Supplementary Information

Elusive Co₂O₃: A combined experimental and theoretical study

Pavitra N. Shanbhag,[†] Raju K. Biswas,[‡] Swapan K. Pati,[‡] Athinarayanan Sundaresan^{*},[†] and Chinthamani Nagesa Ramachandra Rao[§]

[†]Chemistry & Physics of Materials Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.

[‡]Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.

[§]New Chemistry Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.

Figure S1. X-ray diffraction profiles of high pressure (1.5 GPa) treated (a) $(Y_{0.5}Co_{0.5})_2O_3$ and (b) $(Lu_{0.5}Co_{0.5})_2O_3$ solid solutions.

Figure S2. Temperature dependent inverse magnetic susceptibility curves of (a) $(Y_{0.5}Co_{0.5})_2O_3$ (b) $Lu_{0.5}Co_{0.5})_2O_3$ (c) $(Y_{0.5}Co_{0.5})_2O_3$ pressed at 1.5 GPa and (b) $Lu_{0.5}Co_{0.5})_2O_3$ pressed at 1.5 GPa, fitted using Curie Weiss Law in the temperature region 100-250 K

Hubbard U	U = 0.0 eV	U = 2.0 eV	U = 3.5 eV	U = 4.0 eV	U = 6.0 eV	U = 8.0 eV
Phonon eigenvalues (cm ⁻¹)	-32	-46	-51	-55	-59	-71

Table S1: Variation of phonon eigenvalues at Γ point as a function of Hubbard U:

Table S2: Variation of Integrated COHP (ICOHP)¹⁻² for Co-O bonding with the increasing values of Hubbard U:

Hubbard U	U = 0.0 eV	U = 2.0 eV	U = 3.5 eV	U = 4.0 eV	U = 6.0 eV	U = 8.0 eV
ICOHP (eV/cell)	0.447	1.208	1.216	1.221	1.234	1.272

ICOHP for different materials considered in the work are compared and shown in Table S3. Integrated COHP (ICOHP) signifies a measure of bond strength between the orbitals of distinct atoms. The negative/positive values of ICOHP suggest bonding characteristics between two atoms are bonding/antibonding in nature. Here, we observe that bonding strength between Al-O in Al_2O_3 is higher than Y-O bonds in Y_2O_3 . The bonding strength describes the structural stability of the crystal.

Materials	ICOHP (eV/atoms)		
Al-O bonds in Al ₂ O ₃	-0.026		
Co-O bonds in Co ₂ O ₃	0.08		
Y-O bonds in Y ₂ O ₃	-0.013		
Co-O bonds in 50% Co doped Y_2O_3	-0.001		
Co-O bonds in 100% Co doped Y_2O_3	0.0012		

Table S3: Integrated COHP (ICOHP) in eV/atoms for different materials

References:

1. Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R., Analytic projection from planewave and PAW wavefunctions and application to chemical-bonding analysis in solids. *Journal of Computational Chemistry* **2013**, *34* (29), 2557-2567.

2. Lücke, A.; Gerstmann, U.; Kühne, T. D.; Schmidt, W. G., Efficient PAW-based bond strength analysis for understanding the In/Si $(111)(8 \times 2)-(4 \times 1)$ phase transition. *Journal of Computational Chemistry* **2017**, *38* (26), 2276-2282.