) for women with a

BRCA1 and BRCA2 mutation than in the general popula-

tion,22 diluting the overall relative risk for CBC. More

generally, it is possible that the CBC association may be

attenuated due to the effect of other, unmeasured, genetic

or other risk factors. If the risks are high, case subjects with

higher PRS313 will have, on average, lower values of other

risk factors, due to elimination of the highest risk individ-

uals, again attenuating the CBC association. Finally, given

the limited information on family history in our dataset,

the estimate could have been biased due to a family history

effect not detected in our data.

There was some suggestion that the relative risk associ-

ated with PRS313 decreased with younger age (Ptrend ¼
0.05) and, specifically, was lower for women aged <40

years (HR per SD ¼ 1.13; 95%CI ¼ 0.98–1.31). Interest-

ingly, Mavaddat et al.7 also found a lower relative risk

below age 40 for first breast cancer. This effect may reflect

the different characteristics of breast cancers at young

ages, both in terms of germline susceptibility and pathol-

ogy.23,24 For example, the proportion of ER-negative breast

cancers is higher at young ages, and the PRS is less predic-

tive for ER-negative disease.6,7,24

In the logistic regression analyses in Asian women, the

association between the PRS313 and CBC risk was slightly

weaker than in European women. This finding is consis-

tent with a recent analysis investigating the association

between a 287-variant PRS and first breast cancer risk

in the Asian population,25 which showed an attenuated

OR in Asian women (OR ¼ 1.52, 95%CI ¼ 1.49–1.56)

compared to European women (OR ¼ 1.61, 95%CI ¼
1.57–1.66). The lower estimate for Asian women might

reflect the fact the PRS313 was developed in European

populations, and the different LD structure in Asians

may attenuate the association since the variants in the

PRS are likely to be surrogates for the causal variants.

Other explanations for the attenuated estimate may be

the slightly younger age at first breast cancer diagnosis

and the higher proportion ER-negative CBCs in Asian

women compared to European women in our study.

Finally, the imputation quality for variants was some-

what lower, on average, for the Asian than for the Euro-

pean dataset, with three variants on OncoArray and four

variants on ICOGs with an imputation quality score <

0.3 (Table S3). Nevertheless, we included those variants

in the PRS for both European and Asian women, to

keep the PRS comparable between ethnicities and

studies. Future studies including larger numbers of Asian

women, and women of other ethnicities, are needed to

generate population-specific PRSs and to validate our

findings in these groups.

A major strength of this study is the very large sample

size in the BCAC dataset, including genotype informa-

tion for �150,000 women and a large number of CBC
846 The American Journal of Human Genetics 107, 837–848, Novem
events. A limitation of this study is missing data on the

patient, tumor, and treatment characteristics, which re-

duces the power of the multivariable Cox regression an-

alyses and interaction analyses. In addition, registration

of CBC was not complete; the 10-year cumulative CBC

incidence was 2.2% in the BCAC dataset, compared to

3.8% using complete data from the Netherlands Cancer

Registry.1 For this reason, we estimated relative risk esti-

mates using the BCAC data and applied these to external

registry data to obtain absolute risk estimates. The under-

reporting of CBC should not bias our HR estimates, given

that the event rate is low and reporting of CBC is un-

likely to be related to the PRS313. Moreover, we reran

the cohort analysis in the subset of countries with a

10-year cumulative CBC incidence R 3.0% in the

BCAC dataset, and the estimates were very similar to

the main analyses (HR per SD ¼ 1.23, 95%CI ¼ 1.14–

1.33) (Figure S3).

