Supplementary Table 1. Components with a protective effect on CRC prevention | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | | | | | |--|--|--|--|---------|---|--|--|--|--|--|--| | | ASPIRIN | | | | | | | | | | | | Bosetti et
al., 2006
Italy
[10] | up to December
2005
Medline | Inclusion: not specific other than search sting terms Exclusion: Articles reporting estimates for all NSAIDs combined | Aspirin | NS | CRC incidence 11 case-control; 7 Cohort | Overall:
RR=0.71 (0.67;0.75)
case-control:
RR=0.59 (0.54;0.64)
Cohort:
RR=0.85 (0.78;0.92) | Quality score and publication bias: not performed Heterogeneity: <0.001 | | | | | | Dubé et al.,
2007
Canada
[14] | up to December
2006
Medline,
preMedline,
Embase and
Central | Inclusions: Patients at average risk of CRC Exclusions: 1) studies of familial adenomatous polyposis or hereditary nonpolyposis colon cancer syndromes (Lynch I or II); 2) Secondary prevention studies of patients with a history of CRC | Aspirin
regular use | NS | CRC incidence 2 RCT; 7 case-control; 6 Cohort | case-control:
1 to 3 years:
RR=0.85 (0.72;1.00)
4 to 6 years
RR=0.74 (0.60;0.90)
Cohort:
RR=0.78 (0.63;0.97) | Quality score;
heterogeneity;
publication bias: NS | | | | | | | | | Low dose
aspirin (100-
325 mg/day) | Placebo | CRC incidence 2 RCT | RR=1.02 (0.84; 1.25) | Quality score;
heterogeneity;
publication bias: not
specified. | | | | | | Din et al.,
2010
UK
[11] | From 1980 to
2010
Medline and
ISI web of
knowledge | Inclusions: (1) studies measuring CRC incidence; (2) the strength of association had to be stated in the form of RR or OR; and (3) the study population had to be comparable with the general population; Exclusions: Not English article | Low dose
aspirin: ≤ 165
mg daily | NS | CRC incidence 6 case-control; 4 Cohort | Dose response: <525mg/week: RR= 0.79 (0.66;0.95) 525;1050 mg/week: RR=0.69 (0.43;1.11) >1050 mg/week: RR=0.73 (0.33;1.60) case-control: OR=0.81 (0.63;1.04) Cohort: RR =0.90 (0.90, 1.09) case-control: OR=0.81 (0.63; 1.04) | Quality score;
publication bias: not
specified.
Heterogeneity
case-control: p=0.06
Cohort: p=0.44 | | | | | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---------------------------------------|---|---|--|---------|---|---|---| | Bosetti et | Lin to | Inclusions: 1) aspirin use considered | Low dose aspirin: ≤ 165 mg daily | NS | CRC incidence 6 case-control; 4 Cohort | Cohort: RR = 0.90 (0.90, 1.09) 75mg/day RR= 0.78 (0.65;0.92) <525mg/week: RR=0.79 (0.66;0.95) Duration: 75mg/day for: 0-1 year RR=0.87 (0.59;1.28), 5-10 years: RR=0.63 (0.45;0.87) >10 years RR=0.82 (0.58;1.16). case-control: OR=0.81 (0.63; 1.04) Cohort: RR = 0.99 (0.90, 1.09) | Quality score; not | | Bosetti et al., 2012
Italy
[12] | Up to
September
2011
Pubmed and
Medline | Inclusions: 1) aspirin use considered separately from other NSAIDs; 2) original data 3) not based on selected patients with specific diseases; 4) published in English language; Exclusions: 1) patients with rheumatoid arthritis; 2) study on users on low;dose aspirin only 3) RCT of aspirin, usually with cardiovascular events as the primary endpoint; 4) multiple reports were published on the same population or subpopulation (included only the most recent and the informative one) | Aspirin;
Regular
aspirin use at
least 1–2
tablets per
week) or
alternatively
ever/any use | NS | incidence 15 case- control; 15 Cohort 37,519 cases (21,414 from case-control and 16,105 from Cohort) | RR=0.63 (0.56–0.70) Cohort RR=0.82 (0.75–0.89) Daily Aspirin use RR=0.66 (0.57–0.77) <5 years RR=0.80 (0.71–0.91) >5 years RR=0.75 (0.70–0.80) Low dose RR=0.95 (0.76–1.19) High dose RR=0.69 (0.57–0.85) Overall | Quality score: not performed Heterogeneity: Overall <0.001 (I ² =75.5%) case-control <0.001 (I ² =65.4%) Cohort<0.001 (I2=66%) Duration p=0.369 Publication bias: yes Not reported | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---------------------------------|---|---|---------------------------------|--------------------------------|---|---|--| | | | | | | cancer incidence 6 case- control; 6 Cohort Rectal cancer incidence 3 case- | RR=0.71 (0.63;0.80) case-control: RR=0.61 (0.50-0.76) Cohort: RR=0.77 (0.67-0.89) RR=0.68 (0.55;0.83) | Not reported | | Vá at al | Lamuary 1000 to | Inclusiones 1) Cohort study decient 2) | Aspirin | Agminin | control; 6
Cohort | Overall: | Ovality against not | | Yé et al.,
2013[13]
China | January 1990 to
June 2012
Medline, | Inclusions: 1) Cohort study design; 2) provide information on aspirin use in relation to CRC; 3) include three or more | highest Dose | Aspirin
lowest Dose | incidence
5 Cohort | RR=0.74 (0.64;0.83) | Quality score; not performed | | | Pubmed,
Embase, ISI
web, web of
science, | quantitatively measured exposure categories
of aspirin use (such as dose, frequency and
duration); 4) have CRC incidence as defined
above as the endpoint; and 5) report original | | | | | Heterogeneity:
p=0.545 (I ² =0.0%)
Publication bias: No | | | wanfang and
cnki | data and include HR or RR and their 95% CIs Exclusion: 1) not published as full reports 2) cross-sectional or case-control design; 3) based on selected patients with specific diseases (such as adenomas, ulcerative colitis or prior cancer) 4) When multiple reports were published on the same population or | Aspirin
highest
Frequency | Aspirin
lowest
Frequency | CRC incidence 9 Cohort | RR=0.80 (0.75;0.85) Subgroup: Men: RR=0.60 (0.27;0.93) Women: RR=0.82 (0.73;0.91) Colon: | Quality score; not performed Heterogeneity: p=0.384 (1²=6.2%) Publication bias: Slight | | | | subpopulation, only the most recent and informative one were selected | | | | RR=0.76 (0.65;0.87)
Rectal:
RR=0.74 (0.64;0.83) | | | | | | Aspirin
highest
Duration | Aspirin
lowest
Duration | CRC
incidence
9 Cohort | RR=0.75 (0.68;0.81) <u>Subgroup:</u> Men: RR=0.70 (0.54;0.86) Women: | Quality score; not performed Heterogeneity: p=0.160 (I²=31.1%) | | | | | | | | RR=0.73 (0.62;0.84) | Publication bias: Yes | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|---|--|---|--------------
--|--|---| | | | | | | | Colon:
RR=0.67 (0.44;0.91)
Rectal:
RR=0.54 (0.20;0.88) | | | | | | Dose response | Vs no intake | | 75 mg/day
RR=0.90 (0.86;0.94)
163 mg/day
RR=0.86 (0.81;0.91)
325 mg/day
RR=0.80 (0.74;0.88) | Quality: not performed Heterogeneity: unknown Publication bias: no | | Emilsson et
al, 2017
Norway
[15] | Up to 31
October 2015
COCHRANE
central register
Medline and
EMBASE | Inclusion: RCT reporting CRC mortality, CRC incidence, or both, with a minimum FU of 2 years and more than 100 included individuals Exclusions: high;risk populations (such as individuals with familial adenomatous polyposis or Lynch syndrome) | Aspirin | Placebo | CRC
incidence
6 RCT | Colorectal
RR=0.86 (0.76;0.98)
Proximal:
RR=0.58 (0.46;0.74)
Distal:
RR=0.77 (0.58;1.04) | Quality score; no quality score Heterogeneity: Colorectal: I ² = 22.6% Publication bias: unknown | | | | | NSAID | | | | | | Rostom et
al., 2007
Canada
[16] | up to December 2006 MEDLINE, EMBASE, Cochrane | Inclusions: 1) subjects at average risk for CRC (that is, no known risk factors for colorectal adenoma or CRC, other than age) 2) studies of higher;risk individuals with a personal or family history of CRA or a family history of sporadic CRC 3) addressed | Regular use of non-ASA NSAIDs for ≥ 1 year | NS | CRC incidence 4 case-control; 3 Cohort | case-control:
RR=0.70(0.63;0.78)
Cohort:
RR=0.61(0.48;0.77) | Not reported | | | Central Register of Controlled Trials (CENTRAL), and Cochrane Library | the incidence of CRA, CRC, or both and CRC related death or overall death. Exclusions: 1) studies of high risk patients with familial adenomatous polyposis or hereditary nonpolyposis colon cancer syndromes (Lynch I or II) and secondary | Regular use of
any NSAID
for ≥ 1 year | NS | 3 Cohort | RR=0.57(0.47;0.68) | Not reported | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---------------------------------|--|--|--------------|---------|---|---|---| | | | prevention studies of patients with a personal history of CRC. | | | | | | | Din et al.,
2010
UK [11] | From 1980 to
2010
Medline and
ISI web of
knowledge | Inclusions: (1) studies that measured CRC incidence; (2) the strength of association had to be stated in the form of RR or OR; and (3) the study population had to be comparable with the general population; Exclusions: Not English article | NSAID | NS | CRC incidence 6 case-control; 4 Cohort | Any NSAID RR=0.73 (0.64;0.83) Non-aspirin NSAID RR= 0.74 (0.60;0.90). Duration: Any NSAID 0-1 year: RR= 0.82 (0.66;1.03) 5-10 years: RR= 0.57 (0.44;0.75) | Quality score;
publication bias: not
specified.
Heterogeneity
NS | | Tomic et al., 2018 [17] | From 1985 to
April 2019 | Inclusions: (1) original clinical studies; (2) studies that included participants aged 40 years or older, male and/or female; (3) exposure- NA-NSAIDs; (4) case-control, Cohort or RCT studies providing information about association measures- OR, RR and their CI analysing the effects of NA-NSAIDs on CRC risk or providing sufficient data from which it could be calculated; and studies written in English, French, Spanish, German or Italian Exclusions: (1) preclinical studies; (2) studies including participants of all ages; (3) exposure- Aspirin included; (4) studies based solely on mortality/survival rates; (5) secondary prevention studies, where the main aim has not been the investigation of the NA-NSAIDs effect on CRC prevention; and finally (6) reviews, previous meta-analysis, editorials or letters | | | CRC incidence 10 Cohort, 13 case-control, Higher dose 5 Cohort Lower doses 3 case-control | Combined analysis: OR=0.74 (0.67;0.81) (random effect) Cohort: OR=0.80 (0.72;0.88) case-control: OR = 0.61 (0.50;0.75) Men overall: OR=0.86 (0.70;1.06) Men case-control OR=0.80 (0.58;1.12) Women overall: OR=0.67 (0.53;0.85) Women Cohort OR=0.81 (0.67;0.98) Higher doses RR= 0.82 (0.69;0.99) Lower doses RR= 0.92 (0.83;1.01) Proximal colon cancer RR=0.73 (0.60;0.87) | Quality score NOS Heterogeneity Combined analysis I² = 75.9%, p < 0.001 Cohort; I² = 69.9%, p < 0.001 case-control: I² = 80.1%, p < 0.001 Men overall: I² = 15.9% p=0.312, Women overall I²=54.5% p=0.031 Higher doses I²=0%, p=0.594 Lower doses I²=0.9%, p=0.365 Proximal colon cancer I²=63.8, p=0.017 Distal colon cancer | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results Distal colon cancer RR=0.78 (0.69;0.88) Rectal cancer RR= 0.82 (0.67;1.01) Duration > 5 years RR = 0.80 (0.68;0.94) | Quality score Heterogeneity Publication bias I²=0%, p= 0.17 Rectal cancer I²=51%, p=0.057 Duration > 5 years I² = 0%, p < 0.465 Publication biases Egger's test Overall p = 0.006 case-control p = 0.001 | |--|--|---|---|--|---|---|---| | | | | MAGNESIUM | | | | Cohort p = 0.809 | | Chen et al.
2012
China
[19] | Until July 2012
Pubmed | Inclusions: 1) case-control and Cohort, 2) exposure was intake of dietary Mg or total Mg (dietary and supplements combined), 3) outcome was colorectal, colon or rectal cancer and, 4) RR estimates OR in nested case—control studies with corresponding 95% CI provided, or could be calculated using the raw data presented in the studies Exclusions: 1) Non prospective design | Magnesium
intake*
highest
category | Mg intake
lowest
category | CRC risk
1CC; 7
Cohort
N=338,979
for case-
control and
Cohort | Overall: RR=0.89 (0.79;1.00) Cohort: RR=0.87 (0.77;0.99) Dose-response analysis increment of 50 mg/day CRC RR=0.95(0.89;1.00) Colon cancer RR=0.93(0.88;0.99) Rectal cancer RR=0.93(0.83;1.04) | Quality not reported Heterogeneity: Overall: I²= 0%, p = 0.46 Cohort: I²= 0%, p = 0.43 Publication bias: no indication of publication bias | | Wark et al.
2012
Netherlands
[18] | 1966-31 July
2011
Pubmed | Inclusions: 1) presented RR estimates and their variances or sufficient data to obtain these effect measures, 2) if multiple publications presented findings on the same study population, only the most recent information was used | Magnesium
intake*
highest
category | Magnesium
intake lowest
category | CRC risk
6 Cohort
N=252,867
for Cohort | RR = 0.85 (0.71; 1.00)
Random-effects model
RR = 0.84 (0.73; 0.97)
fixed-effects models
NB: Dose response
effect RR= 0.87 (0.75; | Quality not reported Heterogeneity: Overall: I ² = 27%, p = 0.23 Publication bias: | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |-------------------------------------|---
---|------------------------------------|---------------------------|---|---|--| | | | | | | | 1.01) per 100 mg/d | no indication of | | | | | | | | | publication bias | | Ko et al.,
2014
Korea
[20] | Up to
November 2012
PubMed,
Cochrane
Library, and
SCOPUS | Inclusions: 1) case-control or Cohort studies on the relationship between magnesium intakes and cancer, 2) human; 3) dietary magnesium; and 4) cancer incidence regardless of cancer types. Exclusions: 1) supplementary magnesium or with magnesium from drinking water, 2) in vitro 3) mortality, and 4) review articles, letters, and case reports. | Magnesium intake* highest category | Mg intake lowest category | CRC risk** 4 Cohort and case-control N=1,236,004 for case-control and Cohort for all cancer outcomes (unk for colorectal) | RR = 0.78 (0.66; 0.92) fixed-effects models | Yes, using the NOS, mean of NOS was 5.7 stars in case-control studies and 7.4 starts in cohort studies. Based on this data, we decided the NOS cut-off for a high-quality study to be ≥6 stars for case-control study and ≥8 stars for cohort studies. 4 high-quality case-control studies and 5 high-quality prospective cohort studies Heterogeneity: Overall: I²= 17% Publication bias: Publication for overall cancer (unk for colorectal) Heterogeneity: Overall: I²= 17% Publication bias: for overall cancer (unk for colorectal) | | | | | FOLIC ACID | | | | | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score Heterogeneity Publication bias | |---|---|--|--|-------------------------------------|--|---|---| | Kennedy et al., 2011
Canada [21] | up to October
2009
MEDLINE,
Embase and
Scopus | Inclusions: 1) observational studies, 2) folate exposure (dietary or total) 3) at least two levels of folate intake, 4) association with rates of colorectal, colon and/or rectal cancer. Exclusions: 1) no clear levels of folic acid intake. | High Folate intake (dietary or total) ¹ Cohort: FU 8-22years case-control: 1-2 year before diag | Low folate intake | CRC incidence 18 case-control 9 Cohort | Total folate Cohort: RR=0.85(0.74;0.99) Dietary folate case-control: RR=0.87(0.74;1.02) Cohort: RR=0.92(0.81;1.05) Rectal cancer only: case-control: RR=0.89(0.64;1.25) Colon cancer only case-control: RR=1.03(0.88;1.20) Cohort: RR=0.75(0.57;0.99) Men only: case-control: RR=0.89(0.66;1.19) | Quality performed: Downs and Black scoring tool Heterogeneity: Total folate I² = 11%; p = 0.34, Publication bias: some publication bias | | Heine-
Bröring et
al., 2015
[22] | Up to January
2013
Medline,
Embase and
Cochrane | Inclusions: prospective Cohort studies if they reported original and peer-reviewed data on the association of dietary supplement use and colorectal, colon, or rectal cancer incidence. To be included in the meta-analyses, information on ascertainment of CRC cases, and estimates of the RR with 95% CI were required Exclusions: studies on colorectal adenomas, RCTs and case-control | Highest level
of folate
intake
FU: 8-24yrs | Lowest level
of folate
intake | CRC incidence 3 Cohort | RR=0.88(0.78;0.98) | Quality performed: none Heterogeneity: I²=6%; p=0.34 Publication bias: not reported | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score Heterogeneity Publication bias | |---------------------------------|--|--|----------------|--------------|-------------------|---------------------|--| | Liu et al., | Up to April | Inclusions: [1] Cohort studies [2];the | Highest level | Lowest level | CRC | RR=0.88(0.81;0.95) | Quality performed: | | 2015 | 2014 | exposure of interest was vitamin or multiple- | of Folate | of Folate | incidence | Random effect model | NOS 8-6 stars | | China | | vitamin supplement intake [3] the outcome | intake | intake | | | | | [23] | Pubmed | of interest was the incidence of colorectal, | | | 19 Cohort | | Heterogeneity: | | | | colon, or rectal cancer [4] relative risk (RR) | | | | | I ² =43%, p=0.02 | | | | or OR estimates with 95 % CI were reported. | | | | | Publication bias: | | | | Exclusions: Articles with < 6 stars. | | | | | p=0.08 | | | | FOLIC | C ACID In Comb | ination | | | | | Carroll et | Up to June | Inclusions: 1) RCTs, 2) folic acid or folate, | Folic Acid + | Placebo ± | CRC | RR=1.13(0.77; 1.64) | Quality performed | | al., 2010 | 2008 | 3) with or without other agents, | Vit B vitamins | antioxidants | incidence* | Random effect model | with a published | | UK | 2000 | 3) with of without other agents, | ± antioxidants | untromuunts | meraence | random effect model | scale | | [24] | Cochrane | Population: No increased risk CRC 3 | | | 3 RCT | | | | | Library, | studies (for CRC incidence) | | | N=11,062 | | Heterogeneity: | | | MEDLINE, | | | | | | Overall: $I^2 = 7\%$, | | | PreMEDLINE, | | | | | | p=0.34 | | | CINAHL, | | | | | | D 11: 4: 1: | | | EMBASE, Web of Science, | | | | | | Publication bias:
unk for CRC | | | BIOSIS and | | | | | | ulik for CRC | | | Research | | | | | | | | | Registers | | | | | | | | Wien et al. | Up to March | Inclusions: 1) RCTs, case-control or Cohort, | Folic acid ≥ | Any control | CRC | RCT: | Quality performed: | | 2012 | 2010 | 2) assessed cancer incidence and/or cancer | 0.4mg/day ± | | incidence* | RR=1.00(0.83; 1.21) | yes | | Norway | | mortality, 3) any population taking folic acid | other Vit | | 9 RCT | | | | [26] | (May 2010/31 | supplements ≥0.4 mg/day by oral route for | | | 1 Cohort | Cohort: | Heterogeneity: | | | January 2011) | any indication | | | | RR=0.45(0.05; 3.92) | $I^2 = 0\%$; (unk for | | | (non- | | | | 10 RCTs | | CRC) | | | systematic) | Exclusions: 1) folic acid given as part of | | | reporting | | Dalding him | | | Cochrane | high-dose cytostatic regimen of cancer treatment. | | | overall
cancer | | Publication bias: No indication based | | | Library, | treatment. | | | incidence | | on forest plots (unk | | | Medline, | Population: Seven RCTs were performed in | | | N=38 233 | | for CRC) | | | Embase | populations with | | | (unk for | | ioi cite) | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score Heterogeneity Publication bias | |-------------------------------------|--|--|--|-------------------------|--|---|---| | | and Centre of
Reviews and
Dissemination,
clinical trial
registries | cardiovascular disease or high-risk groups
for cardiovascular disease, three were in
populations with a
history of colorectal
adenoma, one in a population with atrophic
gastritis and one was performed in pregnant
women. | | | CRC) | | | | Qin et al.
