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1 Singhania et al. re-analysis

1.1 Input data

RNA-seq data from Singhania et al. are publicly available on GEO with the
primary accession code GSE107991 for the Berry London cohort. Two files are
available:

• raw data : Raw counts Berry London

• edgeR preprocessed data : edgeR normalized Berry London

In our re-analysis, we used the edgeR preprocessed data to run limma-voom,
DESeq2 and dearseq. The log fold changes are calculated using the raw data.

Preprocessing The matrix of raw counts contains 58, 051 genes and 54 sam-
ples. As described in Singhania et al., only genes expressed with counts per
million (CPM) > 2 in at least five samples were considered and normalized us-
ing trimmed mean of M-values (TMM) to remove the library-specific artefacts.
The filtering is carried out with edgeR. It results in a matrix of normalized counts
containing 14, 150 genes and 54 samples (edgeR normalized Berry London).

1.2 Analyses settings

dearseq Due to the low sample size for each DEA, the permutation test was
used with 1000 permutations. The variable to be tested is the TB group for
each of the three comparisons (i.e. TB versus Control, TB versus LTBI and
LTBI versus Control). In the absence of covariates, we simply use an intercept.

DESeq2 We performed the Wald test. The design matrix required was com-
posed of an intercept and the group variable. The other parameters are those
given by default in the user guide.

limma-voom A linear model is fitted to the log2 CPM for each gene. The
voom step allows to obtain weights for each gene and sample that are passed
into limma. The design matrix is the same as the two previous methods.
The other parameters are those given by default in the user guide without the
contrasts.fit step.

edgeR We used the genes signature from Singhania et al. supplementary file.

The code to reproduce the results is provided as a supplementary file.
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2 Detailed simulation settings

The settings for limma-voom and DESeq2 are the same as those given in section
1.2. Regarding edgeR, we followed the quick start section of the user guide, using
the default parameters. The associated code is provided as a supplementary file.

2.1 Negative Binomial scenario a)

In this scenario, gene expression is generated from the following Negative Bino-
mial distribution NB(µij , τij), such that:

E[yij ] = µij Var(yij) = µij +
µ2
ij

τij

µij = max{0, µ̃ij}

µ̃ij =

{
α+ bi0 + xi, j = 1, ..., p1

α+ bi0 + xi + (β + bj)xizi, j = p1 + 1, ..., p

τij ∼ exponential(1), bj ∼ N(0, σ2
g), α = 1000, bi0 ∼ N(0, 1),

zi ∼ N(0, 1), xi ∼ N(µx, 1), µx ∼ exponential(1/10)

2.2 Non-linear scenario b)

In this scenario, gene expression is generated according to the following model:
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yij = min

{
max

{
µij + εij

10
, 0

}
, 109

}
µij =

{
ηij + (β + bj + bi1)zi, j = 1, ..., p1

ηij , j = p1 + 1, ..., p

ηij =
γij
∑n
i=1 γij

1000n

γij =

{
νij + (β + bj + bi1)zi, j = 1, ..., p1

νij , j = p1 + 1, ..., p

νij = ξij + δij + xi

δij ∼ N(0, τ2ij)

ξij = ιjζij + ιj

ζij = N(0, 1)

ιj ∼ exponential(0.01)

bj ∼ N(0, σ2
g)

log(εij) ∼ N(0, σ2
ij)

σij ∼ exponential(1)

and τj is 0.01 times the standard deviation of {ξ1j , ..., ξnj}

2.3 SEQC resampling scenario c)

In this scenario, gene expression was generated by randomly sampling among
the five “A” replicate samples from the SEQC data. In practice, we used the
data provided as supplementary data by Rapaport et al. [1]. For a given
sample size (4, 8, 16, 20, 50, 100, 150, 200), each simulated sample was first
drawn from the original five real ones and arbitrarily assigned to one of the two
mock comparison groups. Then, random noise was added (using a multivariate
Gaussian distribution centered on 0 with a covariance matrix for all the genes
estimated from the five real original samples) in order to obtain different values
for each simulated samples. Finally, values were rounded to the nearest integer
and truncated at 0 (included), in order to emulate count data. Since the five A
samples are replicates, such simulated samples were homogeneous and did not
feature any truly DE gene.