In conclusion, the PRS313 is predictive for the develop-

ment of CBC. We found no evidence for confounding or

effect modification by other previously established CBC

risk factors. The PRS313 is therefore likely to be an inde-

pendent risk factor for CBC. Since the predictive ability

of the PRS on its own is modest, it should be combined

with other breast cancer risk factors to provide more

useful CBC risk prediction models. More accurate risk pre-

diction will help identify women at high CBC risk who

will benefit from additional surveillance and/or risk

reducing mastectomy, and equally important, to identify

those women at low risk in order to avoid unnecessary

surgeries.
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Supplemental Figures 

Figure S1A. Overview of the selection of women with breast cancer and control women for the European series 
 

 
 
Abbreviations: CBC = contralateral breast cancer 
For a complete overview of all studies see Table S1 
a 

Excluded studies: CBCS, GLACIER, HMBCS, TNBCC 
b
 Excluded studies: BCFR-NY, BCFR-UTAH, CNIO-BCS, DIETCOMPLYF, FHRISK, GESBC, HABCS, HUBCS, ICICLE, KBCP, MCCS, MMHS, NCBCS, PREFACE, 

SUCCESSB, SUCCESSC 
c
 These studies dropped out because for these analyses the definition of CBC is based on the criteria that the CBC was diagnosed at least three months after the first 

breast cancer diagnosis 

  



 

Figure S1B. Overview of the selection of women with breast cancer and control women for Asian series 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Abbreviations: CBC = contralateral breast cancer 

  



 

Figure S2. Correlation of total variant scores between the iCOGS array and OncoArray for the 77-variant PRS and the 313-
variant PRSa,b 

 
 

 
 
Abbreviations: PRS = polygenic risk score, SD = standard deviation 
a 

We evaluated consistency between iCOGS and OncoArray using the intraclass correlation coefficient (ICC), showing a ICC of 0.99 (95%CI=0.99-0.99) for the PRS77, 
and an ICC of 0.96 (95%CI=0.95-0.96) for the PRS313, based on N=9,071 observations 
b 

Coefficients to construct the PRSs are shown in Table S3. The PRSs were standardized by the same SD as was used by Mavaddat et al.
1
. The SD was 0.45 for 

overall breast cancer PRS77, and 0.61 for overall breast cancer PRS313 

 

 

 

 

  



 

Figure S3. Forest plot of the association between the 313-variant PRS and contralateral breast cancer risk by countrya,b 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Abbreviations: PRS = polygenic risk score, N = number of women, CBC = contralateral breast cancer, cum = cumulative, CI = confidence interval, HR = hazard ratio, 
SD = standard deviation 
Fixed effect meta-analysis was used to calculate I-squared and P-value for heterogeneity

 

a 
Republic of North Macedonia was left out this plot because of a too small sample size (N=76 women including N=2 CBC events) 

b
 Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by SD=0.61, in line with Mavaddat et al.

1
 

c
 The 10-year cumulative incidence of CBC was estimated with time since first breast cancer as time scale, and distant metastases (where available) and death as 

competing risks  
d
 Follow-up too short for calculating 10-year cumulative incidence 

e 
HR per SD. The analyses were performed with attained age as the time scale   



 

Figure S4. Predicted contralateral breast cancer risk by percentile of the 313-variant PRS (PRS313) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abbreviations: PRS = polygenic risk score, CBC = contralateral breast cancer

 

Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by SD=0.61, in line with Mavaddat et al
1
. The CBC incidences were 

calculated based on incidence data from the Netherlands Cancer Registry
2
 and relative risks estimated as described in the Material and Methods. In contrast to Figure 

2, death was not taken into account as competing risk. 

  



 

Supplemental Tables 

 
Table S1. Study characteristics of included studies of the Breast Cancer Association Consortium 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

Table S2. Studies and samples included in the analyses using the case-case series, cohort, and validation set 