2015
China
[25] | up to October
2014
Pubmed and
Embase | Inclusions: 1) RCT, 2) correlation between folic acid supplementation and colorectal cancer risk, 3) RR with a 95% CI or the number of colorectal cancer events was reported; 4) the supplementary folic acid level was stated; 5) published in English. Population: Vascular disease, diabetes, CR adenoma, cardiovascular disease, stroke, transient ischemic attack, general | Folic acid
supplementati
on 0.5mg to
2.5mg/day ±
vit B6, B12,
Aspirin | placebo | CRC incidence 8 RCTs N= 34,598 | RR=1.00(0.82; 1.22) Male only: RR=1.01(0.82; 1.23) | Quality performed: yes Heterogeneity: I² = 0%; p = 0.82, Publication bias: Egger=0.33 | | | | Da | AIRY PRODUC | TS | | | | | Aune et al.,
2012
UK
[28] | Up to May2010 | Inclusions: 1) Cohort or case-control, 2) total dairy products or specific types of dairy products and colorectal cancer incidence | High total
diary product | Low total diary product | CRC Risk 12 Cohort 1,170,942 participants 11,579 cases Colon 5 Cohort Rectal 5 Cohort | RR=0.81(0.74;0.90) Dose response 400 g increase per day (g/day) RR=0.83(0.78;0.88) RR= 0.72(0.51;1.02) Dose response 400 g increase per day (g/day) RR=0.84(0.72;0.97) RR=0.96(0.65;1.41) Dose response 400 g | Quality not reported Heterogeneity: p=0.06; 1²=42% Publication bias: Egger p=0.58 Begg p=0.79 Heterogeneity: p=0.09; 1²=50% Heterogeneity: p=0.13; 1²=44% | | | | | | | | ` / / | | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---------------------------------|--|--------------------------------|-------------------------|------------------------|----------------------|--|--| | | | | | | | RR=1.00(0.77;1.28) | | | | | | Milk high consumption | Milk low consumption | CRC
10 Cohort | RR=0.83(0.74;0.93) Dose response 200 g | Quality not reported | | | | | consumption | Consumption | 655,483 participants | increase per day
(g/day)
RR=0.90(0.85;0.94) | Heterogeneity:
p=0.31; I ² =14% | | | | | | | 5,011 cases | | Publication bias:
Egger p=0.86
Begg p=0.84 | | | | | | | Colon
4 Cohort | RR=0.82(0.72;0.94) | Heterogeneity:
p=0.54; I ² =0% | | | | | | | | Dose response 200 g
increase per day
(g/day) | | | | | | | | | RR=0.88(0.79;0.97) | | | | | | | | Rectal
4 Cohort | RR=0.79(0.60;1.06) | Heterogeneity:
p=0.79; I ² =0% | | | | | | | | Dose response 200 g increase per day | | | | | | | | | (g/day)
RR=0.90(0.79;1.02) | | | | | | Cheese high consumption | Cheese low consumption | CRC Risk | RR=0.94(0.75;1.18) | Quality not reported | | | | | 1 | 1 | 177,551 participants | Dose response 50 g increase per day | Heterogeneity:
p=0.14; I ² =39% | | | | | | | 1,635 cases | (g/day)
RR=0.96(0.83;1.12) | Publication bias: | | | | | | | 7Co | | Egger p=0.86
Begg p=0.84 | | | | | | | Colon
5 Cohort | RR=1.04(0.69;1.55)
Dose response 50 g | Heterogeneity:
p=0.05; I ² =58% | | | | | | | | increase per day
(g/day)
RR=0.84(0.68;1.04) | | | | | | | | Rectal | RR=0.88(0.59;1.30) | Heterogeneity: | | | | | | | 3 Cohort | Dose response 50 g | p=0.84; I ² =0% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|--|---|--|---|--|---|---| | | | | | | | increase per day
(g/day)
RR=0.90(0.70;1.15) | | | Ralston et al., 2014
Australia [29] | January 2002 to
July 2009 | Inclusion: 1) English language, 2) human population, 3) keywords relating only to dairy and CRC Exclusion: 1) calcium or vitamin D intake rather than dairy food intake, or 2) examined total dairy food intake rather than specific types of dairy foods. | Highest category (ranged from >35 to >976 g non-fermented milk/day, >8 to >70 g solid cheese/day, and >110 to >350 g fermented milk/day) | Lowest category (ranged from 0 to <407, <2.5 to <30, and 0 to <32 g/day for non-fermented milk, solid cheese, and fermented milk) | CRC risk 15 Cohort 919,680 subjects, 5,200 cases | Non fermented milk overall: RR=0.85(0.77; 0.93) (in the highest category of intake average: 439 g non fermented milk/day). Subgroup: CRC men RR=0.79(0.69; 0.91), CRC women RR=0.83(0.68;1.02) Solid cheese overall RR=1.11 (0.90; 1.36) Subgroup: CRC men RR=0.94 (0.58; 1.54) CRC Women RR=1.16 (0.82;1.63) Fermented milk overall RR=1.01 (0.89; 1.15), Subgroup: CRC men RR=1.08 (0.90; 1.29) CRC women RR=0.93 (0.87; 1.12) Non Fermented milk men: RR=0.74 (0.60; 0.91) women: | Individual quality performed Heterogeneity: Non fermented milk overall CRC: I²=0% Men CRC 0% colon I²=0%, rectal I²=0%, Women CRC 42% Colon I²=0%, rectal I²=0%, solid Cheese CRC I²=16% solid cheese CRC men 43%, solid cheese CRC Women 11% Fermented milk overall 0% men I²=0% women 0% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score Heterogeneity Publication bias | |---------------------------------|--|---|--|---------|--|--|--| | Vieira et al, 2017* UK [27] | Up to May 2015 | Inclusion: 1) RCT, Cohort or case-control design, 2) report adjusted estimates of the RR and 95% CIs for the association of foods and CRC incidence; 3) for dose-response meta-analysis, studies should provide a quantitative measure of the intake. | Total diary
product
Dose response
Incremental of
400 g/day | | Rectal CRC 10 Cohort or case-control | RR=1.03 (0.78; 1.36),
Non fermented milk
men:
RR=0.81 (0.60; 1.09)
women:
RR=0.82 (0.56; 1.21),
RR=0.87 (0.83; 0.90) | High quality studies but not detailed Heterogeneity: p=0.14; I ² =18% | | | | | | | Colon
6 Cohort or
case-control | RR=0.87 (0.81; 0.94) | Publication bias: none detected High quality studies but not detailed Heterogeneity: p=0.25; I²=24% Publication bias: none detected | | | | | | | Rectal
5 Cohort or
case-control | RR= 0.93 (0.82; 1.06) | High quality studies but not detailed Heterogeneity: NS Publication bias: none detected | | | | | Milk product
Dose response
Incremental of
200 g/day | | CRC
9 Cohort or
case-control | RR= 0.94 (0.92; 0.96) | High quality studies but not detailed Heterogeneity: p=0.97; I ² =0% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score Heterogeneity Publication bias | |---------------------------------|--|---------------------------------------|------------------------------|--------------------------------|------------------------------------|---|--| | | | | | | | | Publication bias: | | | | | | | | | none detected | | | | | | | Colon 9 Cohort or case-control | RR= 0.93 (0.90; 0.96) | High quality studies but not detailed | | | | | | | | | Heterogeneity:
p=0.18; I ² =30% | | | | | | | | | Publication bias:
none detected | | | | | | | Rectal 7 Cohort or case-control | RR= 0.94 (0.91; 0.97) | High quality studies but not detailed | | | | | | | | | Heterogeneity:
p=0.93; I ² =0% | | | | | | | | | Publication bias:
none detected | | | | | Cheese product Dose response | | CRC
9 Cohort or
case-control | RR=0.94 (0.87; 1.02) | High quality studies but
not detailed Heterogeneity: | | | | | Incremental of 50 g/day | | Colon
9 Cohort or | RR=0.91 (0.80; 1.03) | NS
Publication bias: | | | | | | | case-control | | none detected | | | | | | | Rectal | RR=0.95 (0.90; 1.00) | | | | | | | | 4 Cohort or | | | | | | <u> </u> | FIBER | <u> </u> | case-control | | | | Trock et al., | 1970 up to | Inclusions: All epidemiologic studies | High intake | Low intake | CRC risk | Combined | Quality not reported | | 1990 | 1988 | concerning CRC and fiber, vegetables, | total dietary | total dietary | | OR=0.57 (0.50; 0.64) | | | USA
[31] | | grains, or fruit published in English | fiber (varying cut-off) | fiber
(varying cut-
off) | 10CC | Fiber: OR=0.58 (0.51 ; 0.66) | Heterogeneity:
p<0.01 | | | | | | | | | | | Study
Country | Search period and databases | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity | |--|-----------------------------|---|--|---|---------------------------------|---|--| | (Reference) | searched | | | | | | Publication bias | | Haas et al.,
2009
Brazil
[32] | 1950 up to
December 2006 | Inclusions: epidemiological studies of cohorts that evaluated the effectiveness of whole grains in the prevention of CRC by means of questionnaires on feed frequency | High intake
total dietary
fiber (varying
cut-off) | Low intake
total dietary
fiber
(varying cut- | CRC risk 10 Cohort 7,745 cases | Highest quintile:
RR= 0.94 (0.85; 1.03)
Lowest quintile | Quality not reported Heterogeneity not reported | | | | | | off) | 1,719,590 patients | RR=0.96 (0.88; 1.04) | | | Aunes et al.,
2011 | Up to
December 2010 | Inclusions: 1) Cohort or case-control, 2) investigate the association between dietary | High intake total dietary | Low intake total dietary | CRC Risk | RR=0.88 (0.82; 0.94) | Quality not reported | | UK
[30] | | fiber or whole grain intake and incidence of colorectal cancer | fiber | fiber | 19 Cohort or case-control | Dose response analysis
10 g/day intake
RR=0.90 (0.86; 0.94) | Heterogeneity:
p=0.48; I ² =0% | | | | | | | | | No publication bias | | | | | Fruit fiber high intake | Fruit fiber low intake | CRC risk | RR= 0.94 (0.85; 1.04) | Quality not reported | | | | | | | 9 Cohort | Dose response analysis
10 g/day intake
RR=0.93 (0.82; 1.05) | Heterogeneity: p=0.11; I ² =39% | | | | | | | | | No publication bias | | | | | Vegetable fiber high | Vegetable fiber low | CRC risk | RR= 0.98 (0.91; 1.06) | Quality not reported | | | | | intake | intake | 9 Cohort | Dose response analysis
10 g/day intake
RR=0.98 (0.91; 1.06) | Heterogeneity:
p=0.48; I ² =0% | | | | | | | | | No publication bias | | | | | Legume fiber high intake | Legume fiber low intake | CRC risk | RR= 0.89 (0.78; 1.02) | Quality not reported | | | | | | | 4 Cohort | Dose response analysis
10 g/day intake
RR=0.62 (0.27; 1.42) | Heterogeneity:
p=0.17; I ² =41%
No publication bias | | | | | Cereal fiber high intake | Cereal fiber low intake | CRC risk | RR= 0.90 (0.83; 0.96) | Quality not reported | | | | | 8 | | 8 Cohort | Dose response analysis
10 g/day intake
RR=0.62 (0.27; 1.42) | Heterogeneity: p=0.94; I ² =0% | | | | | | | | | No publication bias | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|--|--|--|---|--|---|---| | | | | Whole grain
high intake | Whole grain low intake | CRC risk
7 Cohort | RR= 0.79 (0.72; 0.86)) Dose response analysis 90 g/day (3 servings) intake RR=0.83 (0.78; 0.89) | Quality not reported Heterogeneity: p=0.98; I ² =0% No publication bias | | Vieira et al,
2017*
UK
[27] | Up to May
2015 | Inclusion: 1) RCT, Cohort or case-control design, 2) report adjusted estimates of the RR and 95% CIs for the association of foods and CRC incidence; 3) for dose–response meta-analysis, studies should provide a quantitative measure of the intake. | Whole grains
Dose response
Incremental of
90g/day | | CRC risk 6 Cohort | RR= 0.83 (0.79; 0.89) | Quality not reported Heterogeneity: p=0.30; I ² =18% No publication bias | | | | | | | Colon 4 Cohort Rectal 3 Cohort | RR=0.82 (0.73; 0.92) RR=0.81 (0.54; 1.20) | Heterogeneity:
p=0.49; I ² =0%
Heterogeneity:
P<0.01; I ² =91% | | Gianfredi et
al., 2018
Italy
[33] | Up to October
2016
Pubmed | Inclusions: 1) articles in English only; 2) full text articles; 3) performed on humans; 4) focussed on fibre intake; 5) epidemiological studies evaluating the relationship between fibre intake and risk of colon cancer alone. Exclusions: 1) all the studies evaluating colon and rectal cancer in combination 2) different outcome; 3) studies without proper sufficient statistics 4) in vitro model studies; 5) animal model studies; 6) experimental animal models; 7) studies without original data | High intake
total dietary
fiber
(varying cut-
off) | Low intake
total dietary
fiber
(varying cut-
off) | Colon
25 case-
control or
Cohort
N=2,627,391 | RR=0.74 (0.67; 0.82) Subgroup Female: RR=0.88 (0.73; 1.05), Male: RR=0.92 (0.81; 1.04) | Heterogeneity: P=0.01; I ² =44% No publication bias | | | | FRUI | T AND VEGET. | ABLE | | | | | Trock et al.,
1990
USA
[31] | 1970 up to
1988 | Inclusions: All epidemiologic studies concerning CRC and fiber, vegetables, grains, or fruit published in English | High intake total vegetable | Low intake total vegetable | CRC risk | Vegetable OR=0.48 (0.41; 0.57) | Quality not reported Heterogeneity: p<0.01 | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score Heterogeneity Publication bias | |---------------------------------|--|---|-----------------------------|----------------------------|---------------------|---|---| | Huxley et | 1996 to January | Inclusions: 1) published quantitative | High intake | Low intake | CRC Risk | RR=0.99 (0.90; 1.08) | Quality not reported | | al., 2009*
Australia
[34] | 2008 | estimates and standard errors (or some other
measure of variability) of the association
between each risk factor and 2) CRC | total fruit | total fruit | 16 Cohort | | Heterogeneity:
p=0.11 | | | | Exclusions: 1) provided only an estimate of effect, with no means by which to calculate | | | | | Publication bias:
Egger p=0.30 | | | | the standard error, or if the estimates were | | | Colon | RR=1.01 (0.86; 1.18) | - | | | | not at least age adjusted | | | Rectal | RR=0.78 (0.63; 0.97) | Heterogeneity:
p=0.06 | | | | | High intake vegetable | Low intake vegetable | CRC Risk | RR=0.95 (0.88; 1.04) | Quality not reported | | | | | | , againess | 16 Cohort | | Heterogeneity:
p=0.18 | | | | | | | | | Publication bias:
Egger p=0.29 | | | | | | | Colon | RR=0.93 (0.85; 1.10) | - | | | | | | | Rectal | RR=0.88 (0.69; 1.12) | - | | Aune et al., 2011 | Up to May
2010 | Inclusions: 1) Cohort or case-control, 2) fruit and vegetable intake and colorectal cancer | High intake total fruit and | Low intake total fruit and | CRC Risk | RR=0.92 (0.86; 0.99) | Quality not reported | | UK
[35] | | risk. | vegetable
combined | vegetable
combined | 11 Cohort | Dose response analysis 100 g/day intake | Heterogeneity:
p=0.24; I ² =22% | | | | | | | 1,523,860 | RR=0.98 (0.97; 0.99) | | | | | | | | participants | | Publication bias: | | | | | | | 11,853 cases | DD 001 (001 000) | Egger p=0.52 | | | | | | | Colon | RR=0.91 (0.84; 0.99) | Quality not reported | | | | | | | 12 Cohort | | Heterogeneity:
p=0.32; I ² =13% | | | | | | | Rectal
10 Cohort | RR= 0.97 (0.86; 1.09) | Quality not reported | | | | | | | | | Heterogeneity:
p=0.65; I ² =0% | | | | | High intake | Low intake | CRC Risk | RR= 0.90 (0.83; 0.98) | Quality not reported | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |-------------------------------------
--|---|--|---|---------------------------------------|---|---| | | | | total fruit | total fruit | 14 Cohort | Dose response analysis
100 g/day intake
RR=0.89 (0.81; 0.98) | Heterogeneity:
p=0.05; 1 ² =42%
Publication bias:
Egger p=0.79 | | | | | | | Colon
11 Cohort | RR=0.89 (0.81; 0.98) | Quality not reported Heterogeneity: p=0.14; 1 ² =33% | | | | | | | Rectal
7 Cohort | RR=0.91 (0.76-1.09) | Quality not reported Heterogeneity: p=0.09; 1 ² =45% | | | | | High intake
total vegetable | Low intake
total
vegetable | CRC
15 Cohort | RR=0.91 (0.86–0.96) Dose response analysis 100 g/day intake RR=0.90 (0.85; 0.95) | Quality not reported Heterogeneity: p=0.53; I ² =0% Publication bias: Egger p=0.14 | | | | | | | Colon
11 Cohort | RR=0.87 (0.81; 0.94) | Quality not reported Heterogeneity: p=0.70; 1²=0% | | | | | | | Rectal
8 Cohort | RR=0.94 (0.85; 1.04) | Quality not reported Heterogeneity: p=0.59; 1²=0% | | Wu et al.,
2013
China
[36] | Up to April
2012 | Inclusions: 1) used a case—control or prospective study design; 2) evaluated the association between CV intake and CRC risk; 3) presented odds ratio (OR), RR, or hazard ratio (HR) estimates with 95% CI, standard | High intake
cruciferous
vegetable,
cabbage,
broccoli | Low intake
cruciferous
vegetable,
cabbage,
broccoli | CRC Risk 10 Cohort; 23 case- control | Cruciferous
RR=0.82 (0.75; 0.90)
Cabbage
RR=0.76 (0.60; 0.97) | Quality: The range of
quality scores was
from 4 to 9 on NOS
(median=7) | | | | errors (SE), or data necessary to calculate these. | | | 1,295,063 | Broccoli | Heterogeneity: Cruciferous: p<0.01; | | Study
Country | Search period and databases | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity | |--|------------------------------------|--|--|---|--|---|--| | (Reference) | searched | | | | subjects
24,275 cases | RR=0.82 (0.65; 1.02) | Publication bias I ² =66% Cabbage: p=0.23; I ² =58% Broccoli: p=0.05; I ² =55% | | Woo et al.,
2014
Korea
[40] | Up to June 20 th , 2014 | Inclusions: (1) original articles with a case-control or Cohort design; (2) articles reporting on cancer risk and diet in the Korean population; (3) studies reporting adjusted OR or RR with 95% CI for the risk of cancer in subjects with the highest category of food intake compared with those with the lowest food intake; and (4) in cases of multiple publications drawn from studies of the same population, only the most recent study was included. | Highest level
of vegetable
consumption | Lowest level
of vegetable
consumption | CRC
2 studies | RR=0.51 (0.19; 1.32) | No publication bias Quality Not performed Heterogeneity p=0.024, I2=80.5% Publication bias Not performed | | Zhu et al.,
2015
[39] | Up to
December
2014 | Inclusions: 1) Cohort; 2) the exposure was legume consumption, including tofu or soybeans, peas, beans, lentils, and other podded plants and all products made of them; 3) the outcome was risk of CRC, incidence of CRC; 4) provided or allowed calculation of RR with 95% CI Exclusion: 1) retrospective design; 2) were Non- human, in vitro research, case reports; 3) focused on the recurrence, growth; 4) focused on adenoma; and 5) did not adjust for confounders. | High intake
legume | Low intake legume | CRC Risk 14 Cohort 1,903,459 participants 12,261 cases | RR=0.91 (0.84; 0.98) CRC men RR=0.92 (0.85; 1.01) CRC Women RR=0.90 (0.78; 1.03) | Quality not reported Heterogeneity: p=0.01; I²=40.2% Publication bias Egger p=0.16 Begg p=0.31 | | Tsé et al.,