2.4 Data-driven Negative Binomial scenario d)

Gene expression is generated from a Negative Binomial distribution of which
the parameters have been estimated from Singhania et al real data set. For
each gene of the real data set, the couple of parameters (µ and size) defining the
Negative Binomial are estimated through Maximum Likelihood method. For a
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given sample size (4, 8, 16, 20, 50, 100, 150, 200), we simulated 10,000 genes
of which 500 were differentially expressed. Each non-DE gene is sampled from
a Negative Binomial given a couple of estimated parameters. Each DE gene
is sampled as a non-DE gene and a random noise (using a Negative Binomial
distribution) is added or subtracted to half of the samples.

3 dearseq

This section details the statistical grounds of dearseq. We present dearseq in
its most general form for the benefit of users of the method and software who
may have more complex data. This most general form is given in Sections 3.2,
3.3, 3.4, and 3.5. Simplifications that connect the general development with the
specific analysis in the main text are given in 3.6.

3.1 Normalized gene expression

The dearseq methodology assumes that the gene expression measurement are
comparable across samples. As this is not always the case with raw RNA-
seq counts (due to technical effects for instance), a normalization step is often
required. dearseq does not assume any specific normalization and can work
with any kind of quantitative variables.

3.2 Most general modeling framework for dearseq

3.2.1 Working model

In this section, we demonstrate how dearseq can be used to analyze longitudi-
nal, grouped, or repeated measurements. Simplifications for a single observation
per individual are given in 3.6. Let G be the total number of observed genes. Let
ygij be the normalized gene expression of the gth gene for the ith sample at the

jth measure, for i = 1, . . . , n, j = 1, . . . , ni. Further, let Xij be the p covariates
to take into account and φij be the m variables we are interested in testing. In
the main analysis in the text, φij would correspond to TB status (active TB,
LTBI, or control). In other cases, it might include treatment arm in a clinical
trial, a quantitative measure of disease, or any combination of continuous or
binary measures that are under study.

To build a variance component score test statistic, we rely on the following
working model for each gene g:

ygij = αg0 +XT
ijα

g + φTijβ
g + φTijξ

g
i + εgij , (1)

which can be factorized into matrix form as:

ygi = αg0 +Xiα
g + Φiβ

g + Φiξ
g
i + εgi , (2)

where, yi = (yi1, . . . , yini
) is a ni × 1 vector of normalized gene expression

measurements, εi ∼ N(0,Σi) is a ni × 1 vector of measurement error, α0 is a
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ni×1 vector of intercepts, α is a p×1 vector of fixed effects, β and ξi ∼ N(0,Σξ)
are respectively a m× 1 vector of fixed effects and a m× 1 vector of individual-
level random effects of the variables of interest, Xi and Φi are the associated
ni × p matrix of covariates and ni ×m matrix of the variables of interest. Σξ
is the m × m covariance matrix of ξi. Σi is the ni × ni covariance matrix of
measurement errors. ξi and εi are assumed to be independent. Note that,
to take into account the correlation between the different measurements of the
same individual we use a random effect in the model. In addition, it is important
to note that the variance of the residuals depends on i and j to model the
heteroscedasticity of the data. This means that each measure of each individual
has a different variance. Note that the method does not require a contrast
matrix and can perform DEA across multiple conditions, as well as test the
association of gene expression with continuous variables, or even a group of
variables (continuous or categorical) at once.

3.2.2 Toy example

We propose the following toy example to better understand the above notations
for dearseq. Consider 20 genes observed in 8 patients. 4 subjects received a vac-
cine and 4 received a placebo. For each patient, gene expression has been derived
from two different tissues (in vivo whole blood and in vitro stimulated Periph-
eral Blood Mononuclear Cell, respectively denoted WB and PBMC). Thus, gene
expression of each patient has been measured twice, resulting in 16 measure-
ments (2 measurements per subject). In this case, we have to deal with grouped
data. We want to test which genes are differentially expressed according to the
condition vaccine vs. placebo. We write:

• G = 20 the number of genes

• ygij the gene expression of the gth gene for the ith patient at the time
measurement tij , for i = 1, . . . , 10, j = 1, 2. Thus, for i = 1, . . . , 10,
yi = (yi1, yi2)T is the gene expression vector.

• φi the vector of condition for the patient i. This is the condition to be
tested. If the patient i has been vaccinated, we can write the following
vector of factors: φi = (”vaccine”, ”vaccine”)T . There is only one variable
to be tested, so m = 1.