 European  Asian 

 
Case-case series 

N studies = 62 
Cohort 

N studies = 42 
Validation set 
N studies = 24 

Case-case series 
N studies = 8 

Studies 
Control 

women
a
  

Unilateral 
BC  CBC  

Unilateral 
BC  CBC  

Control 
women

a
  

Unilateral 
BC CBC 

Control 
women

a
  

Unilateral 
BC CBC 

ABCFS 738 1,149 127 1,021 93 - - - - - - 
ABCS 1,567 1,047 54 519 14 - - - - - - 
ABCS-F 0 861 91 363 17 - - - - - - 
ABCTB 375 900 17 708 1 74 180 8 - - - 
BBCC 711 845 58 766 6 49 56 5 - - - 
BBCS 1,768 1,266 80 466 1 - - - - - - 
BCEES - - - - - 166 133 0 - - - 
BCFR-NY 27 340 61 - - - - - - - - 
BCFR-PA 0 104 14 69 4 - - - - - - 
BCFR-UTAH 0 13 87 - - - - - - - - 
BCINIS - - - - - 144 262 0 - - - 
BIGGS 49 713 50 395 2 - - - - - - 
BREOGAN 725 1,245 19 1,233 15 145 238 4 - - - 
BSUCH 1,122 900 36 727 3 - - - - - - 
CBCS 817 530 21 - - 163 105 4 170 238 10 
CCGP 321 598 19 578 8 66 125 7 - - - 
CGPS 5,250 4,135 60 3,834 17 142 227 3 - - - 
CNIO-BCS 829 742 5 - - - - - - - - 
CTS - - - - - 115 220 0 - - - 
DIETCOMPLYF 0 704 1 - - - - - - - - 
FHRISK 0 119 2 - - - - - - - - 
GC-HBOC 1,732 2,690 230 1,406 47 - - - - - - 
GENICA 711 869 26 869 1 56 89 2 - - - 
GESBC 181 303 3 - - - - - - - - 
GLACIER 0 1,733 230 - - - - - - - - 
HABCS 863 774 84 - - 173 141 6 - - - 
HCSC 0 362 13 273 9 - - - - - - 
HEBCS 1,060 1,632 116 1,578 41 - - - - - - 
HERPACC - - - - - - - - 1,659 756 18 
HKBCS - - - - - - - - 451 403 12 
HMBCS 345 729 28 - - - - - - - - 
HUBCS 116 198 2 - - - - - - - - 
ICICLE 1 138 12 - - - - - - - - 
KARBAC 0 761 46 443 32 - - - - - - 
KARMA 5,981 2,314 96 2,188 33 597 185 10 - - - 
KBCP 431 516 9 - - - - - - - - 
KCONFAB/AOCS 898 397 83 305 26 - - - - - - 
LMBC 1,821 3,016 208 2,286 92 87 142 14 - - - 
MABCS 88 80 9 74 2 - - - - - - 



 

 

Abbreviations: BC = breast cancer, CBC = contralateral breast cancer, ER = estrogen receptor 
a 
Without any diagnosis of breast cancer 

b 
Due to the use of a new freeze of the BCAC data, N=3 breast cancers were now defined as in situ, which had previously been defined as invasive; the original 

validation dataset contained data of two additional studies
1
 

MARIE 2,066 1,540 115 1,535 53 - - - - - - 
MBCSG 766 1,015 150 569 8     - - - 
MCBCS 2,093 1,999 59 1,903 6 35 96 3 - - - 
MCCS 1,207 1,034 2 - - 142 86 0 - - - 
MEC 1,123 1,016 38 988 23 - - - - - - 
MISS 1,529 582 6 563 3 304 83 0 - - - 
MMHS 1,635 273 4 - - 320 48 4 - - - 
MYBRCA - - - - - - - - 4,197 3,652 105 
NBCS 212 2,334 31 1,370 4 - - - - - - 
NBHS - - - - - 122 79 0 - - - 
NC-BCFR 150 614 69 602 5 - - - 52 391 33 
NCBCS 1,006 1,988 42 - - - - - - - - 
OBCS 414 467 10 445 1 - - - - - - 
OFBCR 728 1,908 143 1,656 51 - - - - - - 
ORIGO 0 1,090 89 1,053 69 132 134 15 - - - 
PBCS 2,082 1,719 40 1,625 9 331 215 2 - - - 
PKARMA 5,435 4,81 277 4,685 124 1 4 0 - - - 
POSH 0 1,069 19 1,063 16 - - - - - - 
PREFACE 0 2,73 90 - - - - - - - - 
PROCAS 1,647 488 9 422 3 - - - - - - 
RBCS 0 873 152 724 81 - - - - - - 
SASBAC 1,378 1,118 22 1,086 5 - - - - - - 
SBCS 848 748 14 691 1 - - - - - - 
SEARCH 9,056 12,423 118 12,117 59 197 628 0 - - - 
SEBCS - - - - - - - - 2,236 2,080 21 
SGBCC - - - - - - - - 4,141 1,250 124 
SKKDKFZS 29 1,084 71 1,054 41 - - - - - - 
SMC - - - - - 141 244 0 - - - 
SUCCESSB 0 438 2 - - - - - - - - 
SUCCESSC 0 2,807 29 - - - - - - - - 
SZBCS 489 676 6 409 1 - - - - - - 
TNBCC 152 1,037 2 - - - - - - - - 
TWBCS - - - - - - - - 492 1,250 17 