2014
Australia
[37] | Up to May 2013 | Inclusion 1) original data was provided; 2) the association between cruciferous vegetable intake and colorectal neoplasm risk was addressed; 3) the risk point estimate was | High intake
total vegetable | Low intake
total
vegetable | CRC 11 Cohort; 18 case- | OR=0.92 (0.83; 1.01) | Quality not reported Heterogeneity: p<0.01; I ² =66% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score Heterogeneity Publication bias | |---------------------------------------|--|---|-------------------------------------|--------------------|--|---|--| | | | reported as an OR or RR, or the data was presented such that an OR could be calculated; and 4) the 95% CI was reported, | | | control | | Publication bias
Egger p=0.13 | | | | or the data was presented such that the CI could be calculated. | | | Colon | OR=0.84 (0.72; 0.98) | Quality not reported Heterogeneity: p<0.01; I ² =64% | | | | | | | Rectal | OR=0.99 (0.67; 1.46) | Quality not reported Heterogeneity: p<0.01; I ² =87% | | Kashino et al., 2015
Japan
[38] | up to
December
2014 | Inclusion: 1) only studies on Japanese populations living in Japan, 2) presented colorectal cancer risk associated with intakes of total vegetable, green yellow vegetable or green vegetable Exclusion: 1) results only for intake of individual vegetable. | Highest
vegetable
consumption | Lowest consumption | CRC 6 Cohort, 11 case-control Colon 3 Cohort; 5 case-control Rectal 4 Cohort | Cohort: RR=1.00 (0.92; 1.10) case-control: RR=0.75 (0.59; 0.96) Cohort: RR=0.95 (0.83; 1.09) case-control: RR=0.80(0.58; 1.11) case-control: RR=1.08 (0.93; 1.26) | Quality not reported Heterogeneity: Cohort: p=0.52; I²=0% case-control: p=0.03; I²=45% No publication bias Quality not reported Heterogeneity: Cohort: p=0.35; I²=10% case-control: p=0.18; I²=36% No publication bias Quality not reported Heterogeneity: Cohort: p=0.52; I²=10% case-control: p=0.52; I²=10% case-control: p=0.09; I²=48% | | | | | | | | | No publication bias | | Study
Country | Search period and databases | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity | |-------------------------------------|-----------------------------|---|--|---------|---------------------------------------|----------------------|--| | (Reference) | searched | | | | | | Publication bias | | Vieira et al,
2017
UK
[27] | Up to May
2015 | Inclusion: 1) RCT, Cohort or case-control design, 2) report adjusted estimates of the RR and 95% CIs for the association of foods and CRC incidence; 3) for dose–response meta-analysis, studies should provide a | Vegetable
Dose response
Incremental of
100g/day | | CRC Risk 11 Cohort or case-control | RR=0.98 (0.96; 0.99) | High quality studies but not detailed Heterogeneity: p=0.48; I ² =0% | | | | quantitative measure of the intake. | | | | | Publication bias:
Egger p=0.92 | | | | | | | Colon
8 Cohort or
case-control | RR=0.97 (0.95; 0.99) | High quality studies but not detailed | | | | | | | | | Heterogeneity: p=0.77; I ² =0% | | | | | | | | | Publication bias:
Egger p=0.77 | | | | | | | Rectal
8 Cohort or
case-control | RR=0.99 (0.96; 1.02) | High quality studies but not detailed | | | | | | | | | Heterogeneity:
p=0.78; I ² =0% | | | | | | | | | Publication bias:
Egger p=0.72 | | | | | Fruits Dose response Incremental of | | CRC
13 Cohort or
case-control | RR=0.96 (0.93; 1.00) | High quality studies but not detailed | | | | | 100g/day | | | | Heterogeneity:
p<0.001;
I ² =68% | | | | | | | | | Publication bias:
Egger p=0.07 | | | | | | | Colon
12 Cohort or
case-control | RR=0.98 (0.96; 1.01) | High quality studies but not detailed | | | | | | | | | Heterogeneity: | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score Heterogeneity Publication bias | |--|--|--|---|---------|---------------------------------------|----------------------|---| | | | | | | | | P=0.09; I ² =38% Publication bias: Egger p=0.55 | | | | | | | Rectal
9 Cohort or
case-control | RR=0.98 (0.93; 1.03) | High quality studies but not detailed Heterogeneity: | | | | | | | | | P=0.02; I ² =55% Publication bias: Egger p=0.41 | | | | | Legumes
Dose response
Incremental of
50g/day | | CRC
4 Cohort or
case-control | RR=1.00 (0.95; 1.06) | High quality studies but not detailed Heterogeneity: P=0.20; I ² =33% | | | | | | | | | None detected | | | | | | | Colon
6 Cohort or
case-control | RR=0.97 (0.83; 1.15) | Heterogeneity:
P=0.04; I ² =55% | | | | | | | Rectal
4 Cohort or
case-control | RR=0.99 (0.78; 1.25) | Heterogeneity:
P=0.14; I ² =45% | | | | | SOY | | | | | | Tsé et al.,
2016,
Autralia
[41] | Throught May 2014 | (1) original data on soy consumption and GI neoplasms risk, that of the esophagus, stomach and/or colorectum, were provided; (2) the risk point estimate was reported as OR or RR, or the data were presented such | Soy intake | | CRC risk | OR=0.92 (0.87; 0.97) | Quality Not reported Heterogeneity p=0.3 | | | | that an OR could be calculated; (3) the 95 % confidence interval (CI) was reported, or the data were presented such that the CI could be | | | | | Publication bias
Egger's p<0.001 | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |-------------------------------------|--|---|------------------------------------|-----------------------------------|-----------------------|--|---| | | | calculated. | | | Rectal cancer | OR=0.92(0.96;0.99) OR= 0.94 (0.80;1.09) | Quality Not reported Heterogeneity p=0.163 Publication bias Egger's p<0.001 Quality Not reported Heterogeneity Not reported Publication bias Egger's p<0.001 | | Zhu et al,
2015
China
[39] | Up to
December 2014 | Inclusions 1) a prospective Cohort design; 2) the exposure was legume consumption, including tofu or soybeans, peas, beans, lentils, and other podded plants and all products made of them; 3) the outcome was risk of CRC, incidence of colorectal cancer; 4) provided or allowed calculation of RR with 95% CI Exclusions: 1) had a retrospective design; 2) were Non- human, in vitro research, case reports; 3) focused on the recurrence, growth; 4) focused on adenoma; and 5) did not adjust for confounders. | Highest
soybeans
consumption | Lowest
soybeans
consumption | CRC risk
3 studies | Soybean
RR = 0.85 (0.73; 0.99) | Quality Not reported Heterogeneity I²=40.2%, p=0.01 Publication bias Egger's p=0.16 Begg's p=0.31 | | Woo et al,
2014
Korea
[40] | Up to June 20 th , 2014 | Inclusions: (1) original articles with a case-
control or Cohort design; (2) articles
reporting on cancer risk and diet in the
Korean population; (3) studies reporting
adjusted OR or RR with 95% CI for the risk
of cancer in subjects with the highest | Highest level of intake | Lowest level of intake | CRC risk | Soybean:
OR=1.01 (0.70;1.47) | Quality performed
Not reported
Heterogeneity
I ² =17.6%, p=0.297 | | Study | Search period | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score | |-------------|---------------|---|--------------|---------|----------|---------|-----------------------| | Country | and databases | | | | | | Heterogeneity | | (Reference) | searched | | | | | | Publication bias | | | | category of food intake compared with those | | | | | Publication bias: not | | | | with the lowest food intake; and (4) in cases | | | | | reported | | | | of multiple publications drawn from studies | | | | | _ | | | | of the same population, only the most recent | | | | | | | | | study was included. | | | | | | aRR: adjusted risk ratio, Ca: calcium, case-control: case-control study, CI: confidence interval, Cohort: cohort study, CRA: colorectal adenoma, CRC: colorectal cancer, FU: follow-up, GI: gastro-intestinal, HR: hazard ratio, Mg: magnesium, NS: not specified, NSAID: non-steroidal anti-inflammatory drugs, NOS: Newcastle-Ottawa Scale, OR: odds ratio, RCT: randomised clinical trial, RR: risk ratio, unk: unknown, Vit: vitamin; A: includes also the comparisons of Vit E + b-Carotene vs placebo; Vit A + b-Carotene vs placebo; Vit E + selenium alone vs placebo; Vit CE + b-Carotene (± simvastatin) vs Placebo (± simvastatin); Vit CE + b-Carotene + selenium + zinc vs placebo. All were had not significant risk ratios ## Supplementary Table 2. Components with no protective effect on CRC prevention | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---------------------------------|--|---|---------------|---------------|-----------|-----------------------|--| | | | | Vitamine E | | | | | | Pais et al., | Up to May | Inclusions : 1) RCT, 2) antioxidants alone | Vit A, C and | placebo or no | CRC | Vit E alone: | Quality not | | 2013 | 2009 | or in combination versus placebo or no | E, selenium | intervention | incidence | RR =0.99 (0.86; 1.13) | reported | | Romania | | intervention, 3) reported the incidence of | or b-carotene | | | | _ | | [46] | Cochrane | colorectal cancer as primary or secondary | | | 12 RCT | | Heterogeneity: | | | Library, | outcome 4) global or cancer related | | | | | Overall: $I^2 = 7\%$, | | | Medline | mortality 5) participants had to be free of | | | N=17,914 | | p=0.38 | | | | history of cancer (except skin cancer), 6) | | | | | | | | | ≥age 18 years, 2) general populations or | | | | | Publication bias: | | | | from other patients groups primarily with | | | | | low | ^{*} See calcium section ^{**} not primary outcome | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|---|---|--|----------------------------|-------------------------------|---|---| | | | non-gastrointestinal diseases. Exclusions: 1) antioxidants supplementation through dietary increases in fruits, vegetables or fibers. | | | | | | | Bjelakovic
et al., 2008
Denmark
[43] | 1945-2007
CENTRAL,
MEDLINE,
EMBASE,
LILACS, SCI-
EXPANDED | Inclusions: 1) randomised trials, irrespective of blinding, publication status, publication year, or language, 2) adults, 3) antioxidant supplements at any dose, duration, and route of administration 4) compared to placebo or no intervention. | Vit A, C and
E, selenium
or b-carotene | placebo/no
intervention | CRC incidence* 2RCT N=21,114 | Vit E alone:
RR = 1.10 (0.87; 1.39); | Quality performed with a published scale Heterogeneity: Tau2 = 0.0; Chi2 = 0.57, df = 1 (P = 0.45); I2 =0.0% Test for overall effect: Z = 0.80 (P = 0.42) Publication bias: unk for CRC | | Papaioannou et al, 2011
UK ^A
[45] | Up to March 2009 Cochrane Library, MEDLINE, PreMED- LINE, CINAHL, EMBASE, Web of Science, BIOSIS and Research Registers UKCRN, MRC Register, | Inclusions: 1) RCT,
2) antioxidants (vitamin A, C and E, selenium or b- carotene) with or without other agents, 3) adults, 4) general population 5) compared to no intervention, placebo or agents other than antioxidants, Exclusions: none of the inclusions Population: healthy populations and in populations with histories of cardiovascular disease; smoking or asbestos exposure; skin cancer; and atrophic gastritis | Vit E alone
(studies with
event data) | Placebo | CRC incidence 2 RCTs N=32,006 | RR=1.05 (0.83; 1.33) | Quality performed with a published scale Heterogeneity: Overall: I ² = 0%, Publication bias: unk for CRC | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|---|--|---|-------------------------|---|----------------------------------|---| | | Current controlled trials | | | | | | | | | | | Vit E
(adjusted for
other
antioxidants;
studies with or
without event
data) | Placebo
alone | CRC incidence 6 RCTs N=not reported | RR=0.99 (0.86;1.14) | Quality performed with a published scale Heterogeneity: Overall: I ² = 0%, Publication bias: unk for CRC | | Liu et al.,
2015
China
[23] | Up to April
2014
Pubmed | Inclusions: [1] they were cohort studies [2]; the exposure of interest was vitamin or multiple-vitamin supplement intake [3]; the outcome of interest was the incidence of colorectal, colon, or rectal cancer [4]; relative risk (RR) or odds ratio (OR) estimates with 95 % confidence intervals (95 % CI) were reported; Exclusions: Articles with < 6 stars were excluded. | highest level
vitamin | Lowest level of vitamin | CRC incidence 13 COHORT for Vit E N=unk | Vit E:
RR = 0.94 (0.82; 1.32) | Quality performed: NOS Heterogeneity: Vit E: I ² = 10%; Publication bias: Vit E: p=0.02 | | Heine-
Bröring et
al., 2015
[22] | Up to January
2013
Medline,
Embase and
Cochrane | Inclusions: prospective cohort studies if they reported original and peer-reviewed data on the association of dietary supplement use and colorectal, colon, or rectal cancer incidence. To be included in the meta-analyses, information on ascertainment of colorectal cancer cases, and estimates of the relative risk with 95% confidence intervals (95% CI) were required Exclusions: studies on colorectal adenomas were excluded, Randomized controlled trials and case-control studies | Intake of
multivitamins,
Vit A, Vit C,
Vit E, Vit D,
Calcium* and
Garlic. | No intake | Colon
cancer
incidence
5 COHORT
for Vit E | Vit E
RR = 0.85 (0.72; 1.01) | Quality performed: none Heterogeneity: Vit E I²=20%; p=0.29 Publication bias: not reported | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|---|---|---|--|---|--------------------------------------|--| | | | were excluded | Highest level
of
multivitamins,
Vit A, Vit C,
Vit E, Vit D,
Ca and Garlic. | Lowest level
of
multivitamin
s, Vit A, Vit
C, Vit E, Vit
D, Ca and
Garlic. | Colon
cancer
incidence
5 COHORT
for Vit E, | Vit E:
RR = 0.82 (0.67; 0.99) | Quality performed: none Heterogeneity: Vit E I ² =11%; p=0.34 Publication bias: not reported | | Alkhenizan
et al. 2007
Saudi
Arabia [42] | January 1966-
June 2005
Medline,
Embase and
Cochrane | Inclusions: 1) RCTs, 2) outcomes related to cancer prevention 3) intake of vit E supplements alone or with other supplements 3) >18 years old 4) supplementation was in capsule or tablet form, to be consumed by mouth. Exclusions: | Intake of
vitamin E
supplement
alone or with
other
supplements | placebo or
control | CRC incidence 2 RCTs with vit E alone N= 24,114 (vit E alone) | Vit E Alone:
RR=1.05 (0.79; 1.39) | Quality performed: Jadad score Heterogeneity: Not reported for CRC incidence Publication bias: not reported | | Arain et al.,
2010
UK
[44] | January 1999-
January 2009 Medline, Embase and Cochrane, OVID data base and other library sources, Google scholar | Inclusions: 1) RCTs Exclusions: 1) combination of vitamins or antioxidant effect 2) outcome of changes at cellular level 3) dichotomous outcome of colorectal cancer | Intake of vit E | placebo or
other
supplement | CRC incidence 4 RCTs (2 studies 300UI/day, one 400UI/day, one 50mg/day) | Vit E
RR= 0.89 (0.76; 1.05) | Quality
performed:
CONSORT
scoring Heterogeneity:
I ² =7%; p=0.36 Publication bias:
not reported | | | | | Vitamin C | | | | | | Heine- | Up to January | Inclusions: prospective cohort studies if | Intake of | No intake | Colon | Vit C | Quality | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|--|--|---|--|--|----------------------------------|---| | Bröring et al., 2015 [22] | 2013 Medline, Embase and Cochrane | they reported original and peer-reviewed data on the association of dietary supplement use and colorectal, colon, or rectal cancer incidence. To be included in the meta-analyses, information on ascertainment of colorectal cancer cases, and estimates of the relative risk with 95% confidence intervals (95% CI) were required Exclusions: studies on colorectal adenomas were excluded, Randomized controlled trials and case-control studies were excluded | multivitamins, Vit A, Vit C, Vit E, Vit D, Calcium* and Garlic. | | cancer
incidence
3 COHORT
for Vit C | RR = 0.87 (0.63; 1.21), | performed: none Heterogeneity: Vit C I²=77%; p=0.01 Publication bias: not reported | | | | | Highest level
of
multivitamins,
Vit A, Vit C,
Vit E, Vit D,
Ca and Garlic. | Lowest level of multivitamin s, Vit A, Vit C, Vit E, Vit D, Ca and Garlic. | Colon
cancer
incidence
3 COHORT
for Vit C, | Vit C:
RR = 0.85 (0.68; 1.05) | Quality performed: none Heterogeneity: Vit C I ² =11%; p=0.33 Publication bias: not reported | | Papaioannou
et al, 2011
UK ^A
[45] | Up to March 2009 Cochrane Library, MEDLINE, PreMED- LINE, CINAHL, EMBASE, Web of Science, BIOSIS and Research | Inclusions: 1) RCT, 2) antioxidants (vitamin A, C and E, selenium or b- carotene) with or without other agents, 3) adults, 4) general population 5) compared to no intervention, placebo or agents other than antioxidants, Exclusions: none of the inclusions Population: healthy populations and in populations with histories of cardiovascular disease; smoking or asbestos exposure; skin cancer; and | Vit C (adjusted for other antioxidants; studies with no event data) | No Vit C
(adjusted for
other
antioxidants) | CRC incidence 2 RCTs N=not reported | RR= 0.84 (0.64;1.10) | Quality performed with a published scale Heterogeneity: Overall: I ² = 0%, Publication bias: unk for CRC | | Study | Search period | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score | |---------------------|-----------------------|---|-----------------|-----------------|--------------|---
-----------------------------------| | Country (Deference) | and databases | | | | | | Heterogeneity
Publication bias | | (Reference) | searched