• Xi = (1, 1)T , as there is no variable to take into account (i.e. which is not
tested). Therefore, p = 1
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Patient Condition Tissue type
1 vaccine WB
1 vaccine PBMC
2 vaccine WB
2 vaccine PBMC
3 vaccine WB
3 vaccine PBMC
4 vaccine WB
4 vaccine PBMC
5 placebo WB
5 placebo PBMC
6 placebo WB
6 placebo PBMC
7 placebo WB
7 placebo PBMC
8 placebo WB
8 placebo PBMC

Since we have measurements made on the same subject, we have to deal with
grouped data. The function dear seq of the R package dearseq takes this
group structure as an argument to group according to the patients and so, to
add a random effect ξi.

3.3 Estimating the mean-variance relationship

A key step in our method is the estimation of Σi = diag(σ2
i1, . . . , σ

2
ini

) ∀i and for
each gene, which will be useful for calculating the test statistic. Because of the
intrinsic heteroscedasticity of the data, the variance of the residuals depends on i
and j. To estimate the mean-variance relationship in yg, we borrow information
across all P genes to be able to estimate observation-specific variances. Let
vgij = V ar(ygij | Xij , ξ

g
i ) and mg

ij = E(ygij | Xij , ξ
g
i ) respectively the variance

and the mean of gene g for sample i and measure j given the covariates and the
random effects. We assume that vgij may be modeled as a function of its mean
mg
ij . To save computational time and reduce the number of points used in the

nonparametric fit, one could follow Law et al. [2] and model the mean-variance
relationship at the gene level. Specifically, vg = ω(mg) + eg for some unknown
function ω(·) and errors which follow the moment conditions E(eg) = 0, V (eg) =
τ2, τ > 0. Thus, we used a local linear regression proposed by Wasserman [3]
which offers good asymptotic convergence. For practical reasons, we further
added the two following steps:

1. Because we use the same window bandwidth h for all observations in
kernel estimation, and in order to avoid over-fitting at rare expression
levels (usually extremely high or low expression levels are encountered less
often), we first perform a transformation of the data so that all observation

neighborhoods are properly populated: m̃g = f(mg) = Φ
(
mg−m
sm

)
where
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m is the average observed expression level and sm is the standard deviation
of the gene average expression, Φ(·) is the cumulative density function of
the standard normal distribution N (0, 1).

2. In order to remove the possibility of negative weights, we smooth over
the log-transformed squared-errors s̃g = log(vg) rather than the natural
variances.

The full local linear regression for weight estimation performed is then:

m =
1

P

∑
g

mg , and sm =

√
1

P − 1

∑
g

(mg −m)2

s̃g = log(vg) , and m̃g = f(mg) = Φ

(
mg −m
sm

)

S̃nd(x) =
∑
g

K

(
m̃g − x
h

)
(m̃g − x)d, for d = 1, 2

b̃g(x) = K

(
m̃g − x
h

)
(S̃n2(x)− (m̃g − x)S̃n1(x)),

l̃g(x) =
b̃g(x)∑
g b̃

g(x)
, ω̃n(x) = mathrmexp

(∑
g

l̃g(x)s̃g

)
(3)

for some kernel function K(·) and bandwidth h > 0. Standard cross-validation
techniques can be used to select h in practice.

Because the mixed effects model (1) may be computationally costly, we re-
strict ourselves to the fixed effect part of the model for estimating the mean-
variance relationship:

ygi = αg0 +XT
i α

g + ΦTi β
g + ε̃gi . (4)

Based on this model, the mean-variance relationship could be estimated by
ω̂n(x) = ω̃n(x)|mg=m̂g,vg=v̂g with the estimate of the mean

m̂g = n−1
∑n
i=1 n

−1
i

∑ni

j=1 α̂
g
0 +XT

ijα̂
g + ΦTijβ̂

g
and the estimate of the variance

v̂g = n−1
∑n
i=1 n

−1
i

∑ni

j=1(ygij − α̂g0 − XT
ijα̂

g − ΦTijβ̂
g
)2 where α̂g and β̂

g
are

estimated with Ordinary Least Squares.
Now that we have the estimate of ωn, we can calculate the variance estimate

of ygij for all P genes as: (σ̂gij)
2 = ω̂n

(
f̂
(
m̂g
ij

))
with m̂g

ij = α̂g0 +XT
ijα̂

g +ΦTijβ̂
g
.