UCIBCS 258 397 1 380 1 51 61 7 - - - 

Total 62,830 81,000 3,607 55,041 1,027 3,753 3,781 94 13,398 12,133 340 

Characteristics            
Invasiveness     in situ - excluded 361 excluded 104 - 3

b 
7 - excluded 67 

invasive - 79,876 2,200 54,675 670 - 3,777 60 - 11,929 209 
unknown  - 1,124 1,046 366 253 - 1 27 - 204 64 

ER status       negative - 13,828 446 9,333 105 - 766 8 - 3,457 54 
positive - 52,238 2,048 37,420 289 - 3,001 47 - 7,826 163 

unknown - 14,934 1,113 8,288 633 - 14 39 - 850 123 



 

Table S3. Variant information and breast cancer risk coefficients for the 77-variant PRS, 313-variant PRS, and ER-specific 
PRSs; previously published in Mavaddat et al.1; 3  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

Table S4. Patient, tumor, and treatment characteristics of all women diagnosed with first invasive breast cancer since 1990 
(European cohort) 
 

 

Characteristics Number of women (%)
a 

Total 56,068 (100) 

Median age at first diagnosis in 
years (range) 

56 (18-98) 

Year of diagnosis  

  1990-1994 3,029 (5.4) 
  1995-1999 10,153 (18.1) 
  2000-2004 18,484 (33.0) 
  2005-2009 17,575 (31.3) 
  2010-2015 6,827 (12.2) 

Family history (first degree 
relative) 

 

  no 33,623 (76.4) 
  yes 10,369 (23.6) 

  unknown 12,076 

Nodal status  

  negative 29,070 (61.9) 
  positive 17,903 (38.1) 

  unknown 9,095 

Tumor size, cm  

  ≤2 28,057 (63.8) 
  (2, 5] 14,138 (32.2) 

  >5 1,750 (4.0) 
  unknown 12,123 

Differentiation grade   

  I 8,721 (19.5) 
  II 21,621 (48.3) 
  III 14,454 (32.3) 

  unknown 11,272 

Morphology  

  ductal 37,324 (76.6) 
  lobular 5,878 (12.1) 

  mixed (ductal and lobular) 2,174 (4.5) 
  other  3,344 (6.9) 

  unknown 7,348 

  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abbreviations: ER = estrogen receptor, PR = progesterone receptor, HER2 = human epidermal growth factor receptor 2 
a 

Total may not be 100% because of rounding 

  

ER-status 

  negative 9,527 (20.0) 
  positive 38,090 (80.0) 

  unknown 8,451 

PR-status  

negative 13,098 (32.6) 

positive 27,044 (67.4) 

unknown 15,926 

HER2-status  

  negative 23,787 (82.7) 
  positive 4,969 (17.3) 

  unknown 27,312 

Surgery  

  yes, breast saving 16,468 (42.3) 
  yes, mastectomy 11,315 (29.1) 

  yes, type unknown 11,163 (28.7) 
  unknown 17,122 

(Neo)adjuvant chemotherapy  

  no 18,110 (49.4) 
  yes 18,559 (50.6) 

  unknown 19,399 

(Neo)adjuvant endocrine therapy  

  no 10,781 (28.3) 
  yes 27,322 (71.7) 

  unknown 17,965 

Radiotherapy  

  no 11,023 (27.4) 
  yes  29,142 (72.6) 

  unknown 15,903 



 