Registers | atrophic gastritis | | | | | Publication bias | | | UKCRN, MRC | atrophic gastritis | | | | | | | | Register, | | | | | | | | | Current | | | | | | | | | controlled trials | | | | | | | | | | Antioxidants combination or | vitamine combin | ation with othe | r components | | | | Heine- | Up to January | Inclusions: prospective Cohort studies if | Intake of | No intake | CRC | Multivitamins: | Quality | | Bröring et | 2013 | they reported original and peer-reviewed | multivitamins | 1 to make | incidence | RR=0.92(0.86;0.98) | performed: none | | al., 2015 | | data on the association of dietary | | | | (*****,******************************** | | | [22] | Medline, | supplement use and colorectal, colon, or | | | 16 Cohort | | Heterogeneity: | | | Embase and | rectal cancer incidence. To be included in | | | for | | Multivitamins: | | | Cochrane | the meta-analyses, information on | | | multivitamin | | I ² =0%; p=0.43 | | | | ascertainment of CRC cases, and | | | S | | | | | | estimates of the RR with 95% CI were | | | | | Publication bias: | | | | required | | | | | not reported | | | | Exclusions: studies on colorectal | | | | | | | | | adenomas, RCTs and case-control | | | | | | | Pais et al., | Up to May | Inclusions : 1) RCT, 2) antioxidants alone | Vit A, C and | placebo or no | CRC | Overall antioxidant | Quality not | | 2013 | 2009 | or in combination versus placebo or no | E, selenium or | intervention | incidence | combination: | reported | | Romania | | intervention, 3) reported the incidence of | β-carotene | | | RR=0.98 (0.89;1.07) | | | [46] | Cochrane | CRC as primary or secondary outcome 4) | | | 4 RCT | | Heterogeneity: | | | Library, | global or cancer related mortality 5) | | | | | Overall: | | | Medline | participants had to be free of history of | | | N=52,262 | Vit C combination | $I^2 = 7\%$, p=0.38 | | | | cancer (except skin cancer), 6) ≥age 18 | | | | RR=0.83(0.69;1.00) | D 11: .: 1: | | | | years, 2) general populations or from | | | | Vit E combination | Publication bias: | | | | other patients groups primarily with non-GI diseases. | | | | RR=0.97(0.85;1.10) | low | | | | Of diseases. | | | | KK=0.97(0.65,1.10) | | | | | Exclusions: 1) antioxidants | | | | | | | | | supplementation through dietary increases | | | | | | | | | in fruits, vegetables or fibers. | | | | | | | Bjelakovic | 1945-2007 | Inclusions: 1) RCT, irrespective of | antioxidant | placebo/no | CRC | Overall: | Quality | | et al., 2008 | | blinding, publication status, publication | supplements | intervention | incidence* | RR=0.97(0.86; 1.09) | performed with a | | Denmark | Central, | year, or language, 2) adults, 3) | (Vit A, C and | | | | published scale | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|---|---|--|--|---|--|---| | [43] | Medline,
Embase, Lilacs,
Sci-Expanded | antioxidant supplements at any dose, duration, and route of administration 4) compared to placebo or no intervention. | E, selenium or β-carotene) | | 20 RCT
N=211,818
for all GI
cancer
outcomes
(unk for
CRC) | | Heterogeneity: I ² = 20%, Publication bias: unk for CRC | | Papaioannou et al, 2011
UK ^A
[45] | Up to March 2009 Cochrane Library, MEDLINE, PreMED- LINE, CINAHL, EMBASE, Web of Science, BIOSIS and Research Registers UKCRN, MRC Register, Current controlled trials | Inclusions: 1) RCT, 2) antioxidants (vitamin A, C and E, selenium or β-carotene) with or without other agents, 3) adults, 4) general population 5) compared to no intervention, placebo or agents other than antioxidants, Exclusions: none of the inclusions Population: healthy populations and in populations with histories of CVD; smoking or asbestos exposure; skin cancer; and atrophic gastritis | Antioxidants (Vit A, C and E, selenium or β-carotene) +/- aspirin, simvastatin, ramipril | No antioxidants +/-aspirin, simvastatine, ramipril | CRC incidence 9 RCT n=148,922 | RR=1.00(0.88; 1.13)
Random effect model | Quality performed with a published scale Heterogeneity: I ² = 25%, p=0.22 Publication bias: none | | Alkhenizan
et al. 2007
Saudi
Arabia
[42] | January 1966-
June 2005
Medline,
Embase and
Cochrane | Inclusions: 1) RCTs, 2) outcomes related to cancer prevention 3) intake of Vit E supplements alone or with other supplements 3) >18 years old 4) supplementation was in capsule or tablet form, to be consumed by mouth. | Intake of
vitamin E
supplement
alone or with
other
supplements | placebo or
control | CRC incidence 4 RCTs (2 RCTs with vit E alone) N=91,099 (all studies) 24,114 (vit E alone) | Vit E with other
supplements:
RR=0.95(0.81;1.12)
Fixed effect model | Quality performed: Jadad score: high Heterogeneity: Not reported for CRC incidence Publication bias: not reported | | Study
Country | Search period and databases | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity | |--|-----------------------------|---|--|---------|--|---|---| | (Reference) | searched | | | | | | Publication bias | | | | | β Carotene | | • | | | | Druesne-Pecollo et al., 2010 France [47] | up to April 2009 Pubmed | Inclusions: 1) RCTs, 2) original article 3) intervention consisting in β-carotene supplementation (given alone or in combination with other antioxidants), 4) primary cancer as outcome, 5) reporting the RR and 95% CIs of cancers at the end of the intervention (excepted for the Women's Health Study, which provided data 2 years after the end of the intervention) | β-carotene alone 20mg, 30mg and 50mg daily, FU: 2 to 17 yrs β-carotene (alone and in combination) | Placebo | CRC incidence 3 RCTs N=91,080 CRC incidence 4 RCTs for overall 3 RCTs for alone 5 RCTs for combination N=151,118 for overall. | β-carotene alone: RR=0.99(0.83; 1.18) Overall: RR=0.96(0.85-1.09) β-carotene in combination: RR=0.94(0.79; 1.11) Subgroup: 20-30mg/day: RR=0.96(0.84;1.09), Majority of Men | Quality performed: not done Heterogeneity: I²=94% Publication bias: not reported Quality performed: not done Heterogeneity: Overall: I²=93% Alone: I²=94% Combined: I²=70% Publication bias: | | | | | | | 91,080 for alone, | RR=0.99(0.93; 1.05)
Majority of Women | not reported | | | | | | | alone,
89,171 for
combination, | Majority of Women
RR=0.99(0.93; 1.06) | | | | | | | | | | | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|---|--|---|-------------------------------|-------------------------------|---|--| | Pais et al.,
2013
Romania ^B
[46] | Up to May
2009
Cochrane
Library,
Medline | Inclusions: 1) RCT, 2) antioxidants alone or in combination versus
placebo or no intervention, 3) reported the incidence of CRC as primary or secondary outcome 4) global or cancer related mortality 5) participants had to be free of history of cancer (except skin cancer), 6) ≥age 18 years, 2) general populations or from other patients groups primarily with non-GI diseases. Exclusions: 1) antioxidants supplementation through dietary increases in fruits, vegetables or fibers. | β-carotene
alone
Dose 6–50
mg/day | placebo or no
intervention | CRC incidence 4 RCTs N=16,913 | β-carotene alone:
RR=1.09(0.92; 1.29) | Quality not reported Heterogeneity: Unk for β-carotene Publication bias: Unk for β-carotene | | | | in rutes, vegetables of nocis. | β-carotene
(alone and in
combination) | placebo or no
intervention | CRC incidence 4 RCTs N=16,913 | β-carotene combination: RR=0.99(0.89; 1.11) | Quality not reported Heterogeneity: Unk for beta carotene Publication bias: Unk for beta carotene | | Bjelakovic
et al., 2008
Denmark
[43] | Central,
Medline,
Embase,
LILACS, sci-
expanded | Inclusions: 1) RCT, irrespective of blinding, publication status, publication year, or language, 2) adults, 3) antioxidant supplements at any dose, duration, and route of administration 4) compared to placebo or no intervention. | β-carotene
alone | placebo/no
intervention | CRC incidence* 3 RCT n=36,782 | β-carotene alone:
RR=1.09(0.79;1.51); | Quality performed with a published scale Heterogeneity: (P = 0.12); I ² =53% Test for overall effect: Z = 0.51 (P = 0.61) Publication bias: | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|---|--|---|-------------------------|--|---|--| | | | | | | | | unk for CRC | | | | | β-carotene (alone and in combination) | placebo/no intervention | CRC incidence* 20 RCT N=211,818 for all GI cancer outcomes (unk for CRC) One MA for each group | β-carotene and Vit A: RR=0.97(0.76;1.25); β-carotene and Vit E RR=1.20(0.89;1.63); β-carotene, vit C, and vit E: RR=0.84(0.65;1.07); β-carotene, Vit C, Vit E, and selenium RR=0.88(0.49; 1.58) | unk for CRC Quality performed with a published scale Heterogeneity non-applicable. β-carotene and vit A: Test for overall effect: Z = 0.20 (P = 0.84) β-carotene and Vit E Test for overall effect: Z = 1.18 (P = 0.24) β-carotene, vit C, and vit E: Test for overall effect: Z = 1.44 (P = 0.15) β-carotene, vit C, vit E, and selenium Test for overall effect: Z = 0.42 (P = 0.67) | | | | | | | | | Publication bias: | | Asano et al.,
2004
Canada
[48] | up to
September
2003
Medline,
preMedline, | Inclusion: RCTs that compared a NSAID intervention to a placebo or an alternate intervention for the prevention of CRAs or CRC were included, provided the trials reported at least one of the following | Aspirin 325
mg and/or β-
carotene 50
mg every
other day | placebo | CRC incidence 1 RCT¶ | RR=1.15 (0.80; 1.64) | unk for CRC Not specified | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|---|---|--|--|--|--|--| | | Embase and
Central | outcomes: the number of patients who developed 1) at least one CRA, 2) more than one CRA, 3) at least one CRA that was 1 cm or greater, 4) at least one pathologic diagnosis of a tubulo-villous or villous CRA, 5) the new diagnosis of CRC, or 6) a change in polyp burden ("polyp burden" defined for each trial) Exclusions: not specified | | | | | | | Papaioannou
et al, 2011
UK
[45] | Up to March 2009 Cochrane Library, MEDLINE, PreMED- LINE, CINAHL, EMBASE, Web | Inclusions: 1) RCT, 2) antioxidants (vitamin A, C and E, selenium or β-carotene) with or without other agents, 3) adults, 4) general population 5) compared to no intervention, placebo or agents other than antioxidants, Exclusions: none of the inclusions Population: healthy populations and in | β-carotene (± aspirin; studies with or without event data) FU: 6 to 12 yrs | No β-
carotene (±
aspirin) | CRC
incidence
3 RCT
N=36,812 | β-carotene (± aspirin) RR=1.09(0.78;1.51), | Quality performed: yes, with authors scale Heterogeneity: I ² =54% Publication bias: not reported | | | of Science,
BIOSIS and
Research
Registers
UKCRN, MRC
Register,
Current
controlled trials | populations with histories of cardiovascular disease; smoking or asbestos exposure; skin cancer; and atrophic gastritis | β-carotene (± aspirin; and adjusted for other antioxidants; studies with or without event data) Follow up 6 to 12 Years | No β-
carotene (±
aspirin; and
adjusted for
other
antioxidants) | CRC
incidence
4 RCT
N=not
reported | βcarotene (± aspirin) RR=1.11 (0.84;1.47) | Quality performed: yes, with authors scale Heterogeneity: I²=26% Publication bias: not reported | | | | | SELENIUM | | | | | | Papaioannou et al., 2011 | Up to March
2009 | Inclusions: 1) RCT, 2) antioxidants (vitamin A, C and E, selenium or b- | Selenium
alone | Placebo
alone | CRC incidence | Selenium 200ug/d
RR=0.77(0.37; 1.62) | Quality performed: yes, | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|---|--|--|----------------------------|---|---|--| | UK
[45] | Cochrane Library, MEDLINE, PreMED- LINE, CINAHL, EMBASE, Web of Science, BIOSIS and Research Registers UKCRN, MRC Register, Current controlled trials | carotene) with or without other agents, 3) adults, 4) general population 5) compared to no intervention, placebo or agents other than antioxidants, Exclusions: none of the inclusions Population: healthy populations and in populations with histories of cardiovascular disease; smoking or asbestos exposure; skin cancer; and atrophic gastritis | Follow up 5.5
to 8 Years | | 2 RCT
N=18,698 | | with authors scale Heterogeneity: I²=68% Publication bias: not reported | | Pais et al.,
2013
Romania
[46] | Up to May
2009
Cochrane
Library,
Medline | Inclusions: 1) RCT, 2) antioxidants alone or in combination versus placebo or no intervention, 3) reported the incidence of colorectal cancer as primary or secondary outcome 4) global or cancer related mortality 5) participants had to be free of history of cancer (except skin cancer), 6) ≥age 18 years, 2) general populations or from other patients groups primarily with non-GI diseases. Exclusions: 1) antioxidants supplementation through dietary increases in fruits, vegetables or fibers. | Vit A, C and
E, selenium
or b-carotene | placebo or no intervention | CRC incidence 3 RCT (alone) 4 RCT (combination) | Selenium alone (100-
200ug/day)
RR=0.77(0.36; 1.62)
Selenium combination
RR=0.88(0.55;1.40) | Quality not reported Heterogeneity: Overall: I ² =
7%, p=0.38 Publication bias: low | | Bjelakovic
et al., 2008
Denmark
[43] | 1945-2007
CENTRAL,
MEDLINE,
EMBASE,
LILACS, SCI- | Inclusions: 1) randomised trials, irrespective of blinding, publication status, publication year, or language, 2) adults, 3) antioxidant supplements at any dose, duration, and route of administration 4) compared to placebo or | Vit A, C and E, selenium or β-carotene | placebo/no
intervention | CRC incidence* 1RCT N=1,312 | Selenium alone:
RR=0.48(0.22;1.05); | Quality performed with a published scale Heterogeneity: not applicable | | Study
Country | Search period and databases | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity | |------------------------------------|-----------------------------|--|--|--|-------------------------------|---|---| | (Reference) | expanded EXPANDED | no intervention. | | | | | Publication bias Test for overall effect: Z = 1.84 (P = 0.066) Publication bias: unk for CRC | | TEA | | | | | | | | | Sun et al.,
2006
USA
[52] | Jan 1966 to Jul 2005 | Inclusion: 1) the number of CRC cases and Cohort studied; and/or 2) the OR or RR and its corresponding 95% CI, for highest versus non/lowest level of tea intake | Green tea
Highest tea
consumption
(varying cut-
off 5 to 10
cup/day;
3500-8000g;
daily; ever) | Green tea Lowest tea consumption or non drinkers (varying cut- off: 0-3 cups/days; rarely; <daily; never)<="" rarely;="" td=""><td>CRC risk 4Co; 4CC</td><td>Overall OR=0.82(0.69; 0.98) Cohort OR=0.97(0.82; 1.16) case-control OR=0.74(0.63; 0.86) Subgroup (overall) Colon cancer OR=0.86(0.73; 1.00) Rectal cancer OR=0.99(0.7; 1.37) Women: OR=0.52(0.25; 1.05) Men: OR=0.89(0.73; 1.08)</td><td>Quality not reported Heterogeneity: Overall: p=0.03 case-control: p=0.18 Cohort p=0.18 Publication bias: Egger=0.98</td></daily;> | CRC risk 4Co; 4CC | Overall OR=0.82(0.69; 0.98) Cohort OR=0.97(0.82; 1.16) case-control OR=0.74(0.63; 0.86) Subgroup (overall) Colon cancer OR=0.86(0.73; 1.00) Rectal cancer OR=0.99(0.7; 1.37) Women: OR=0.52(0.25; 1.05) Men: OR=0.89(0.73; 1.08) | Quality not reported Heterogeneity: Overall: p=0.03 case-control: p=0.18 Cohort p=0.18 Publication bias: Egger=0.98 | | | | | Black tea
Highest tea
consumption
(varying cut-
off 1 to 5
cup/day; >160
g/month;
daily; drinker) | Black tea
Lowest tea
consumption
(varying cut-
off <1 to 3
cup/day;
>800
g/month;
rarely; non-
drinker) | CRC risk 7Co; 13 case-control | Overall OR=0.99(0.87; 1.13) Cohort OR=1.02(0.76; 1.34) case-control OR=0.92(0.78; 1.09) Subgroup (overall) Colon cancer OR=1.02(0.88; 1.18) Rectal cancer | Quality not reported Heterogeneity: Overall: p<0.01 case-control: p<0.01 Cohort p=0<0.01 Publication bias: | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|--|--|--|--|--|--|--| | | | | | | | OR=0.91(0.73; 1.12)
Women:
OR=0.82(0.70; 0.95)
Men:
OR=1.15(0.89; 1.50) | Egger=0.1 | | Wang et al.,
2012
China
[49] | up to May,
2012 | Inclusions: 1) case-control study; 2) tested the association between green tea and CRC risk; 3) the cancer type did not contain adenocarcinoma; 4) the diagnoses of CRC was confirmed either histological, pathologically or cytological; 5) the site of cancer included colon, rectum, or | Highest green
tea intake
(varying cut-
off 1 to 7
cup/day;
>8500
g/month; | Lowest green
tea intake
(varying cut-
off <1
cup/day;
<g month;<br="">non drinkers)</g> | CRC 13 case- control 12,636 cases and 38,419 controls | Overall
OR=0.99(0.87; 1.13) | Heterogeneity:
P=0.49;
No publication
bias | | | | colorectum; 6) the adjusted OR and relevant corresponding 95% CIs were reported, for highest vs. non/lowest level of green tea intake. | drinker) | , | Colon cancer risk 8CC Rectal cancer risk 6CC | OR=0.96(0.08; 1.16) OR=0.96(0.73; 1.26) | Heterogeneity:
P<0.01; I ²⁼ 0.61;
Heterogeneity:
P<0.01; I ²⁼ 0.68; | | Zhang et
al., 2015
China
[50] | up to October
2013 | Inclusions: 1) prospective observational design; 2) address the association between tea consumption and the risk of cancer incidence; and 3) includes comparisons between high and low tea consumption (with >2 categories) and estimates of the effect as RR, HR or OR with 95% CIs | Highest tea
consumption
(green, black
and mixed
tea)- no
assessment of
cut-off | Lowest tea
consumption
(green, black
and mixed
tea)- no
assessment
of cut-off | Colon
cancer risk
11 Cohort
3871 cases;
1 154 458
patients
FU:4.3- 19.0
years | RR=0.95(0.84; 1.07) Dose–response analysis for one cup day increment RR=0.98(0.93; 1.02) Subgroup: Women: RR=0.98(0.93; 1.03) Men: RR=0.91(0.78; 1.06) | Heterogeneity: P=0.08; I ² =34.5% No publication bias | | | | | | | Rectal cancer risk 11 Cohort | RR=1.03(0.88; 1.21) Dose–response analysis for one | Heterogeneity:
P=0.16;
I ² =27.2% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---------------------------------------|--|---|--|---|---|---|---| | | | | | | 9716 cases;
1 154 458
patients
FU:4.3- 20.0
years | cup/day increment: RR=1.01(0.97; 1.05) Subgroup: Women: RR=0.98(0.92; 1.05) Men: RR=1.07(0.98; 1.17) | No publication
bias | | Vieira et al.,
2017
UK
[27] | Up to May
2015 | Inclusion: 1) RCT, Cohort or case-control design, 2) report adjusted estimates of the RR and 95% CIs for the association of foods and CRC incidence; 3) for dose–response meta-analysis, studies should provide a quantitative measure of the intake. | Dose response