3.4 Test statistic

In this section, we derive a variance component score test statistic for the effects
of interest. For the sake of simplicity, we omit the gene index g in the following,
bear in mind that a test is carried out for each gene g.
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According to the model (2), the null hypothesis of no effect of interest is:

H0 : “β = 0 and Σξ = 0” (5)

If the variance-covariance matrix of the random effects is identically zero
then the random effects ξi are also identically zero for all i. If at the same time,
β = 0 then the expression of the gene will not be significantly associated with
the variables of interest Φi.

Under the working model (2), for all i, we will distinguish the effects of
covariates and the effects of variables of interest on gene expression by posing
µi = α0 + Xiα and θi = β + ξi. We write θi = ηνi = η(γ + ζi) with
νi ∼N(0,Σν),γ ∼ N(0, I), ζi ∼ N(0,Σζ),Σν = I + Σζ . νi is the nuisance
parameter. We can rewrite the null hypothesis as H0 : ”η = 0” and the model
as yµi

= ηΦiνi + εi with yµi
= yi − µi the centered outcome. Then, yµi

|νi ∼
N(ηΦiνi,Σi). We write the likelihood of yµ1

, . . . ,yµn
|νi:

L(η) = L(yµ1
, . . . ,yµn

, η|νi)

=

n∏
i=1

1

(2π)ni/2 | Σi |1/2

exp

(
−1

2
(yµi

− ηΦiνi)
TΣ−1i (yµi

− ηΦiνi)

)

Then, we derive a variance component score test. It has the advantage of
avoiding the estimation of β and ξi because it only requires estimating the
model under the null.

We write the likelihood of yµ1
, ...,yµn

|νi:

L(η) = L(yµ1
, ...,yµn

, η|νi)

=

n∏
i=1

1

(2π)ni/2 | Σi |1/2
exp

(
−1

2
(yµi

− ηΦiνi)
TΣ−1i (yµi

− ηΦiνi)

)
The score being null, we follow the argument of Commenges and Andersen [4]

by considering lim
η→0

∂

∂(η2)
log(L∗(η)) to obtain the expression of the test statistic.

Let L∗(η) be the likelihood of yµ1
, ...,yµn

such as:

L∗(η) = L(yµ1
, ...,yµn

; η) = E[L(yµ1
, ...,yµn

; η|νi) | V],

with V = {V i = (yTµi
, XT

i ,Φ
T
i )T }ni=1
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Then,

lim
η→0

∂log(L∗(η))

∂(η2)
= lim
η→0

1

2ηL∗(η)

∂L∗(η)

∂η

= lim
η→0

1

2L∗(η)

[
η−1

∂L∗(0)

∂η
+
∂2L∗(0)

∂η2
+ o(1)

]
=

1

2L∗(0)

[
∂2L∗(0)

∂η2
+ o(1)

]
Thus, removing 1/2 for the sake of simplicity, we have :

L∗(0)−1
∂2L∗(0)

∂η2
+ o(1) = L∗(0)−1

∂

∂η

(
∂L∗(0)

∂η

)
+ o(1)

=
∂2logL∗(0)

∂η2
+ o(1)

= E
[
∂2logL(0)

∂η2
|V
]

+ o(1)

= E
[
∂

∂η

(
∂logL(0)

∂η

)
|V
]

+ o(1)

= E

 ∂2L(0)
∂η2 L(0)− ∂L(0)

∂η
∂L(0)
∂η

L(0)2
|V

+ o(1)

= E

 ∂2L(0)
∂η2

L(0)
−

(
∂L(0)
∂η

L(0)

)2

|V

+ o(1)

= E

[
∂2logL(0)

∂η2
−
(
∂logL(0)

∂η

)2

|V

]
+ o(1)

= E
[
∂2logL(0)

∂η2
|V
]

+ E

[(
∂logL(0)

∂η

)2

|V

]
+ o(1)

Then standardizing by n,

lim
η→0

n−1
∂log(L∗(η))

∂(η2)
= n−1E

[(
∂logL(0)

∂η

)2

|V

]
+ constant + o(1)

because

n−1
∂2log(L(η))

∂η2
= n−1

n∑
i=1

− (Φiνi)
TΣ−1i Φiνi = constant

Yet,
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∂log(L(η))

∂η
=

n∑
i=1

∂

∂η
− ni

2
log(2π)− 1

2
log(| Σi |)−

1

2
(yµi

− ηΦiνi)
TΣ−1i (yµi

− ηΦiνi)