Table S5. Association between the 313-variant PRS (PRS313) and contralateral breast cancer risk in the European cohort 
 
 
 
 
 
 
 
 
 
 
 
 

 
Abbreviations: PRS = polygenic risk score, No = number, CBC = contralateral breast cancer, HR = hazard ratio, CI = confidence interval, SD = standard deviation 
a 

The analysis was performed with attained age as time scale. Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by SD=0.61, in 
line with Mavaddat et al.

1
 

  

Percentile 

categories of 

the PRS313 

No. of 

women  

 

No. of 

CBC 

HR per 

unit SD
a
 

95%CI P-value 

0
th
 to 10

th
 5,607 65 0.59 0.45-0.78 <.001 

10
th
 to 20

th
 5,606 79 0.71 0.55-0.92 .01 

20
th
 to 40

th
 11,214 165 0.74 0.60-0.90 .003 

40
th
 to 60

th
 11,214 224 1.00 Ref. - 

60
th
 to 80

th
 11,214 208 0.90 0.74-1.08 .25 

80
th
 to 90

th
 5,607 121 1.05 0.84-1.31 .69 

90
th
 to 100

th
 5,606 165 1.38 1.13-1.69 .002 



 

Table S6. Multivariable Cox regression models of contralateral breast cancer risk by 313-variant PRS (PRS313) in all women, all 
women excluding studies oversampling cases with family history, and those with complete covariate information 

 All patients  
 

All women excluding studies 
oversampling cases with 

family history  

Complete case 
 

 N=56,068 (CBC=1,027) N=51,883 (CBC=829) N=12,065 (CBC=193) 

 HR per 
unit SD

a 
95%CI P-value HR per 

unit SD
a 

95%CI P-value HR per 
unit SD

a 
95%CI P-value 

Model 1          

PRS313
b 

1.25 1.18-1.33 <.001 1.26 1.17-1.34 <.001 1.35 1.17-1.56 <.001 

Model 2          

PRS313
b 

1.23 1.16-1.31 <.001 1.25 1.17-1.34 <.001 1.33 1.15-1.54 <.001 
Family history                     yes vs. no      1.43 1.24-1.64 <.001 1.34 1.13-1.59 .001 1.49 1.06-2.09 .02 

unknown vs. no 0.93 0.75-0.16 .54 0.92 0.73-1.16 .47 - - - 

Model 3          

PRS313
b 

1.25 1.18-1.33 <.001 1.26 1.17-1.34 <.001 1.35 1.17-1.56 <.001 
Nodal status        positive vs. negative      1.05 0.91-1.20 .50 1.07 0.92-1.25 .37 1.14 0.85-1.53 .37 

unknown vs. no 1.26 1.04-1.53 .02 1.29 1.04-1.60 .02 - - - 

Model 4          

PRS313
b
 1.25 1.18-1.33 <.001 1.26 1.18-1.35 <.001 1.35 1.17-1.56 <.001 

Tumor size,                        (2-5] vs. ≤2 1.08 0.92-1.25 .34 1.12 0.95-1.32 .20 0.93 0.68-1.27 .66 
>5 vs. ≤2 1.37 0.99-1.89 .06 1.45 1.02-2.07 .04 1.63 0.93-2.85 .09 

unknown vs. ≤2 1.23 1.04-1.47 .02 1.14 0.94-1.39 .18 - - - 

Model 5          

PRS313
b
 1.25 1.17-1.33 <.001 1.25 1.17-1.34 <.001 1.35 1.17-1.57 <.001 

Differentiation grade                 II vs. I 0.93 0.76-1.13 .45 0.99 0.80-1.24 .94 0.98 0.65-1.48 .93 