Incremental of
1 cup/day | | CRC risk
8 case-
control
16251 Cases | OR=0.99(0.97; 1.01) | No assessment of quality Heterogeneity: P=0.05; I²=44% Publication bias: Egger p=0.42 | | | | | | | Colon cancer risk 6CC 13244 cases | OR=0.99(0.94; 1.03) | Heterogeneity:
P<0.01; I ² =75%
Publication
bias:
Egger p=0.33 | | | | | | | Rectal cancer risk 9CC 4621 cases | OR=0.99(0.97; 1.02) | Heterogeneity:
P=0.47; I ² =0%
Publication
bias:
Egger p=0.04 | | Chen et al.,
2017
China
[51] | Up to June
2016 | Inclusions: 1) case-control or Cohort study; b) evaluated the associations between tea consumption and CRC risk; 3) all CRC cases were either histopathologically or cytologically confirmed; 4) provided the quantity of CRC cases and controls or person-years; | Highest tea
consumption
(green, black
and mixed
tea)- no
assessment of
cut-off | Lowest tea
consumption
(green, black
and mixed
tea)- no
assessment
of cut-off | CRC incidence 17Co 12CC 1,642,007 patients | OR=0.93(0.87; 1.00) Dose response analysis: consumption of 1c/d OR=1.01(0.99; 1.03) | Assessment of individual quality study Heterogeneity: P<0.01; I ² =43% | |
Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--------------------------------------|--|---|------------------------------------|-----------------------------------|---|---|---| | | | 5) RRs or ORs with corresponding 95% CIs, especially for highest vs. non/lowest level of tea consumption | | | | Subgroup:
Women:
OR=0.86(0.78; 0.94)
Men:
RR=0.98(0.85; 1.12) | Publication
bias:
Egger p=0.04 | | | | | | | Colon
cancer risk
22Co or
case-control | OR=0.92 (0.79 1.06) | Heterogeneity: P<0.01; I ² =42% | | | | | | | Rectal
cancer risk
19 Cohort or
case-control | OR=0.91(0.85; 0.99) | Heterogeneity:
P<0.05; I ² =31% | | | | ALL | IUM AND GAR | LIC | | | | | Zhu et al.,
2014
[54] | up to October
2013 | Inclusions (1) Cohort or case-control; (2) relationship of allium vegetables or garlic supplements and CRC risk; and (3) the study provided or allowed the calculation of RR with 95% CIs | High intake
allium
vegetable | Low intake
allium
vegetable | CRC Risk 20 case- control or Cohort | RR=1.06(0.96; 1.17) Dose response onceper-week increment RR=1.01(1.00; 1.02) | Quality not reported Heterogeneity: p=0.94; 1 ² =0% Publication bias | | Turati et al.,
2014 Italy
[55] | April 2014 | Inclusions 1) had a case-control or Cohort study design, 2) the outcome was colorectal (or colon, or rectal) cancer or colorectal adenomatous polyps incidence/death, 3) examined the association with allium vegetables (including garlic, onions, leeks, and others), 4) provided the RR estimates with their CIs, or data necessary to calculate them Exclusion: No studies were excluded a priori for weakness of design or data | | | CRC risk
16 Studies | Garlic overall RR=0.85 (0.72;1.00) Garlic case-control studies RR=0.76 (0.67;0.85) Garlic Cohort studies RR=0.99 (0.80;1.23) Onion RR=0.85 (0.70;1.04) Onion case-control RR=0.74 (0.56;0.98) | Egger p=0.35 Quality not reported Heterogeneity: p = 0.017, I ² = 57.2% Publication bias Egger p=0.35 | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|---|--|--|-----------|---------------------------------------|--|---| | | | quality | | | Colon cancer risk Rectal cancer risk | Onion Cohort RR=1.04 (0.86;1.26) Total allium overall RR=0.78 (0.56;1.06) case-control RR=0.69 (0.43;1.09) Cohort RR=0.99 (0.77;1.27) Garlic RR=0.90 (0.75;1.08) Onion RR=0.72(0.44;1.19) Garlic 0.76 (0.59; 0.98) Onion 0.70 (0.39; 1.25) | | | Heine-
Bröring et
al., 2015
[22] | Up to January
2013
Medline,
Embase and
Cochrane | Inclusions: prospective Cohort studies if they reported original and peer-reviewed data on the association of dietary supplement use and colorectal, colon, or rectal cancer incidence. To be included in the meta-analyses, information on ascertainment of CRC cases, and estimates of the RR with 95% CI were required Exclusions: studies on colorectal adenomas, RCTs and case-control | Intake of
multivitamins,
Vit A, Vit C,
Vit E, Vit D,
Calcium* and
Garlic. | No intake | CRC incidence 2 Cohort for Garlic | Garlic
RR=1.24(0.99; 1.54) | Quality performed: none Heterogeneity: Garlic I²=0%; p=0.34 Publication bias: not reported | | Hu et al.,
2014
China
[53] | up to October
2013 | Inclusions: (1) Cohort; (2) evaluated the association between garlic consumption and risk of colorectal cancer; and (3) reported HR or RR with corresponding 95%CI, or data necessary to calculate them | Overall garlic intake | | CRC Risk 5 Cohort 335,923 subjects | RR=1.03(0.83; 1.28) | High quality studies (8 or 9 on the NOS) Heterogeneity: p=0.54; I ² =0% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---------------------------------|--|--------------------------------|--------------------------|---------|--|--|--| | | | | G. II. D | | 4,610 cases
follow up
3.3 years to
24 years | PD 107/005110 | Tr. I. V. | | | | | Garlic Raw
and cooked | | CRC Risk
4 Cohort | RR=1.07(0.95;1.19),
Subgroup:
Males
RR=1.18(0.99; 1.41)
Females
RR=1.04(0.80; 1.30) | High quality studies Heterogeneity: p=0.66; I²=0% publication bias: Egger p=0.50 | | | | | | | Colon
cancer Risk
4 Cohort | RR=1.07(0.94; 1.21) | High quality studies Heterogeneity: p=0.63; I²=0% publication bias: Egger p=0.23 | | | | | | | Rectal
cancer
3 Cohort | RR=1.02(0.90; 1.17) | High quality studies Heterogeneity: p=0.93; 1²=0% publication bias: Egger p=0.59 | | | | | Garlic
supplement | | CRC Risk
5 Cohort | RR=1.12(0.96; 1.31) | High quality studies Heterogeneity: p=0.47; I²=11% publication bias: | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--------------------------------------|--|---|--------------------------|-------------------------|-------------------------------------|----------------------------------|---| | | | | | | Colon
cancer Risk
3 Cohort | RR=1.01(0.77; 1.32) | Egger p=0.61 High quality studies Heterogeneity: p=0.47; I ² =15% | | | | | | | Rectal | RR=1.17(0.74; 1.83) | publication bias: Egger p=0.58 High quality | | | | | | | cancer
3 Cohort | | studies Heterogeneity: p=0.41; I ² =0% | | | | | | | | | publication bias:
Egger p=0.31 | | | | | Vitamin D | | | | | | Liu et al.,
2015
China
[23] | Up to April
2014
Pubmed | Inclusions: [1] they were cohort studies [2]; the exposure of interest was vitamin or multiple-vitamin supplement intake [3]; the outcome of interest was the incidence of colorectal, colon, or rectal cancer [4]; relative risk (RR) or odds ratio (OR) estimates with 95 % confidence intervals (95 % CI) were reported; [5] Newcastle-Ottawa Scale (NOS) quality grade for cohort studies in meta-analyses [69] was >6. | highest level
vitamin | Lowest level of vitamin | CRC incidence 17 CO for Vit D N=unk | Vit D:
RR = 0.87 (0.77; 0.99) | Quality performed: NOS, only >6 Heterogeneity: Vit D: I ² = 41%; Publication bias: Vit D: p=0.51 | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|---
--|---|--|------------------------------------|--|---| | Heine- Bröring et al., 2015 [22] Medline, Embase and Cochrane | Exclusions: Articles with<6 stars were excluded. Inclusions: prospective cohort studies if they reported original and peer-reviewed data on the association of dietary supplement use and colorectal, colon, or rectal cancer incidence. To be included in the meta-analyses, information on ascertainment of colorectal cancer cases, and estimates of the relative risk with 95% confidence intervals (95% CI) were required | Intake of
multivitamins,
Vit A, Vit C,
Vit E, Vit D,
Calcium* and
Garlic. | No intake | CRC incidence 5 Cohort for Vit D | Vit D
RR = 0.92 (0.78; 1.09) | Quality performed: none Heterogeneity: Vit D I²=54%; p=0.07 Publication bias: not reported | | | | | Exclusions: studies on colorectal adenomas were excluded, randomized controlled trials and case-control studies were excluded | Highest level
of
multivitamins,
Vit A, Vit C,
Vit E, Vit D,
Ca and Garlic. | Lowest level
of
multivitamin
s, Vit A, Vit
C, Vit E, Vit
D, Ca and
Garlic. | CRC incidence 4 COHORT for Vit D | Vit D
RR = 0.87 (0.62-1.22) | Quality performed: none Heterogeneity: Vit D: I²=67%; p=0.03 Publication bias: not reported | | Chung et al.,
2011
USA
[56] | Up to July 2011 MEDLINE and Central | Inclusions: articles about human participants published in Englishlanguage journals. RCT Exclusions: studies that enrolled pregnant women only or measured vitamin D status only during pregnancy and RCTs comparing different dosages of vitamin D supplementation without a control group that did not receive vitamin D supplementation. We excluded short-term (1 month) RCTs and trials that used synthetic vitamin D analogues (for example, oxacalcitriol or paricalcitol) | Vit D
100,000UI/4
months for 5
years
Follow-up: 5
years | Placebo | CRC incidence 1 RCT N= 2686 Vit D | HR=1.02 (0.60-1.74) | Quality performed yes: fair Heterogeneity: unk Publication bias: unk | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---------------------------------|--|--|---|--|---|--|--| | Ma et al., | Up to October | Population: Elderly 65-85 for vit D alone,
and post-menopausal women > 40 years
old un Vit D+Ca
Studies were included in the meta- | Highest | Lowest | CRC | RR = 0.88 (0.80; 0.96) | Quality | | 2011
China
[57] | 2010 MEDLINE and EMBASE | analysis if they met the following criteria: prospective design; the study of interest was the intake of vitaminD or the levels of 25(OH)D in the blood (plasma or serum); the outcome of interest was colorectal, colon, or rectal cancer; and the relative risk (RR) estimates with 95%CIs (or data to calculate these) were | category of vit
D intake
FU: 4-
13years. | category of
vit D intake | 8 COHORT
and 1 case-
control
N=6,466 | | performed NOS,
6 or 7 stars Heterogeneity:
I ² = 27%, p=0.19 Publication bias:
unk | | | | reported. Where data sets overlapped or were duplicated, only the most recent information was included. All | nmin D and Calci | um | | | | | Carroll et | up to January | Inclusions: 1) RCTs of calcium (with or | Calcium 1000- | Calcium with | CRC | 1) Ca + Vit D: | Quality not | | al., 2010 | 2010 | without other chemopreventive agents) 2) | 1500mg/day + | or without | incidence | RR=1.08(0.87; 1.34) | reported | | UK | | adults with FAP, HNPCC, or a history of | Vit D 400- | other | 2 RCTs | | | | [58] | Cochrane Library, MEDLINE, PreMEDLINE, CINAHL, EMBASE, Web of Science, Biological Abstracts, the National Research Register, and Current | colorectal adenomas, or with no increased baseline risk of CRC 3) comparators were specified as either placebo or agents other than calcium, 4) outcomes included the recurrence of adenomas or advanced adenomas, or the occurrence of colorectal cancer. Population: Populations with no history of adenomas or CRC. | 1100 UI/d
Follow up: 4
or 7 years | chemopreven
tive agents
versus
placebo
(with or
without other
interventions) | N=37,016 | 2) Ca+/- Vit D:
RR=0.62(0.11; 3.40) | Heterogeneity: Ca + Vit D: I²=0%. Ca+/- Vit D: I²=58% Publication bias: Not reported | | Study
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusion criteria | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|--|---|-------------------------------------|---------|------------------------------|---------------------|--| | | Controlled
Trials | | | | | | | | Chung et al.,
2011**
USA
[56] | Up to July 2011 MEDLINE and Central | Inclusions: articles about human participants published in Englishlanguage journals. RCT Exclusions: studies that enrolled pregnant women only or measured Vit D status only during pregnancy and RCTs comparing different dosages of Vit D supplementation without a control group that did not receive Vit D supplementation. We excluded short-term (1 month) RCTs and trials that used synthetic Vit D analogues (for example, oxacalcitriol or paricalcitol) Population: Elderly 65-85 for vit D alone, and post-menopausal women > 40 years old un Vit D+Ca | Vit D + calcium Follow-up: 7 years | Placebo | CRC incidence 1 RCT N=36,282 | HR=1.08(0.86; 1.34) | Quality performed yes: good Heterogeneity: unk Publication bias: unk | aRR: adjusted risk ratio, Ca: calcium, CI: confidence interval, CRA: colorectal adenoma, CRC: colorectal cancer, FU: follow-up, GI: gastro-intestinal, HR: hazard ratio, Mg: magnesium, NS: not specified, NSAID: non-steroidal anti-inflammatory drugs, NOS: Newcastle-Ottawa Scale, OR: odds ratio, RCT: randomised clinical trial, RR: risk ratio, unk: unknown, Vit: vitamin; A: includes also the comparisons of Vit E + b-Carotene vs placebo; Vit A + b-Carotene vs placebo; Vit E + selenium alone vs placebo; Vit CE + b-Carotene (± simvastatin) vs Placebo (± simvastatin); Vit CE + b-Carotene + selenium + zinc vs placebo. All were had not significant risk ratios ^{*} See calcium section; ** not primary outcome ## Supplementary Table 3. Component with unclear effect on CRC prevention | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |---|--|--|--|--|---|---|--| | | | COL | FFEE AND CAFF | EINE | | | | | Giovannuci et
al., 1998
USA
[59] | Up to 1997 Medline and cancerlit | Inclusion: all pertinent publications on coffee consumption and risk of CRC. | Highest coffee
consumption
(approx. 4 cups
per day)
FU: 1-8yrs | Lowest coffee
consumption
(approx. 1 cup
per day) | CRC risk 12 case- control; 5 Cohort 6192 Cases | case-control and
Cohort
RR=0.76(0.66; 0.89)
case-control:
RR=0.72(0.61;
0.84)
Cohort:
RR=0.97(0.73; 1.29) | Quality not reported Heterogeneity: case-control and Cohort, p<0.01 case-control: p<0.01 Cohort; p=0.83 | | Je et al., 2009
USA
[60] | Up to June
2008
Medline | Inclusion: prospective Cohort studies on the association between coffee consumption and CRC incidence. | Highest coffee
consumption
(varying cut-off
from 1 to 6) | Lowest coffee
consumption
(varying cut-off) | CRC risk 12Co 646,848 patients and 5,403 cases Fu of 9.8 years | Cohort:
RR=0.91(0.81; 1.02) | Quality not reported Heterogeneity: Cohort: p=0.73; I²=0% Publication bias: Begg's and Egger's tests > 0.4 | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |--|--|--|------------------------|----------------------------|---|---------------------|---| | Galeone et al.,
2010
Italy
[61] | 1966 to May
2010
Medline | Inclusions: 1) quantitative estimate; (2) at least one of the following: the 95% CI, or standard error, or the distribution of cases and controls in coffee consumption categories, or the p-value for the difference of the OR from unity Exclusions: data for caffeine rather | Drinkers FU: 1-8yrs | Non/occasional
drinkers | CRC incidence 13 studies; 9568 cases | OR=0.83(0.73;0.95) | Quality: not reported Heterogeneity: p<0.01; I ² =80% Publication bias: None overall | | | | than coffee, or if they were based on
data updated later, or if part of pooled
analyses | | | Colon cancer
incidence
11 studies;
7537 cases | OR=0.93(0.81; 1.07) | Quality: not reported Heterogeneity: p<0.01; I ² =82% | | | | | | | Rectal cancer
incidence
10 studies,
4594 cases | OR=0.98(0.85; 1.13) | Quality: not reported Heterogeneity: p<0.01; I ² =71% | | | | | Increment of 1 cup/day | | CRC incidence 13 studies; 9380 cases | OR=0.94(0.91;0.98) | Quality: not reported Heterogeneity: p<0.01; I ² =69% | | | | | | | Colon cancer incidence 12 studies; 7713 cases | OR=0.95(0.92;0.98) | Quality: not reported Heterogeneity: p<0.01; I ² =61% | | | | | | | Colon cancer incidence | OR=0.97(0.95;0.99) | Quality: not reported | | | | | | | | | Heterogeneity:
P=0.34; I ² =10% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |--|---|--|--|--|--|--|---| | Li et al., 2013
China
[62] | May 2011 MEDLINE, the Cochrane Controlled Trials Register, EMBASE, Science Citation Index and PubMed | Inclusions: 1) a quantitative estimate of the relationship; and 2) at least one of the 95%CI or the standard error or the distribution of cases and controls in coffee consumption categories. | Highest coffee
consumption
(varying cut-
off) | Lowest/non
coffee
consumption
(varying cut-off) | CRC risk 25 case- control, 16Co case-control: 15 522 cases, Cohort 953 669 participants and 10 443 cases FU: 10.5 years | Cohort OR=0.91(0.81;1.02) Subgroup: Colon cancer OR=0.79(0.67;0.95) Rectal cancer: OR=0.95(0.79; 1.15) Colorectal women: OR=0.93(0.81; 1.05) Colorectal men OR=0.97(0.87; 1.08) | Quality not reported Heterogeneity: Cohort: p<0.01; I²=64% Publication bias: Begg p=0.63 Egger=0.69 | | Akter et al.,
2016
Japan
[63] | Up to August
2015
Medline and
Ichushi | Inclusions: Only studies on Japanese populations living in Japan were included, written in English or Japanese | Highest coffee
consumption
(varying cut-
off) | Lowest coffee consumption (varying cut-off) | CRC risk 9 case- control and 4 Cohort (1 Cohort included death and was removed in this sensitivity analysis) | RR=0.98 (0.80;1.22) | Quality score; not done for subgroup Heterogeneity: not done for subgroup Publication bias: not done for subgroup | | Gan et al.,
2017
China
[64] | Up to August
2015
PubMed,
Embase, and
Web of
Science | Inclusions: not specified Exclusions: not specified | Highest coffee
consumption
(varying cut-
off) | Lowest coffee consumption (varying cut-off) | CRC risk:
19 case-
control or
Cohort
2,046,575
individuals
and 22,629
cases of CRC | RR=0.98(0.90; 1.06) Subgroup: Women RR=0.94(0.79; 1.17) Men: RR=1.01(0.88; 1.17) | Quality: NOS mean=7.6 Heterogeneity: P=0.03; I²=41% Publication bias: Begg p=0.94 Egger p=0.76 | | Country | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |---------|--|-------------------------|--|--------------|--------------------|--|--| | | | | | | FU: 4.5 to 18