=

n∑
i=1

∂

∂η
− ni

2
log(2π)− 1

2
log(| Σi |)−

1

2
(yTµi

Σ−1i yµi
− yTµi

Σ−1i ηΦiνi

− η(Φiνi)
TΣ−1i yµi

+ η2(Φiνi)
TΣ−1i Φiνi)

=

n∑
i=1

− 1

2

(
−yTµi

Σ−1i Φiνi − (Φiνi)
TΣ−1i yµi

+ 2η(Φiνi)
TΣ−1i Φiνi

)
and

∂log(L(η))

∂η
|η=0 =

n∑
i=1

− 1

2
(−yTµi

Σ−1i Φiνi − (Φiνi)
TΣ−1i yµi

)

=

n∑
i=1

1

2
(yTµi

Σ−1i Φiνi + yTµi
Σ−1i Φiνi)

=

n∑
i=1

yTµi
Σ−1i Φiνi

So,

n−1E

[(
∂logL(0)

∂η

)2

|V

]
= n−1V ar

[
∂logL(0)

∂η
| V
]

= n−1V ar

[
n∑
i=1

yTµi
Σ−1i Φiνi | V

]

= n−1V ar

[
n∑
i=1

yTµi
Σ−1i Φi(γ + ζi) | V

]

= n−1V ar

[(
n∑
i=1

yTµi
Σ−1i Φi

)
γ | V

]
+ n−1V ar

[
n∑
i=1

yTµi
Σ−1i Φiζi | V

]

= n−1

(
n∑
i=1

yTµi
Σ−1i Φi

)(
n∑
i=1

yTµi
Σ−1i Φi

)T
+ n−1

n∑
i=1

yTµi
Σ−1i ΦiΣζΦ

T
i Σ−1i yµi

=

(
n−1/2

n∑
i=1

yTµi
Σ−1i Φi

)(
n−1/2

n∑
i=1

yTµi
Σ−1i Φi

)T
+ constant + o(1)

= qTq
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Let Q be the variance component score test statistic such as Q = qTq with

qT = n−1/2
n∑
i=1

yTµi
Σ−1i Φi = n−1/2

n∑
i=1

(yi − µi)TΣ−1i Φi

Considering that we have a consistent estimator of Σi, we still must provide
estimates of α0 and α. A natural way to estimate these quantities, given the
heteroscedasticity in y, is to fit a weighted mixed effects model. The weights are
taken to be wi = diag(Σ̂i)

−1. However, to avoid excessive computation time,
instead of estimating the full mixed effects model from (2), we may fit a simpler
fixed effects model (4), from which we can obtain estimates of α0 and α.

3.5 Test statistic limiting distribution

We have Q = qTq. We note Γ = cov(q). Then, we can write:

Q = qTΓ−1/2ΓΓ−1/2q

The matrix Γ being square and diagonal, we carry out a singular value decom-
position of Γ:

Q = qTΓ−1/2UAUTΓ−1/2q,

where U is an orthogonal matrix of eigen vectors of Γ, A is a diagonal matrix
of eigen values of Γ.

We take u = Γ−1/2q, with qT = n−1/2
n∑
i=1

(yi − µi)TΣ−1i Φi, which give us:

Q = uTUAUTu. Under the normal residual hypothesis, u immediately follows
a standard normal distribution, in which case it is not necessary to apply the
central limit theorem. Nevertheless, the variance component test is intended
to be robust to the mispecification of the model, i.e., if the normal residual
assumption is not verified. Therefore, we propose an asymptotic test to ensure
its robustness against any data distribution, for example a negative binomial.
This is one of the reasons why we propose the use of permutations when the
number of individuals is considered too small or simply to ensure the reliability
of the test. Then,

E(u) = Γ−1/2E(qT ) = Γ−1/2E(n−1/2
n∑
i=1

(yi − µi)TΣ−1i Φi)

= Γ−1/2n−1/2
n∑
i=1

E(yTi − µTi )︸ ︷︷ ︸
=0

Σ−1i Φi

= 0

and
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cov(u) = cov(Γ−1/2qT )

= (Γ−1/2)T cov(q)Γ−1/2

= Γ−1/2ΓΓ−1/2

= Γ−1/2Γ1/2Ini
Γ1/2Γ−1/2

= Ini

By the central limit theorem, u asymptotically follows a multivariate standard
normal distribution. U being orthonormal, UTu also asymptotically follows

a multivariate standard normal distribution. So, uTUAUTu =
∑ni

k=1
ak(u∗k)2

where u∗k is an element of the asymptotic multivariate standard normal distribu-

tion of UTu and ak is an eigen value of Γ. So, it follows that Q ∼
+∞

∑ni

k=1
akχ

2
1.