III vs. I 0.90 0.73-1.12 .35 0.97 0.76-1.24 .81 1.09 0.70-1.69 .69 

unknown vs. I 1.20 0.96-1.49 .11 1.45 1.13-1.86 .004 - - - 

Model 6          

PRS313
b
 1.25 1.17-1.33 <.001 1.25 1.17-1.34 <.001 1.33 1.16-1.54 <.001 

Morphology              lobular vs. ductal 1.26 1.03-1.53 .03 1.34 1.08-1.67 .008 1.48 0.99-2.21 .05 

mixed (ductal and lobular) vs. ductal 1.28 0.94-1.73 .11 1.36 0.98-1.88 .06 1.48 0.87-2.54 .15 

  other vs. ductal  1.04 0.81-1.33 .75 0.91 0.66-1.24 .55 1.24 0.69-2.21 .47 

unknown vs. ductal 1.77 1.42-2.19 <.001 1.82 1.44-2.30 <.001 - - - 

Model 7          

PRS313
b 

1.25 1.18-1.33 <.001 1.26 1.18-1.35 <.001 1.35 1.17-1.56 <.001 
ER-status             positive vs. negative      0.88 0.75-1.04 .14 0.86 0.72-1.03 .11 0.90 0.62-1.32 .60 

unknown vs. negative 1.16 0.93-0.43 .19 1.11 0.86-1.43 .43 - - - 

Model 7          

PRS313
b
 1.25 1.18-1.33 <.001 1.26 1.18-1.35 <.001 1.35 1.17-1.56 <.001 



 

 
Abbreviations: PRS = polygenic risk score, CBC = contralateral breast cancer, HR = hazard ratio, CI = confidence interval, SD = standard deviation, ER = estrogen 
receptor, PR = progesterone receptor, HER2 = human epidermal growth factor receptor 2 
a
 All analyses were performed with attained age as the time scale 

b 
Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by SD=0.61, in line with Mavaddat et al.

1 

c 
Adjusted for family history, nodal status, tumor size, differentiation grade, morphology, ER status, HER2 status, chemotherapy, endocrine therapy, radiotherapy, and 

year of first breast cancer diagnosis 

  

PR-status             positive vs. negative 0.95 0.81-1.11 .51 0.92 0.78-1.09 .32 0.91 0.66-1.25 .56 

unknown vs. negative 1.15 0.95-1.40 .14 1.10 0.88-1.37 .40 - - - 

Model 9          

PRS313
b
 1.25 1.18-1.33 <.001 1.26 1.17-1.34 <.001 1.34 1.16-1.55 <.001 

HER2-status        positive vs. negative      0.84 0.64-1.11 .22 0.76 0.56-1.05 .10 0.70 0.45-1.10 .12 
unknown vs. negative 1.29 1.11-1.50 .001 1.28 1.08-1.52 .004 - - - 

Model 10          

PRS313
b 

1.25 1.17-1.32 <.001 1.26 1.17-1.34 <.001 1.35 1.16-1.56 <.001 
Chemotherapy                     yes vs. no      0.86 0.73-1.01 .06 0.99 0.83-1.19 .92 0.89 0.64-1.25 .51 

unknown vs. no 1.09 0.91-1.31 .34 1.20 0.97-1.47 .09 - - - 

Model 11          

PRS313
b 

1.25 1.18-1.33 <.001 1.26 1.18-1.35 <.001 1.36 1.17-1.57 <.001 
Endocrine therapy              yes vs. no      0.75 0.64-0.88 .001 0.92 0.75-1.12 .41 0.78 0.55-1.11 .17 

unknown vs. no 0.90 0.75-1.09 .28 1.11 0.87-1.41 .39 - - - 

Model 12          

PRS313
b 

1.25 1.17-1.32 <.001 1.26 1.17-1.34 <.001 1.35 1.17-1.56 <.001 
Radiotherapy                       yes vs. no      1.00 0.85-1.18 1.00 0.98 0.82-1.18 .85 1.35 0.88-2.08 .17 

unknown vs. no 1.41 1.14-1.74 .001 1.18 0.93-1.50 .17 - - - 

Model 13          

PRS313
b 

1.25 1.17-1.32 <.001 1.25 1.17-1.34 <.001 1.34 1.16-1.55 <.001 

Year of first breast cancer diagnosis 0.95 0.94-0.96 <.001 0.95 0.93-0.96 <.001 0.90 0.86-0.95 <.001 