y | | | | | | | Coffee Dose response Incremental of the number cups/day (cp/d) | Non drinkers | CRC | Dose response incremental of 4 cp/d RR=0.97(0.92; 1.03) Cubic spline model Incremental of 1cp/d RR= 1.00(0.99;1.02) Incremental of 2cp/d RR=1.00(0.97; 1.04) Incremental of 3cp/d RR=1.00(0.96; 1.04) Incremental of 4cp/d RR=0.98(0.96; 1.03) Incremental of 5cp/d RR=0.96(0.91; 1.00) Incremental of 6cp/d RR=0.93(0.89; 0.99) Incremental of 7cp/d RR=0.90(0.85; 0.97) | Quality: not specified for subgroup Heterogeneity: P=0.08; I²=34% Publication bias: Begg p=0.77 Egger p=0.43 | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |---------------------------------|--|---|---|---------|-------------------------|--|---| | | | | | | | Incremental of 8cp/d RR=0.87(0.80; 0.95) | | | | | | | | Colon cancer incidence | RR=0.92(0.83; 1.02) | Quality : not
specified for sub-
group | | | | | | | | | Heterogeneity:
P=0.12; I ² =30% | | | | | | | | | Publication bias: Begg p=0.62 Egger p=0.70 | | | | | | | Rectal cancer incidence | RR=1.06(0.95; 1.19) | Quality: not
specified for sub-
group | | | | | | | | | Heterogeneity:
P=0.31; I ² =13% | | | | | | | | | Publication
bias:
Begg p=1.00
Egger p=0.82 | | Vieira et al,
2017*
UK | Up to May
2015 | Inclusion: 1) RCT, Cohort or case-control design, 2) report adjusted estimates of the RR and 95% CIs for | Coffee
Dose response
Incremental of | | CRC risk 14 Cohort | OR=1.00(0.99; 1.02) | Quality: "high quality" | | [27] | | the association of foods and CRC incidence; 3) for dose–response meta-analysis, studies should provide a | 1 cup/day | | | | <i>Heterogeneity: I</i> ² =44%, p=0.05 | | | | quantitative measure of the intake. | | | | | Publication bias Egger's $p = 0.002$ | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |--|--|--|--|---|---------------------------------------|--|---| | | | | | | Colon cancer 11 Cohort Rectal cancer | OR=0.99(0.97; 1.01) OR=1.01(1.00; 1.03) | Heterogeneity: I ² =49%, p=0.03 Publication bias: Egger's: p=0.55 Heterogeneity: | | | | | | | 15 Cohort | OK-1.01(1.00, 1.03) | I ²
=2%, p=0.43 Publication bias: Egger's p=0.73 | | | | F | ISH AND OMEG | A-3 | | | | | Geelen et al,
2007
Netherlands
[65] | until January
2006 | Inclusions: prospective Cohort studies on CRC with data on the exposures "fish" or "n-3 fatty acids" | Highest fish
consumption
(varying cut-
off) | Lowest fish consumption (varying cut-off) | CRC incidence 14 Cohort | RR=0.88(0.78; 1.00) Dose-response: 1 time/week RR=0.96(0.92; 1.00) 100g/week RR=0.97(0.92; 1.03) Subgroup: Women: RR=0.78(0.58; 1.06) Men: RR=0.94(0.75; 1.18) | No quality assessment Heterogeneity: P=0.25; I²=18% Publication bias: Egger p=0.66 | | | | | | | Colon cancer incidence 8 Cohort | RR=0.87(0.74; 1.02) | Heterogeneity:
P=0.33; I ² =13% | | | | | | | Rectal cancer incidence 4 Cohort | RR=0.84(0.55; 1.29) | Heterogeneity: P=0.04; I ² =64% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |--|--|---|---|--|---|--|--| | Huxley et al.,
2009*
Australia
[34] | 1996-January
2008 | Inclusions: 1) published quantitative estimates and standard errors (or some other measure of variability) of the association between each risk factor and 2) CRC Exclusions: 1) provided only an estimate of effect, with no means by which to calculate the standard error, or if the estimates were not at least age adjusted | Highest fish
consumption
(varying cut-
off) | Lowest fish
consumption
(varying cut-off) | CRC risk Unk for fish 5,317 Cases | RR=0.93(0.84; 1.04) | No quality assessment Heterogeneity: P=0.25; I²=18% Publication bias: Egger p=0.66 | | Shen et al.,
2012
China
[67] | up to
February
2012 | Inclusions: prospective Cohort design; the exposure of interest was dietary n-3 fatty acids; the out-come of interest was incidence of colorectal, colon or rectal cancer; risk estimates and associated 95 % CI (or data to calculate them) were provided. | Highest n-3
fatty acid
consumption
(varying cut-
off) | Lowest n-3 fatty
acid
consumption
(varying cut-off) | CRC risk 7Co 4,656 cases/489, 465 patients FU: 6-22 yrs Colon cancer risk Rectal cancer | RR=0.97(0.86; 1.10) <u>Subgroup:</u> Women RR=1.07(0.91; 1.26) Men RR=0.87(0.75; 1.00) RR=0.85(0.72; 1.01) RR=1.13(0.89; 1.44) | Quality not reported Heterogeneity: P=0.09; I ² =38% Publication bias: Egger p=0.66 Begg p = 0.76 | | Wu et al., 2012
China
[66] | Up to May
2012 | Inclusion: 1) Cohort or case-control study design, 2) exposure of interest was fresh fish consumption, 3) number of CRC cases and controls had to be reported, 4) RRs or ORs with their corresponding 95% CI for highest versus non/lowest level of fish intake had to be reported. | Fish consumers
(varying cut-
off) | non/lowest
consumers
(varying cut-off) | CRC risk
22Co; 19
case-control | RR=0.87(0.80; 0.95) | Quality not reported Heterogeneity: P<0.01 No publication bias | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |---------------------------------------|--|--|---|--|--|---|---| | | | | | | Colon cancer
risk
14 Cohort or
case-control | RR=0.96(0.81; 1.14) | Quality not reported Heterogeneity: P<0.01 No publication bias | | | | | | | Rectal cancer
risk
7 Cohort or
case-control | RR=0.79(0.65; 0.97) | Quality not reported Heterogeneity: P=0.03 No publication bias | | Pham et al.,
2013
Japan
[68] | Up to
November
2012 | Inclusions: Only studies on Japanese populations living in Japan were included | Fish consumers
(varying cut-
off) | Lowest
consumers
(varying cut-off) | CRC incidence 5Co; 12 case-control Colon cancer | Cohort: OR=1.03(0.89; 1.18) case-control: OR=0.84(0.75; 0.94) Cohort: OR=0.96(0.77; 1.21) case-control: OR=0.84(0.73; 0.98) Cohort: OR=0.96(0.77; 1.21) case-control: OR=0.83(0.70; 0.99) | Quality not reported Heterogeneity: Cohort: P=0.99; I²=0% case-control: P=0.60; I²=0% Publication bias not reported | | Yu et al., 2014
China
[69] | 1945-May
2013 | Inclusions: 1) prospective Cohort design; 2) reported RRs or HRs and corresponding 95% CIs (or data to calculate them) of GI cancer relating to different levels of fresh fish intake; and | Fish consumers
(varying cut-
off) | non/lowest
consumers
(varying cut-off) | CRC risk 20 Cohort 14,097 cases/ 1,633,066 | RR=0.93(0.87; 0.99) Incremental estimates for 20g/day of fish | Quality not reported Heterogeneity: Cohort: P<0.01; | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |--------------------------------------|--|--|---|--|--|------------------------------------|---| | | | 3) included the frequency of fish consumption | | | Average FU: 13.6 years | consumption:
RR=0.99(0.97-1.01) | I ² =65%
No publication
bias | | | | | | | Colon cancer
risk
12 Cohort | RR=0.95(0.91; 0.98) | Quality not reported Heterogeneity: Cohort: P=0.16; 1²=34% | | | | | | | Rectal cancer
risk
8Co | RR=0.85(0.75; 0.95) | Quality not reported Heterogeneity: Cohort: P=0.02; 1²=58% | | | | | Low fish
consumption
(varying cut-
off) | non/lowest
consumers
(varying cut-off) | CRC risk | RR=0.95(0.92; 1.02) | Quality not reported Heterogeneity: Cohort: P=0.83; 1²=0% | | | | | High fish
consumption
(varying cut-
off) | non/lowest
consumers
(varying cut-off) | CRC risk | RR=0.91(0.82; 0.99) | Quality not reported Heterogeneity: Cohort: P=0.00; 1²=66% | | Vieira et al,
2017*
UK
[27] | Up to May
2015 | Inclusion: 1) RCT, Cohort or case-
control design, 2) report adjusted
estimates of the RR and 95% CIs for
the association of foods and CRC
incidence; 3) for dose—response meta-
analysis, studies should provide a | Dose response
Incremental of
100g/day | | CRC risk
11 Cohort or
case-control
10,356 cases | RR=0.89(0.80; 0.99) | Quality not reported Heterogeneity: p=0.52; I ² =0% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |---|--|---|--|----------------------------|---|---------------------|--| | | | quantitative measure of the intake. | | | | | Publication bias: Egger's p=0.27 | | | | | | | Colon cancer
risk
11 Cohort or
case-control | RR=0.91(0.80; 1.03) | Heterogeneity: Cohort: P=0.76; I ² =0% Publication bias: Egger's p=0.32 | | | | | | | Rectal cancer
risk
10 Cohort or
case-control | RR=0.84(0.69; 1.02) | Heterogeneity: Cohort: P=0.31; I ² =15% Publication bias: Egger's p=0.56 | | | | | CALCIUM | | | | | | Weingarten et
al. 2008
Israel
[71] | Up to Dec
2009
Cochrane,
MEDLINE,
Cancerlit,
Embase | Inclusions: 1) Supplementation with Ca salts in doses above 1200 mg elemental Ca per day, 2) duration of intervention longer than 6 months Exclusions: 1)
combined interventions in which there was no arm testing for Ca supplementation alone, observational studies, 2) data from familial polyposis coli Population: healthy adults, adults at higher risk of colon cancer due to | Ca salts 1200
mg and 2000mg
per day,
≥6months | placebo or no intervention | CRC incidence 2 RCT N=1,346 subjects | OR=0.34(0.05;2.15) | Quality not reported Heterogeneity: $I^2 = 0\%$, $p=0.99$ Publication bias: Not reported | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |--|--|---|--|--|--|--|---| | | | family history, previous adenomatous polyps, or inflammatory bowel disease are considered. | | | | | | | Huncharek et
al., 2009
USA
[73] | Jan1966-Feb
2007
(MEDLARS)
Jan 1966-Feb
2003
(Cochrane)
MEDLARS,
CancerLit,
Cochrane
database | Inclusions: 1) observational studies 2) patients with histologically proven adenocarcinoma of colon/rectum, 3) availability of data on exposures of interest including dairy products, dietary Ca, and/or vit D intake, 4) availability of ORs or RRs with 95% CIs for each report or availability of raw data to calculate these parameters; and availability of data on outcome of interest including incident CRC Exclusions: 1) animal studies, 2) in vitro studies, 3) review articles, letters to the editor, 4) abstracts, and non-peer- reviewed articles | Ca supplement
(dose threshold
varies within
studies;
≥500mg/d to
≥700 mg/d) | No Ca
supplement dose
(<700mg to
0mg/d) | CRC incidence 5 Cohort N=unk | RR=0.76(0.65;0.89) | Quality not reported Heterogeneity: P=0.23 Publication bias: None reported | | Bristow et al.,
2013
New Zealand
[72] | 1966-2012
Medline,
Embase,
Cochrane
Central | Inclusion: 1) RCT, 2) dose ≥500 mg/d of elemental Ca was administered, ≥100 participants randomised; participants of either sex were studied; and the duration of the trial was >1 year Exclusions: 1) cohort-administration of Ca and vit D and compared with placebo (studies were eligible if vit D was given to both intervention and control groups), 2) administered in the form of a complex nutritional supplement or as a dietary modification, 3) participants had a major systemic disease other than osteoporosis or colorectal adenoma. | Ca supplements
≥500 mg/d | Placebo | CRC incidence 7 RCTs n=10,496 FU: 3,9yrs Study level, 4 RCT patient level n=7221, FU: 3.5yrs | Study level:
RR=1.38(0.89;2.15)
Patient level
HR=1.63 (1.01;2.64) | Quality not reported Heterogeneity: I²= 0%, Publication bias: no indication of publication bias | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |--|--|---|--------------------------|-------------------------|---|---|--| | Keum et al.,
2014
USA
[74] | January 1966-
Feb 2007
(MEDLARS)
Jan 1966-Feb
2003
(Cochrane)
MEDLARS,
CancerLit,
Cochrane
database | Inclusions: 1) prospective observational study (Cohort studies analyzed with nested case-control, case- cohort, or prospective cohort approaches) Exclusions: 1) retrospective studies, 2) non English-language | 300 mg/day increase. | Dose response | CRC risk /
Dose
response
5 Cohort
N=920,837 | RR=0.91(0.86;0.98) | Quality not reported Heterogeneity: I ² = 67%, p=0.01 Publication bias: Egger =0.43, Begg =0.85 | | Heine-Bröring
et al., 2015*
[22] | Up to January
2013
Medline,
Embase and
Cochrane | Inclusions: prospective cohort studies if they reported original and peer-reviewed data on the association of dietary supplement use and colorectal, colon, or rectal cancer incidence. To be included in the meta-analyses, information on ascertainment of colorectal cancer cases, and estimates of the RR 95% CI were required Exclusions: studies on colorectal adenomas, RCTs and case-control studies | Ca | No intake | CRC
incidence
8 Cohort
N=unk | RR=0.86(0.79;0.95) | Quality performed: none Heterogeneity: I²=64%; p=0.01 Publication bias: not reported | | | | | Ca increase of 100 mg/d | Control | CRC
incidence
6 Cohort
N=unk | RR=0.96(0.94;0.99) Subgroup: Female: RR=0.97(0.94;1.00) Male: RR=0.95(0.95;1.02) | Heterogeneity: I ² =0.77; p<.0.01 | | | _ | | VITAMIN A | | | | | | Liu et al., 2015
China | Up to April
2014 | Inclusions: 1) Co studies, 2) the exposure of interest was vitamin or | highest level
vitamin | Lowest level of vitamin | CRC incidence | Vit A:
RR=0.87(0.75;1.03) | Quality performed: | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |-----------------------------------|---|---|--|---|---|-------------------------------|--| | [23] | Pubmed | multiple-vitamin supplement intake, 3) the outcome of interest was the incidence of colorectal, colon, or rectal cancer, 4) RR or OR estimates with 95 % CI were reported; Exclusions: Articles with < 6 stars | | | 9 Co for Vit
A
N=unk
median
10,000UI/d | | NOS (6-8 stars) Heterogeneity: Vit A: I² = 0%; Publication bias: Vit A: p=unk | | Heine-Bröring et al., 2015 [22] | Up to January
2013
Medline,
Embase and
Cochrane | Inclusions: prospective Cohort studies if they reported original and peer-reviewed data on the association of dietary supplement use and colorectal, colon, or rectal cancer incidence. To be included in the meta-analyses, information on ascertainment of colorectal cancer cases, and estimates of the RR with 95% CI were required Exclusions: studies on colorectal adenomas, RCT and case-control studies | Intake of
multivitamins,
Vit A, Vit C,
Vit E, Vit D,
Calcium* and
Garlic. | No intake | Colon cancer incidence 2Co for Vit A 0 vs >5000 and <5000 0 Vs 10000/day (at least 1/week) | Vit A :
RR=0.77(0.62;0.94) | Quality performed: none Heterogeneity: Vit A: I²=0%; p=0.76 Publication bias: not reported | | | | | Highest level of
multivitamins,
Vit A, Vit C,
Vit E, Vit D, Ca
and Garlic. | Lowest level of multivitamins, Vit A, Vit C, Vit E, Vit D, Ca and Garlic. | Colon
cancer
incidence
2 Cohort for
Vit A | Vit A:
RR=0.79(0.62;1.01) | Quality performed: none Heterogeneity: Vit A: I²=0%; p=0.97 Publication bias: not reported | | | | VITAMIN I | B (FOLIC ACID | EXCLUDED) | | | | | Liu et al., 2015
China
[23] | Up to April
2014 | Inclusions: 1) Cohort studies, 2) the exposure of interest was vitamin or multiple-vitamin supplement intake, 3) | highest level
vitamin | Lowest level of vitamin | CRC incidence | Vit B2:
RR=0.86(0.76;0.97) | Quality
performed:
NOS | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |---|--
---|--|-------------------------------|--|--|---| | | Pubmed | the outcome of interest was the incidence of colorectal, colon, or rectal cancer, 4) RR or OR estimates with 95 % CI were reported; Exclusions: Articles with < 6 stars | | | 5 Cohort for
Vit B2
2 Cohort for
Vit B3
17 Cohort for
Vit B6
12 Cohort for
Vit B12
N=unk | Vit B3:
RR=1.18(0.76;1.84)
Vit B6:
RR=0.88(0.79;0.99)
Vit B12:
RR=1.10(0.92;1.32) | Heterogeneity:
Vit B2: I ² = 0%;
Vit B3: I ² = 31%;
Vit B12: I ² = 49%;
Vit B6: I ² = 41%;
Publication bias:
Vit B2: p=unk
Vit B3: p=unk
Vit B6: p=0.51
Vit B12: p=unk | | Larsson et al.,
2010
Sweden
[70] | up to Feb 2010
Medline
Embase | Inclusions: 1) prospective design 2) exposure of interest was intake of vitamin B6 or blood levels of PLP 3) the outcome of interest was colorectal, colon or rectal cancer, and 4) RR estimates with 95%CI or data to calculate these were reported. | dietary vit B6 <q1 (min="" 1.02="" day)="">Q5 max 4.36mg/day. Dietary only except 2 studies dietary and supplements together but none supplements alone</q1> | highest vs
lowest category | CRC incidence 8 Cohort and 1 nested case-control | Pooled
RR=0.90(0.75;1.07)
Colon
RR=0.97(0.81;1.18) | Quality performed NOS Publication bias No evidence Heterogeneity I ² = 56.2% (95% CI, 0%-76%) P=0.01 Sensivity I ² =24%, p=0.23 | | | | | STATINS | | | | | | Bardou et al.,
2010
France
[76] | Last 10 years
up to
September
2009. | Inclusion: 1) RCT, case-control and Cohort, 2) assessed or reported colorectal, digestive, gastrointestinal, colon and rectal cancer prevalence in subjects taking, or not taking, statins, | Highest level of Ca | Lowest level of
Ca | CRC
incidence
6 Cohort
N=unk | RR=0.80(0.70;0.92) | Quality performed: none Heterogeneity: I ² =49%; p=0.08 | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |---|--|--|-----------------------------|----------------------------|--|--|--| | Ponovas et al | EMBASE,
MEDLINE,
CENTRAL
and ISI Web of
knowledge | 3) articles that contained sufficient detail to reconstruct 2x2 tables Exclusions: 1) not published in English or French, 2) without specific cancer site assessment, 3) not assessing digestive tract cancers 4) studies included from the same author | Statin | Discabo or usual | CRC | RCT: | Publication bias:
not reported | | Bonovas et al.,
2007
Greece
[78] | Up to December 2006 Medline, Web of science | Inclusion: 1) RCT, case-control and Cohort, 2) evaluated exposure to statins and risk of colorectal cancer. RCTs were considered eligible if they evaluated 1) statin therapy compared with placebo or no treatment, 2) no other intervention difference between the experimental and the control group, 3) enrolled at least 2,000 participants, 4) minimum duration of 3 years, 5) reported CRC incidence during the trial. Exclusions: 1) insufficient published data for determining an estimate of relative risk (RR) and a CI. Only data from the most recent report were included | Statin
Duration>3yrs | Placebo or usual care | incidence
6 RCT, 9CC,
3Co
N=55 113
from RCT,
325 000
person-year.