Let Q̂ be the estimate of Q. Because Q and Q̂ are asymptotically equivalent,

Q̂ ∼
+∞

∑ni

k=1
âkχ

2
1. (See Agniel and Hejblum (2017) for the proof.)

3.6 Simplification when the measurements are not repeated

In this section, we detail how the generic formulation of the variance component
score test simplifies into the form given in the main manuscript when the data
are not repeated. When there is only one observation per individual and only
one variable of interest (i.e., φij is a scalar), the variance component score test
simplifies to a standard score test. When there are multiple variables of interest
and Φij is a vector, the variance component score test may gain additional
statistical power thanks to its exploitation of potential correlation among the
tested variables (through its chi-square mixture asymptotics - see section 3.5 for
more details). Here, we assume that the data are not grouped (e.g. repeated or
longitudinal) and therefore the index j has to be removed, as used in the main
manuscript. Thus, let ygi be the normalized gene expression of the gth gene for
the ith sample. The working model is written as follows:

ygi = αg0 +Xiα
g + Φiβ

g + εgi (6)

where εgi ∼ N(0, (σgi )2), αg0 is the intercept, Xi is a vector of p observations
from covariates that needs to be adjusted, αg is the corresponding vector of
p fixed effects, Φi is a vector of m observations from the variables of interest
(with whom the expression association is tested), and βg is the corresponding
m vector of fixed effects associated to those variables of interest. The variance
of the residuals depends on i to model the heteroscedasticity of the observations
y.

According to the working model (2), a gene has its expression associated
with the variable(s) of interest in Φ if βg 6= 0. dearseq thus tests the following
null hypothesis:

Hg
0 : βg = 0
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The associated variance component score test statistic can be written as Qg =
qgTqg with

qgT = n−1/2
n∑
i=1

(ygi − µ
g
i )(σ

g
i )−1Φi,

where µi is the conditional mean normalized expression given the covariates Xi.

3.7 Asymptotic and permutation tests

When n is sufficiently large, we propose an asymptotic test. The asymptotic
distribution of the test statistic Q is a mixture of χ2

1 random variables, i.e. Q→∑ni

l=1 alχ
2
1 where the mixing coefficients al depend on the covariance of q. When

n is very small, relying on the limiting distribution may not be adequate. To
overcome this difficulty, we provide a permutation alternative to our asymptotic
test. Permutations can be used to estimate the empirical distribution of Q̂ under
the null hypothesis. Indeed, permutation tests are attractive because the only
assumption we make is that the observations are independent and identically
distributed under the null. As explained Phipson and Smyth [5], it’s essential
to notice that permutation p-values that are really estimates of p-values, i.e.,
p̂-values, can lead to p̂-values exactly equal to zero. However, it is senseless to
obtain p̂-values equal to zero when all permutations were enumerated, therefore
it is not accurate to assume that the p̂-value can be reduced to zero by taking
a smaller subset of all the permutations. So, estimating the p-value by B/m
where B is the number of permutations for which the associated test statistics
are at least as extreme as the observed one can be misleading.

Considering our model, the observations of a given individual i are exchange-
able under the null, regardless of sampling measure. We assume that an inde-
pendent random sample of m permutations is drawn with replacement such as
y∗i ∈ Rni , y∗ij = yiσ(j) with σ ∈ Perm{1, . . . , ni}. We generate m test statis-
tics which can contain repeat values, including the original observed value tobs.
Let B be the number of permutations for which the m test statistics are at
least as extreme as tobs, mt be all possible distinct permutations, Bt be the
unknown total number of possible distinct test statistics exceeding tobs, and
pt = (Bt + 1)/(mt + 1) be the ideal permutation p-value which is obviously
unknown. If the null hypothesis is true, then Bt follows a discrete uniform
distribution on the integers 0, . . . , mt. Conditional on Bt = bt, B follows a
binomial distribution B(m, pt). An approximation of this quantity can be cal-
culated by:

pe =
b+ 1

m+ 1
−
∫ 0.5/mt+1

0

F (b;m, pt), (7)

F is the cumulative probability function of the binomial distribution.
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