Model 14          

PRS313
b
                                 full model

c 
1.23 1.16-1.31 <.001 1.25 1.16-1.33 <.001 1.33 1.15-1.53 <.001 



 

Table S7. Five- and ten-year cumulative risks of contralateral breast cancer by the 313-variant PRS (PRS313) for different age 

groups 

 5-year cumulative CBC risks (%) 

range by age 

10-year cumulative CBC risks (%) 

range by age 

Age at first 

breast cancer 

diagnosis 

(years) 

5
th

 

percentile 

PRS313 

10
th

 

percentile 

PRS313 

50
th

 

percentile 

PRS313 

90
th

 

percentile 

PRS313 

95
th

 

percentile 

PRS313 

5
th

 

percentile 

PRS313 

10
th

 

percentile 

PRS313 

50
th

 

percentile 

PRS313 

90
th

 

percentile 

PRS313 

95
th

 

percentile 

PRS313 

30-34 1.9-3.3 2.1-3.6 2.8-4.7 3.7-6.2 4.0-6.8 3.3-4.4 3.6-4.8 4.7-6.3 6.2-8.3 6.8-9.1 

35-39 0.8-2.2 0.9-2.4 1.2-3.2 1.6-4.2 1.7-4.6 2.2-3.9 2.4-4.2 3.2-5.5 4.2-7.2 4.6-8.0 

40-44 1.5-2.9 1.7-3.2 2.2-4.2 2.9-5.5 3.2-6.0 2.9-4.9 3.2-5.3 4.2-7.0 5.5-9.1 6.0-10.0 

45-49 1.4-2.5 1.5-2.8 2.0-3.7 2.6-4.8 2.9-5.3 2.5-4.2 2.8-4.5 3.7-6.0 4.8-7.8 5.3-8.6 

50-54 1.4-2.9 1.5-3.1 2.0-4.1 2.6-5.5 2.9-6.0 2.9-4.8 3.1-5.3 4.1-6.9 5.5-9.1 6.0-10.0 

55-59 1.6-3.3 1.8-3.6 2.4-4.7 3.1-6.2 3.4-6.8 3.3-5.3 3.6-5.7 4.7-7.5 6.2-9.8 6.8-10.8 

60-64 1.8-3.5 1.9-3.8 2.6-5.0 3.4-6.5 3.7-7.2 3.5-5.5 3.8-6.0 5.0-7.9 6.5-10.3 7.2-11.3 

65-70 1.5-3.5 1.7-3.8 2.2-5.0 2.9-6.6 3.2-7.2 3.5-4.6 3.8-5.0 5.0-6.6 6.6-8.7 7.2-9.5 

 
Abbreviations: PRS = polygenic risk score, CBC = contralateral breast cancer

 

Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by SD=0.61, in line with Mavaddat et al
1
. The CBC incidences for each age 

group were calculated based on incidence data from the Netherlands Cancer Registry
2
 and relative risks estimated as described in the Material and Methods. In 

contrast to Table 4, death was not taken into account as competing risk 

  



 

Table S8. Estimates of unilateral- and contralateral breast cancer risk by the 313-variant PRS (PRS313) in the European case-
case series and the Asian case-case series 
 

 
 
 
 
 
 
 
 
 
 

 
 
Abbreviations: PRS = polygenic risk score, CBC = contralateral breast cancer, OR = odds ratio, SD = standard deviation, CI = confidence interval 
a 

Adjusted for country and age. For all women with unilateral- and contralateral breast cancer we used age at first breast cancer diagnosis, and for control women 
without any diagnosis of breast cancer we used age at baseline questionnaire. 
b
 The validation set was previously used to develop the PRS313; see details in materials and methods. For analyses in the current paper, this set is nested within the 

case-case series. These analyses were additionally adjusted for 10 principal components for comparability with the originally published PRS313 overall estimates
1
 

c 
Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by SD=0.61, in line with Mavaddat et al.