N>1.5million
from case-
control and
Cohort of
whom 38 124
cancer cases | RR=0.95(0.81; 1.11), fixed-effects model RR=0.95(0.80; 1.13), random- effects model case-control and Cohort: RR=0.92(0.88; 0.96), random- effects model RR=0.92(0.90; 0.95), fixed-effects model | Quality not reported Heterogeneity: RCT: I²= 9%, p=0.36 case-control and Cohort: I²= 16%, p=0.29 Publication bias: RCT: Begg's and Egger's test: p=0.99 and p=0.88 Obs: Begg=0.24 and Egger=0.36 | | Browning et al., 2007
UK
[79] | Up to
November
2005
MEDLINE,
EMBASE,
Web of
Science, ISI | Inclusions: 1) RCT, case-control and Cohort 2) measured all-cancer or site-specific cancer incidence or fatality associated with statins. 3) A measure of the strength of the association must have been stated in the form of RR or OR, or could be calculated from the raw data presented in the article, 4) | Min FU: 3.6
RCT, 6.2 yrs | Placebo or no
treatment | CRC incidence 9 RCT, 3 case-control, 2 Cohort N=103,573 | RCT:
RR=1.02 (0.89;
1.16)
case-control and
Cohort:
RR=0.84 (0.59;
1.21) Random- | Quality not reported Heterogeneity: RCT I ² =0% case-control and Cohort;: I ² =89% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |--|--|---|--|----------------------------|--|---|---| | | Proceedings
and BIOSIS
Previews | statins compared to placebo, 5) observational studies if they compared statins vs. no statins. Exclusions: 1) Observational studies that only compared statin use with other lipid lowering agents 2) only highly specific populations, such as renal transplant patients and those with familial hypercholesterolaemia, 3) full-text articles | | | for RCT for
all cancer
outcome
826,854 for
case-control
and Cohort
for all cancer
outcomes
(unk for
colorectal) | effects model
RR=0.86(0.77; 0.96) | Publication bias:
Observational:
Egger's test,
p=0.8 | | Dale et al.,
2006
USA
[75] | up to July 2005 Medline, EMBASE, CINAHL, Web of Science, CANCERLIT, the cochrane database | Inclusions: 1) RCT 2) statin compared to placebo- or routine treatment, 3) mean (or median) duration of patient follow-up of at least 1 year, 4) enroll a minimum of 100 patients, and 5) report data on the incidence of either cancer diagnosis or cancer death Exclusions: not specified | Statin Duration >1yr | Placebo | Colon cancer
incidence
4 RCTs
N=27,972 | RCT:
OR=0.95(0.73; 1.25) | Quality not reported Heterogeneity: RCT p= 0.24 Publication bias: Not reported for colon cancer | | Kuoppala et al.,
2008*
Finland
[80] | up to October
2007
MEDLINE,
EMBASE and
Cochrane
CENTRAL | Inclusions: original study comparing statin treatment with an inactive control (placebo or no statins), adult study participants (18 years or older), cancer incidence reported, and follow-up over 1 year Exclusions: Studies on cerivastatin and those describing statin treatment in cancer or transplant patients | Statin | Control | Colon cancer incidence 13 RCT, case-control or Cohort N=31,272 | Colorectal
RR=0.74(0.47; 1.20)
Colon
RR=1.00(0.61; 1.70)
Rectum:
RR=1.10 (0.45;
2.50) | Quality and evidence reported Heterogeneity: Not reported Publication bias: Not reported for colon cancer | | Liu et al. 2014
China
[81] | Up to July 30,
2013
PubMed, | Inclusions: 1) RCT, case-control and Cohort, 2) original studies evaluated exposure to statins and risk of CRC; 3) provided RR
estimate (risk ratio, rate | Statin (Long
term use and
type of statin
subgroup | Placebo or no
treatment | Colon cancer incidence 11 RCT, 18 case-control, | Overall:
RR=0.90 (0.86;
0.95) Random-
effects model | Quality not reported Heterogeneity: | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |--|---|---|--------------|-------------------------|--|---|---| | | Embase, Web
of Science, and
Cochrane
library | ratio, HR, or OR) with the corresponding 95 % CIs or sufficient data to calculate them; 4) full-text articles Exclusions: (1) did not fulfill the inclusion criteria; (2) reviews, letters, editorials, conference abstracts, or case reports; 3) animal trials. | analysis) | | 13 Cohort N=95,984 for RCT 7,812,690 for case-control and Cohort | Long term > 5years RR=0.96(0.90; 1.03) RCT: RR=0.96(0.85; 1.08) Random-effects model RR=0.94 (0.86; 1.04) fixed-effects models case-control and Cohort: RR=0.89 (0.84; 0.95) case-control: RR=0.84(0.76; 0.93) Cohort: RR=0.93(0.87; 0.99) Lipophilic RR=0.88 (0.85; 0.93) | Overall: I ² = 67%; p <0.01 RCT: I ² =22%; p=0.24 case-control and Cohort: I ² =73%; p < 0.01 case-control: I ² =78%; p<0.01 Cohort: I ² =62%; p<0.01 Publication bias: Begg= 0.42, Egger 0.11 | | Lytras et al.,
2014
Greece
[82] | Up to July
2013
MEDLINE | Inclusions: 1) RCT, case-control and Cohort, 2) reported estimated measure of effect size (risk ratio, rate ratio, HR or OR) and its associated CI, or had to provide enough data to calculate such an effect measure and CI RCTs were considered eligible if 1) statin was compared with placebo or no treatment; 2) had no other intervention difference between the experimental and the control group; 3) enrolled at | Statin | Placebo or no treatment | Colon cancer risk 8 RCT, 19 case-control, 13 Cohort N Overall >8,2M: 77,994 for RCT, 1.3M for and 7M | Overall: RR=0.91 (0.87; 0.96) Random-effects model RR=0.94 (0.92; 0.96) fixed-effects models RCT: RR=0.89 (0.74; | Quality not reported Heterogeneity: Overall: I ² =71%, p<0.01 RCT: I ² =25%, p=0.23, Obs I ² =75% p<0.01, Cohort: I ² =83% | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |---------------------------------|--|---|--------------|-------------|------------|-----------------------|--| | | | least 2000 participants; 4) had a | | | for Cohort | 1.07) | p<0.01, | | | | minimum duration of 2 years; and 5) | | | | Random-effects | case-control: | | | | reported the incidence of colorectal | | | | model | I ² =64% p<0.01 | | | | cancer in both arms during the trial | | | | RR=0.90 (0.78; | | | | | period. | | | | 1.04) | Publication bias: | | | | | | | | fixed-effects models | Overall: | | | | Exclusions: none | | | | | Egger=0.33, | | | | | | | | case-control and | Begg=0.11 | | | | | | | | Cohort: | | | | | | | | | RR=0.92 (0.87; | RCT: | | | | | | | | 0.96) | Egger=0.22, | | | | | | | | Random-effects | Begg=0.31 | | | | | | | | model | | | | | | | | | RR=0.94 (0.92; | Obs: | | | | | | | | 0.96) | Egger=0.36, | | | | | | | | fixed-effects models | Begg=0.16 | | | | | | | | case-control: | case-control: | | | | | | | | RR=0.92 (0.87; | Egger=0.56, | | | | | | | | 0.98) Random- | Begg=0.22 | | | | | | | | effects model | | | | | | | | | RR=0.93 (0.91; 96) | Cohort: | | | | | | | | fixed-effects models | Egger=0.54,
Begg=0.27 | | | | | | | | Cohort: | | | | | | | | | RR=0.91 (0.83; | | | | | | | | | 1.00) Random- | | | | | | | | | effects model | | | | | | | | | RR=0.96 (0.93; | | | | | | | | | 0.99) | | | | | | | | | fixed-effects models | | | Taylor et al., | Up to | Inclusions: 1) case-control, 2) assess | Statin | Any | Colon | OR=0.89 (0.82;0.97) | Quality not | | 2008 | December | the association between statins and | | comparisons | cancer* | Random-effects | reported | | USA | 2006 | cancer. | | _ | 6 case- | model | | | [77] | | | | | control | | Heterogeneity: | | Study
Country
(Reference) | Search period
and databases
searched | Inclusions / exclusions | Intervention | Control | Outcomes | Results* | Quality score
Heterogeneity
Publication bias | |---------------------------------|--|-------------------------------------|--------------|---------|---------------|----------|--| | | Medline, | Exclusions: 1) insufficient data | | | | | Not reported for | | | Cumulative | for determining both the odds ratio | | | N=100,129 | | colon cancer | | | Index to | (OR) and the 95% CI. | | | cancer cases | | | | | Nursing and | Description of excluded studies in | | | (unk for | | Publication bias: | | | Allied Health, | article. | | | colon cancer) | | Not reported for | | | Excerpta | | | | | | colon cancer | | | Medica, Web | | | | | | | | | of Science, | | | | | | | | | Scopus and | | | | | | | | | BIOSIS- | | | | | | | | | Biological | | | | | | | | | Abstracts | | | | | | | CI: confidence interval, CRC: colorectal cancer, FU: follow-up, HR: hazard ratio, OR; odds ratio, RCT: randomized controlled trials, RR: relative risk, unk: unknown ## Supplementary Table 4 . Components with increased CRC prevention | Authors
Country | Search period and databases | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity | |--------------------|-----------------------------|---|--------------|------------|------------|--------------------|--------------------------------| | (Reference) | searched | | | | | | Publication bias | | | MEAT (T | OTAL MEAT, RED MEAT, PROCESSE | ED MEAT, POU | LTRY, ANIM | AL FAT AND | PROTEIN INTAKE) | | | Sandhu et al., | Up to June | Inclusions: 1) published and | Dose | | CRC | OR=1.21(1.10;1.33) | Quality not | | 2001 | 1999 | unpublished prospective Cohort that | response all | | incidence | | reported | | UK | | contained risk estimates of CRC | meat | | | | | | [83] | | associated with meat consumption, 2) | 100g/day | | | | Heterogeneity: | | | | eligible outcomes were colon or | | | | | p=0.06 | | | | colorectal cancer incidence or mortality. | | | | | | | | | | | | | | publication bias: | | | | Exclusions: 1) case-control and | | | | | unable to | | | | ecological studies, 2) studies that only | | | | | determine | | | | classified people as to whether they ate | Dose | | CRC | OR=1.30(1.13;1.49) | Quality not | | | | meat or not (level of exposure in the | response red | | incidence | · | reported | | | | exposed group is not quantified) | meat | | | | | | Authors
Country | Search period and databases | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity | |--|-----------------------------|---|---|--|---|---|--| | (Reference) | searched | | | | | | Publication bias | | Alexander et
al., 2009
USA
[84] | up to December 2007 | Definition of meat: A broad definition of "meat" was used, which was taken to include red meat, lamb, beef, pork, and processed meats, such as sausages, meat burgers, ham, bacon and other meat products, but which, where possible, excluded white meat, such as poultry. Inclusions: 1) epidemiologic Cohort and case-control studies that reported results for the association between animal fat intake and CRC | Highest level
animal fat
intake | Lowest level
animal fat
intake | CRC Risk 6 Cohort | SRRE=1.04(0.83;1.31), Dose response 20-g/d increment in animal fat intake and colorectal | Heterogeneity: p=0.02 publication bias: Begg p=0.03 Quality not reported Heterogeneity: p=0.22 | | | | | | | |
cancer
SRRE=1.02(0.95;1.09)
Subgroup:
Male:
SRRE=0.96(0.67;1.38)
Female:
SRRE=1.10(0.77;1.57) | Publication bias
Begg p=0.35
Egger p=0.42 | | | | | | | Colon cancer
4 Cohort
Rectal
Cancer | SRRE=1.11(0.81;1.52)
SRRE=1.34(0.90; 1.98) | Heterogeneity:
p=0.12
Heterogeneity:
p=0.51 | | | | | Highest level protein intake | Lowest level protein intake | 2 Cohort
CRC Risk
6 Cohort or
case-control | SRRE=1.05(0.89; 1.22) | Heterogeneity:
p=0.55 | | Huxley et al.,
2009*
Australia | 1996 to January
2008 | Inclusions: 1) published quantitative estimates and standard errors (or some other measure of variability) of the | highest level
consumption
of red meat | lowest level
consumption
of red meat | CRC Risk 13,407 cases | RR=1.21 (1.13; 1.29) | No quality assessment | | Huxley, [34] | | association between each risk factor and colorectal cancer | highest level | lowest level | Colon risk Rectal risk CRC Risk | RR=1.14 (1.02; 1.28)
RR=1.28 (1.02; 1.60)
RR=1.19 (1.12; 1.27) | Heterogeneity:
p=0.72
No quality | | Authors | Search period | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score | |---------------------------------------|---------------------------|---|---|--|---|---|---| | Country
(Reference) | and databases
searched | | | | | | Heterogeneity
Publication bias | | | | Exclusions: 1) provided only an estimate of effect, with no means by which to | consumption of processed | consumption of processed | 26 Cohort
13,471 cases | | assessment | | | | calculate the standard error, or 2) if the | meat | meat | Colon risk | RR=1.21 (1.08; 1.35) | Heterogeneity: | | | | estimates were not at least age adjusted | | | Rectal risk | RR=1.18 (0.99; 1.41) | p=0.42 | | | | | highest level | lowest level | CRC Risk | RR=0.96 (0.86; 1.08) | No quality | | | | | consumption of poultry | consumption of poultry | 5,461 cases | | assessment | | Alexander et
al., 2011
USA | Up to June
2009 | Exclusion: 1) reported data for a broad classification of meat, such as 'total meat' categories, which included poultry | highest level
consumption
of red meat | lowest level
consumption
of red meat | CRC cases
25 Cohort | SRRE=1.12(1.04;1.21) Adjusted for 3 factors | No quality assessment | | [85] | | or fish, were excluded, 2) information pertaining to processed meat intake | | | | SRRE=1.08(0.99; 1.18) | Heterogeneity:
p=0.01 | | | | constituents of red meat, such as fat or
protein from animal sources,
heterocyclic amine exposure, cooking
practices, or adenomatous polyps were | | | | Dose-response each incremental serving per week SRRE=1.02(1.00;1.04) | Publication bias
Egger's p=0.97 | | | | obtained but these analyses were beyond the scope of the present assessment | | | | Subgroup:
Women
SRRE=1.01(0.87;1.17),
Men
SRRE= 1.21(1.04;1.42). | | | | | | | | Colon cancer
15 Cohort | RR=1.11 (1.03; 1.19) | Heterogeneity: p=0.79 | | | | | | | Rectal cancer
12 Cohort | SRRE=1.19 (0.97;
1.46) | Heterogeneity: p<0.01 | | Pham et al.,
2014
Japan
[86] | Up to August 2013 | Inclusion: Only studies on Japanese populations living in Japan were included | Total meat | | CRC Risk
6 Cohort; 8
case-control | RR=1.06 (0.92; 1.22)
RR=1.17 (0.99; 1.39) | Study quality performed – no change for only high quality | | | | | | | Rectal risk | RR=0.90 (0.71; 1.14) | study No heterogeneity | | | | | | | | | No publication bias | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--------------------------------------|--|--|--|---------|---|----------------------|--| | | | | Red meat | | CRC Risk | RR=1.16 (1.00; 1.34) | Heterogeneity:
p=0.11, I ² =28%
No publication
bias | | | | | | | Colon risk | RR=1.21 (1.03; 1.43) | Heterogeneity: - No publication bias | | | | | Processed
meat | | CRC Risk | RR=1.17 (1.02; 1.35) | Heterogeneity:
p=0.09, I ² =30%
No publication
bias | | | | | | | Colon cancer | RR=1.23 (1.03; 1.47) | No heterogeneity No publication bias | | | | | Total poultry | | Rectal cancer | RR=0.80 (0.67; 0.96) | No heterogeneity No publication bias | | Vieira et al,
2017*
UK
[27] | Up to May
2015 | Inclusion: 1) RCT, Cohort or case-control design, 2) report adjusted estimates of the RR and 95% CIs for the association of foods and CRC incidence; 3) for dose–response meta-analysis, studies should provide a quantitative measure of the intake | Red and
processed
meat
Dose
response
Incremental
of 100g/day | | CRC risk 15 Cohort 10,738 cases | RR=1.12 (1.04; 1.21) | Quality not reported Heterogeneity: p=0.30; I ² =18% Egger: p= 0.46 | | | | | | | Colon cancer
10 Cohort
10,010 cases | RR=1.19 (1.10; 1.30) | Heterogeneity:
p=0.49; I ² =0%
Egger: p= 0.02 | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |-----------------------------------|--|------------------------|---|---------|---|----------------------|---| | | | | | | Rectal cancer
6 Cohort
3,455 cases | RR=1.17 (0.99; 1.39) | Heterogeneity: P<0.01; I ² =91% | | | | | | | | | Egger : p= 0.12 | | | | | Red meat
Dose
response
Incremental | | CRC risk
8 Cohort
6,662 cases | RR=1.12 (1.00; 1.25) | Heterogeneity:
P=0.24;
I ² =23.6% | | | | | of 100g/day | | | | Egger : p= 0.48 | | | | | | | Colon cancer
11 Cohort
4,081 cases | RR=1.22 (1.06; 1.39) | Heterogeneity: P=0.33; I ² =11.7% | | | | | | | | | Egger : p= 0.76 | | | | | | | Rectal cancer
8 Cohort
1,772 cases | RR=1.13 (0.96; 1.34) | Heterogeneity:
P=0.52; I ² =0% | | | | | | | 1,7,72 cases | | Egger : p= 0.45 | | | | | Processed
meat
Dose | | CRC risk
10 Cohort
10,738 cases | RR=1.18 (1.10; 1.28) | Heterogeneity: P=0.34; I ² =11% | | | | | response | | G 1 | DD 4.02 (4.44, 4.05) | Egger : p= 0.29 | | | | | Incremental of 50g/day | | Colon cancer
12 Cohort
8,599 cases | RR=1.23 (1.11; 1.35) | Heterogeneity:
P=0.18;
I ² =26.2% | | | | | | | | | Egger : p<0.01 | | | | | | | Rectal cancer
10 Cohort
3,029 cases | RR=1.08 (1.00; 1.18) | Heterogeneity:
P=0.77; I ² =0% | | | | | | | | | Egger : p= 0.61 | | | | | Poultry Dose response | | CRC risk
7 Cohort
3,429 cases | RR=0.81 (0.53; 1.25) | Heterogeneity:
P=0.05; I ² =48% | | | | | Incremental | | 3,727 cases | | Egger : p= 0.52 | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|--|--|---------------------------------------|----------------------------------|--|---|--| | | | | of 100g/day | | Colon cancer
10 Cohort
8,429 cases | RR=0.83 (0.63; 1.11) | Heterogeneity:
P=0.12;
I ² =34.6% | | | | | | | Rectal cancer
6 Cohort
3,201 cases | RR=0.86 (0.72;1.01) | Egger: p= 0.08 Heterogeneity: P=0.96; 1 ² =0% Egger: p= 0.60 | | Woo et al.,
2014
Korea
[40] | Up to June 20 th , 2014 | (1) original articles with a case-control or Codesign; (2) articles reporting on cancer risk and diet in the Korean population; (3) studies reporting adjusted OR or RR with 95% CI for the risk of cancer in subjects with the highest category of food intake compared with those with the lowest food intake; and (4) in cases of multiple publications drawn from studies of the same population, only the most recent study was included. | Highest level of meat consumption | Lowest level of meat consumption | CRC risk
3 studies | RR=1.25 (1.15; 1.36) | Quality Not performed Heterogeneity P=0.256, I2=26.7% Publication bias Not performed | | | | | ALCOHOL | | | | | | Longnecker
et al.,
1990
USA
[87] | From 1966 to
March 1989 | Inclusions: 1) alcohol intake had to have been determined quantitatively by means of personal history; 2) otherwise alcohol consumption was likely to be misclassified, and 3) the association of alcohol consumption with risk of CRC might have been underestimated. Exclusions: 1 Unpublished data were not eligible for inclusion in the analysis. | Daily
alcohol
intake
24g/day | | CRC incidence 27 case-control or Cohort | RR=1.10 (1.05; 1.14) Subgroup: Colorectal women: RR=1.12 (1.01, 1.23) Colorectal men: RR=1.10 (1.04, 1.17) | Quality: Assessed by authors with own scale. Low quality studies may have been taken out of analyses Heterogeneity: Present both statistical and clinical | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|--|--|--|---------|--|---|---| | | | | | | | | Publication bias potential bias present | | | | | | | Colon cancer
incidence
14 case-
control or
Cohort | RR=1.10 (1.03; 1.17) | | | | | | | | Rectal cancer
incidence
14 case-
control or
Cohort | RR=1.10 (1.02; 1.18) | | | Corrao et al.,
1999
Italy
[88] | From 1966 to
1998 | Inclusions: 1) case-control or Cohort published as an original article, 2) findings expressed directly as OR or RR considering three or more levels of alcohol consumption; 3) reported number of cases and non-cases and estimates of the OR or RR for each exposure level. | Daily
alcohol
intake
25g/day
50g/day
100g/day | | Colon cancer incidence 12CC and 4 Cohort 5360 Cases | case-control:
25g/day:
RR=1.0 (1.0; 1.1)
50g/day
RR=1.10 (1.00; 1.20)
100g/day
RR=1.10 (1.00; 1.30) | Quality: Mean author score (range): 14 (9; 19) Heterogeneity: p<0.01 | | | | Exclusions: 1) ecological and prevalence studies and/or abstracts, letters and editorials | | | | Cohort:
25g/day:
RR=1.40 (1.10; 1.70)
50g/day
RR=1.90 (1.3; 2.9)
100g/day
RR=3.6 (1.6; 8.5) | Publication bias funnel plot | | | | | | | Rectal cancer incidence 11CC and 3 Cohort 2759 Cases | Men
25g/day:
RR=1.0 (1.0; 1.2)
50g/day
RR=1.2 (1.1; 1.5)
100g/day
RR=1.5 (1.2; 2.2) | Quality: Mean author score (range): 13 (9; 19) Heterogeneity: p<0.01 | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|--|--|---------------------------------------|--------------------------------------|--------------------------------------|---|--| | | | | | | | Women
25g/day:
RR=2.3 (1.3; 4.0)
50g/day
RR=5.0 (1.6; 16.4)
100g/day
RR=25.7 (2.5; 267.6) | Publication bias funnel plot | | Bagnardi et
al., 2001
Italy | From 1966 to 2000 | Inclusions: 1) case-control or Cohort study published as an original article; 2) OR or RR, considering at least 3 levels | Daily
alcohol
intake | | *CRC incidence | case-control or Cohort: 25g/day: RR=1.08 (1.06, 1.10) | Quality not reported | | [89] | | of alcohol consumption; 3) papers
reporting the number of cases and non-
cases, and the estimates of the OR or RR
for each exposure level | 25g/day
50g/day
100g/day | | 6 Cohort
and 16 case-
control | 50g/day
RR=1.18 (1.14, 1.22)
100g/day
RR=1.38 (1.29, 1.49) | Heterogeneity:
p<0.05
Publication bias
not reported | | Moskal et al.,
2007
France
[90] | From 1990 to
June 2005 | Inclusions: 1) prospective Cohort evaluating the relationship between total alcohol consumption and CRC risk; 2) published in English 3) CRC incidence as endpoint; 4) providing RR estimates and its corresponding 95% CI, or information allowing us to compute unadjusted variance. Exclusions: Studies in particular populations (i.e. cohorts of | Highest level
of alcohol
intake | Lowest level
of alcohol
intake | Colorectal cancer incidence 7 Cohort | RR=1.34 (0.92; 1.96) Subgroup: Colorectal women: RR= 0.88 (0.61; 1.27) Colorectal men: RR= 1.73 (1.00; 2.98) | Quality not reported Heterogeneity: p<0.01; I²=71% Publication bias Egger's p=0.35 Begg's p=0.88 | | | | alcoholics or brewery workers) were not included. | | | Colon cancer incidence 17 Cohort | RR=1.50 (1.25; 1.79) Subgroup: women: RR= 1.23 (0.97; 1.83) men: RR= 1.64 (1.39; 1.93) | Quality not reported Heterogeneity: P=0.03; I²=43% Publication bias Egger's p=0.70 Begg's p=0.25 | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|--|---|--|--------------------------------|---|--|---| | | | | | | Rectal cancer incidence 14 Cohort | RR=1.63 (1.35; 1.97) Subgroup: women: RR=1.39 (0.95; 2.02) men: RR=1.79 (1.38; 2.33) | Quality not reported Heterogeneity: P=0.68; I²=0% Publication bias Egger's p=0.70 Begg's p=0.34 | | | | | Daily
alcohol
intake
25g/day
50g/day
100g/day | | Colon cancer incidence Rectal cancer incidence | 25g/day:
RR=1.03 (1.02; 1.05)
50g/day
RR=1.07 (1.03; 1.11)
100g/day
RR=1.15 (1.07; 1.23)
25g/day:
RR=1.04 (1.02; 1.05)
50g/day
RR=1.07 (1.05; 1.10)
100g/day
RR=1.15 (1.10; 1.21) | 36 | | Fedirko et
al., 2011
USA
[91] | Up to May
2010 | Inclusions: 1) case-control or Cohort, 2) alcohol intake and CRC incidence or mortality in general population, 3) reporting the OR or RR estimates with the corresponding 95% CI or sufficient information to calculate them; 4) reporting an association for at least three categories of alcohol consumption. | Drinkers | Non-
occasional
drinkers | CRC incidence 23 Cohort and 34 case-control | RR=1.12 (1.06; 1.19) Subgroup: Colorectal women: RR=1.00 (0.94; 1.07) Colorectal men: RR=1.25 (1.13; 1.39) | Quality: authors criteria Heterogeneity: potential heterogeneity of effects by sex, colorectal site, Publication bias minor evidence of publication bias. | | Authors
Country | Search period and databases | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity | |--------------------|-----------------------------|------------------------|---|--------------------------------|---|--|--------------------------------| | (Reference) | searched | | | | | | Publication bias | | | | | | | Colon cancer incidence 42 Cohort or case-control | RR=1.05 (0.99; 1.12) | | | | | | | | Rectal cancer incidence 38 Cohort or case-control | RR=1.19 (1.09; 1.31) | | | | | | Light
alcohol
intake
(≤1 drink/
day (≤12.5
g/day of
ethanol)) | Non-
occasional
drinkers | CRC incidence 23 Cohort and 26 case-control Colon cancer incidence 36 Cohort or case-control Rectal cancer incidence 32 Cohort or case-cohort or case-cohort or case-cohort or case-cohort or case-cohort or case-cohort or | RR=1.00 (0.95; 1.05) Subgroup: Colorectal women: RR=0.95 (0.89; 1.01) Colorectal men: RR=1.02 (0.92; 1.14) RR=0.96 (0.90; 1.02) RR=1.06 (0.98; 1.14) | | | | | | Moderate
alcohol
intake (2–3
drinks/day
(12.6–49.9
g/day of
ethanol)) | Non-
occasional
drinkers | case-control CRC incidence 22 Cohort and 31 case- control Colon cancer
incidence 39 Cohort or case-control Rectal cancer incidence | RR=1.21 (1.13; 1.28) Subgroup: Colorectal women: RR=1.08 (1.03; 1.13) Colorectal men: RR=1.24 (1.13; 1.37) RR=1.15 (1.06; 1.24) RR=1.23 (1.13; 1.35) | | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |---|--|--|---|--------------------------------|--|---|---| | | | | | | 35 Cohort or case-control | | | | | | | Heavy
alcohol
intake
(≥4
drinks/day
(≥50 g/day
of ethanol)) | Non-
occasional
drinkers | CRC incidence 7 Cohort and 12 case-control Colon cancer incidence 16 Cohort or case-control Rectal cancer incidence 15 Cohort or | RR=1.52 (1.27; 1.81) Subgroup: Colorectal women: RR=1.54 (1.04; 2.29) Colorectal men: RR=1.62 (1.31; 2.01) RR=1.43 (1.23; 1.67) RR=1.59 (1.18; 2.15) | | | Bagnardi et
al., 2013
Italy
[92] | Up to
December 2010 | Inclusion: 1) case-control or Cohort published as original articles, 2) OR, RR or HR (or reporting sufficient data to compute them) for 3) light drinkers (≤12.5 g ethanol; ≤1 drink) versus non-drinkers. 4) studies that reported standard errors or CIs of the risk estimates, or provided sufficient data to calculate them. Exclusions: 1) abstracts, letters, reviews and meta-analyses, 2) Specific type of alcoholic beverage only (e.g. beer only) | Light
drinkers
(≤12.5 g
ethanol; ≤1
drink) | Non-
drinkers | *CRC incidence 26 Cohort, 28 case-control | case-control or
Cohort:
RR=0.99 (0.95; 1.04)
Cohort:
RR=1.00 (0.95, 1.05)
case-control:
RR=0.98 (0.91, 1.06)
Subgroup:
Colorectal women:
RR= 0.93 (0.87, 0.99)
Colorectal men:
RR= 1.05 (0.95, 1.16) | Quality not reported Heterogeneity: Moderate or low Publication bias: P=0.059 | | Bagnardi et
al., 2015
Italy
[93] | Up to
September
2012 | Inclusion: 1) case-control or Cohort published as original articles, 2) reported OR, RR or HR (or reporting sufficient data to compute them) for 3) light drinkers (≤12.5 g ethanol; ≤1 drink) versus non-drinkers. 4) studies that | Daily
alcohol
intake
≤12.5g/day
≤50g/day
>50g/day | | *CRC 33 Cohort and 33 case- control | case-control or Cohort:
≤12.5g/day
RR=0.99 (0.95; 1.06)
≤50g/day
RR=1.17 (1.11, 1.24)
>50g/day | Quality not reported Heterogeneity: ≤12.5g/day; | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |-------------------------------------|--|--|----------------------------|-----------------------------------|---|---|---| | | | reported standard errors or CIs of the risk estimates, or provided sufficient data to calculate them. Exclusions: 1) abstracts, letters, reviews and meta-analyses, 2) Specific type of alcoholic beverage only (e.g. beer only) | | | | RR=1.44 (1.25, 1.65) Subgroup: Colorectal women: ≤12.5g/day: RR= 0.95 (0.89; 1.01) ≤50g/day: RR=1.07 (0.99; 1.16) >50g/day: RR=1.24 (0.68; 2.25) Colorectal men: ≤12.5g/day: RR= 1.05 (0.95; 1.16) ≤50g/day: RR=1.21 (1.11; 1.32) >50g/day: | I²=40
≤50g/day: I²=52
>50g/day: I²=69
Publication bias
not reported | | Wang et al.,
2015
USA
[94] | Up to July 2014 | Inclusions: 1) case-control or Cohort, 2) alcohol intake and CRC incidence or mortality in general population, 3) reporting the OR or RR estimates with the corresponding 95% CI or sufficient information to calculate them; 4) reporting an association for at least three categories of alcohol consumption | Drinkers | Non- or
occasional
drinkers | CRC incidence 22 Cohort and 2 case-control Colon cancer incidence 6 Cohort or case-control Rectal cancer incidence 3 Cohort or case-control | RR=1.53 (1.30; 1.80) RR=1.13 (1.09; 1.17) Subgroup: Colorectal women: RR=1.03 (0.95; 1.10) Colorectal men: RR=1.19 (1.07; 1.32) RR=1.18 (1.08; 1.30) RR=1.42 (1.03; 1.98) | Quality: authors criteria Heterogeneity: Colorectal heterogeneity Publication bias Significant publication bias | | | | | Light
alcohol
intake | Non- or occasional drinkers | CRC incidence 21 Cohort | RR=1.07 (1.02; 1.13)
Subgroup: | | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |-----------------------------------|--|------------------------|--|-----------------------------------|--|---|--| | | | | (≤1 drink/
day (≤12.5
g/day of
ethanol)) | | and 2 case-
control | Colorectal women:
RR=0.98 (0.91; 1.08)
Colorectal men:
RR=0.97 (0.88; 1.10) | | | | | | | | Colon cancer incidence 21 Cohort or case-control | RR=1.02 (0.91; 1.14) | | | | | | | | Rectal cancer incidence 2 Cohort or case-control | RR=1.28 (0.83; 1.98) | | | | | | Moderate
alcohol
intake (2–3
drinks/day
(12.6–49.9
g/day | Non- or
occasional
drinkers | CRC incidence 18 Cohort and 2 case-control | RR=1.23 (1.15; 1.33)
Subgroup:
Colorectal women:
RR=1.14 (1.04; 1.25)
Colorectal men:
RR=1.28 (1.15; 1.44) | | | | | | of ethanol)) | | Colon cancer incidence 8 Cohort or case-control | RR=1.35 (1.21; 1.50) | | | | | | | | Rectal cancer incidence 3 Cohort or case-control | RR=1.41 (0.95; 2.08) | | | | | | Heavy
alcohol
intake
(≥4
drinks/day
(≥50 g/day
of ethanol) | Non- or
occasional
drinkers | CRC incidence 7 Cohort and 12 case-control | RR=1.37 (1.28; 1.49) Subgroup: Colorectal women: RR=0.85 (0.84; 1.42) Colorectal men: RR=1.38 (1.22; 1.57) | | | | | | | | Colon cancer incidence 4 Cohort or | RR=1.23 (1.03; 1.47) | | | Authors
Country
(Reference) | Search period
and databases
searched | Inclusion / exclusions | Intervention | Control | Outcomes | Results | Quality score
Heterogeneity
Publication bias | |--|--|---|--|---------------------------------|--|---|--| | | | | | | Rectal cancer incidence 2 Cohort or case-control | RR=1.77 (1.09; 2.88) | _ | | Zhang et al.,
2015
China
[95] | | Inclusions: (1) case-control or Cohort as published as original article; 2) reported RR estimates and corresponding 95 % CI for consumption of beer and CRC incidence at least; adjusted or matched for age | Beer drinker | non-
/occasional
drinkers | CRC incidence 9 Cohort and 12 case-control | RR=1.20 (1.06; 1.37) Subgroup: Colorectal women: RR=0.96 (0.69; 1.33) Colorectal men: RR=1.15 (0.66; 2.03) | Quality:
authors criteria
Heterogeneity:
p<0.01; I ² =73%
Publication bias
Begg's p=0.72
Egger's p=0.75 | | | | | Light beer
intake (<1
drink or
13g/day) | non-
/occasional
drinkers | CRC incidence | RR=1.03 (0.95; 1.11) | Quality: authors criteria Heterogeneity: none Publication bias Not reported | | | | | Moderate
beer intake
(1-2 drinks
or 13-
26g/day) | non-
/occasional
drinkers | CRC incidence | RR= 1.09 (0.91; 1.31) | | | | wel CDC colorest | al cancer, HR: hazard ratio, OR;
odds ratio. | Heavy beer intake (>2 drinks or > 26g /day) | non-
/occasional
drinkers | CRC incidence | RR=1.37 (1.26; 1.49) | lating mich paties -t |