1
 

 
  

 European  Asian  

 Case-case series
a 

Validation set
b 

Case-case series
a 

PRS313
c
 

OR per 
unit SD 

95%CI P-value 
OR per 
unit SD 

95%CI P-value 
OR per 
unit SD 

95%CI P-value 

Unilateral breast cancer versus control 1.82 1.80-1.84 <.001 1.67 1.59-1.76 <.001 1.56 1.52-1.60 <.001 

CBC versus unilateral breast cancer 1.30 1.26-1.35 <.001 1.39 1.13-1.70 .002 1.15 1.02-1.29 .02 



 

Supplemental Note 

 

Our initial aim was to externally validate our results using the UK Biobank, which seemed the most suitable cohort given the large 

number of women diagnosed with breast cancer with information available on the PRS313,. However, when we started the analyses, it 

turned out that the UK Biobank had no information available on the laterality of the second breast tumor. Therefore, we were unable to 

distinguish between ipsilateral and contralateral breast cancer, and had to define our endpoint in these analyses as ‘any second breast 

cancer’. In addition, in comparison to our analyses in the BCAC, we were unable to exclude patients diagnosed with stage IV invasive 

first breast cancer from the UK Biobank cohort, and had limited information on metastases developed during follow-up. 

The association between the overall breast cancer PRS313 and (any) second breast cancer was evaluated among women aged 

≥18 years of European ancestry from the UK Biobank cohort who had had a diagnosis of invasive first breast cancer. UK Biobank 

samples were genotyped using Affymetrix UK BiLEVE Axiom array and Affymetrix UK Biobank Axiom® array and imputed to the 

combined 1000 Genome Project v3 and UK10K reference panels using SHAPEIT3 and IMPUTE34. The lowest imputation info score for 

the variants used in these analyses was 0.86. Samples were included for this analysis of the UK BIOBANK study on the basis of female 

sex (genetic and self-reported) and ethnicity filter (Europeans/White British ancestry subset). Duplicates and individuals with high degree 

of relatedness (samples which have >10 putative third degree relatives) were removed, and we randomly excluded one of each related 

pair first-degree relatives. Samples were also excluded on standard quality control criteria. The PRS313 was calculated as a weighted 

sum of the minor allele dosages; the variant selection and weights are as given by Mavaddat et al1. The PRS313 was standardized by 

SD=0.61, in line with our BCAC analyses and Mavaddat et al1.  



 

The final cohort included 10,567 women with invasive breast cancer among whom 302 registry-confirmed second breast cancers 

developed over 59,260 person-years of follow-up. A Cox proportional hazards model was used to assess the association between 

PRS313 and second breast cancer risk. Time at risk started three months after the age of first breast cancer diagnosis, where this was 

diagnosed after the baseline questionnaire date, or three months after the baseline questionnaire where first breast cancer was 

diagnosed before the baseline questionnaire date. Time at risk ended at the age of second breast cancer diagnosis (ipsilateral or 

contralateral), distant metastasis (where available), death or end of follow-up (at latest December 10, 2016). Potential effect modification 

of the PRS313 by age was evaluated by adding an interaction term (PRS313 x age at first breast cancer diagnosis [continuous]) in the 

model. We performed a separate analysis for invasive second breast cancer (241 breast cancers), where we censored on in situ second 

breast cancer. 

The HR for a second breast cancer (in situ or invasive) per SD of PRS313 in the UK Biobank cohort was 1.13 (95%CI=1.01-1.26). 

We found no indication for interaction with age at first breast cancer diagnosis (HRinteraction=1.00, 95%CI=0.99-1.01; P=0.87). When 

analyses were restricted to invasive second breast cancer, the HR per SD was 1.13 (95%CI=1.00-1.29).  
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