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Supplementary Notes 
The heart is innervated by preganglionic sympathetic and parasympathetic neurons respectively via 

the stellate ganglia and the vagus nerve 1–4. Despite this dual innervation, it is the parasympathetic 

nervous system that dominates this organ’s activity by exerting a continuous inhibitory control over 

an intrinsically higher resting heart rate (HR) 5,6. This vagal influence is characterized by fast 

responses (reductions in HR peaking after 0.5 s and returning to baseline after 1 s) which are able to 

produce beat-to-beat changes in the HR; something that the slower sympathetic influence (increases 

in HR peaking after 4 s and returning to baseline after 20 s) cannot replicate 7–9.  

These fast beat-to-beat changes and the slower sympathetic influences in HR are what the heart rate 

variability (HRV), with its multiple formulations, attempts to capture: a low HRV is a consequence of 

more constant inter beat intervals (IBIs) while a high HRV results of more variable intervals between 

heartbeats. Several formulas have been used to compute HRV, ranging from metrics more favorable 

to long-term recordings (ex: the approximate entropy of all IBIs during 24 h) to metrics more 

adequate for shorter recording. These can be either sensitive to overall HR variability like the 

standard deviation, or more appropriate to capture the beat-to-beat parasympathetic effects, like 

the root mean square of successive differences (RMSSD). In addition, power spectral analysis of IBI 

time series has frequently been used to quantify HRV with high frequency (HF-HRV) (0.15–0.40 Hz) 

and low frequency (LF-HRV) (0.01–0.15 Hz) reflecting cardiac vagal tone and a mixture of vagal and 

sympathetic influences, respectively. The latter is better represented by the electrodermal activity 

(EDA) which is considered a purely sympathetic metric 10. 

Higher HRV has been associated with a general adaptive responsiveness to changes in not only the 

internal environment (e.g., protecting from high trait anxiety effects in attention to threat 11, state 

anxiety in healthy individuals 12 and worry 13) but also in the external environment (initiate and 

maintain positive social relations 14, sensitivity to others emotional states 15).  

Lower HRV has been associated with a decreased ability to respond flexibly [e.g., compromised 

ability to recognize safety in patients with anxiety disorders 16]. Low resting HRV has been proposed 

as a marker for disease 17 and has been associated with increased risk of all-cause mortality 18,19. On 

the other hand, having high resting HRV has been associated with higher emotional well-being 20,21, 

with lower levels of worry and rumination 13,22, lower anxiety 23, and better regulated emotional 

responding 24.  

HRV extracted from pulse oximeters [pulse rate variability (PRV)] is rapidly being introduced as a 

feature in commercial products like smart watches and wristbands as an index of stress exposure and 

energy 25. However, PRV and HRV are not always correlated, especially during mental stress or 

physical activity 25 but have been found to be highly correlated in healthy individuals during rest 26.  

However, an increasing number of studies has been suggesting HRV to be more than just an index of 

healthy heart function, by indexing how a network of brain regions responsible for adaptive 

regulation provide adaptive control over the periphery and allowing the organism to effectively 

function in a complex environment. Low resting HF-HRV and large reductions in this metric to 

assorted challenges are associated with symptoms of both internalizing and externalizing 

psychopathology 21,27,28, and with a wide range of psychopathological syndromes, including anxiety 
29,30, phobias 31, callousness 32, conduct disorder 33, depression 34–36, trait hostility 37, psychopathy 38, 

among others. Furthermore, HRV reactivity has been suggested as a reliable index of the ability to 
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self-regulate and react to stress in the environment 19,39 and HRV reactivity to social stressors may be 

particularly important in predicting depression risk during adolescence 40. 

The use of computer simulated immersive virtual environments (IVEs) in research has been 

increasing in popularity over the last decade not only due to its increased availability but most 

importantly due to the initial pioneering experiments that shed the necessary light on its potential 

applications. IVEs place the user in an interactive virtual reality (VR) that can be programmed to 

deliver standardized and controlled manipulations making them an attractive technique in several 

life-science fields. As an emotive medium, IVEs have been effectively used to influence self-reported 

emotions like anxiety and relaxation 41 or elicit self-reported anger and physiologic arousal 42. There 

is also considerable evidence that IVEs can be used to create stress induction tasks that effectively 

elicit psychophysiological stress responses in both clinical and non-clinical samples. For instance, it 

has been shown that modifying the controllability of the vestibular system in a dynamic IVE increased 

cortisol secretion compared to a static IVE 43, or that owning a VR body in an uncomfortable position 

also leads to increasing markers of stress 44. Psychosocial stress related protocols have also been 

used in VR showing that anticipating public speaking in an IVE increased subjective anxiety and 

physiological responses in HR, EDA and startle reactivity 45. One important aspect revealed by 

aforementioned IVE studies is that these environments can also be used to separate individuals with 

different psychophysiological phenotypes using less conspicuous cues. 

Supplementary Methods 

Participants  
135 participants were admitted to the study. Criteria for inclusion in the study included being 

healthy, male, 18 – 38-year-old, right-handed, French-speaking, non-smoking, no history of 

neurological, psychological or cardiac disease and no corrected vision. Exclusion criteria consisted of 

self-reported psychiatric, neurological and medical conditions. After receiving a complete description 

of the study, each participant gave informed consent to participate. Participants were given a 

financial compensation of 20 CHF per hour. Experimental sessions were scheduled between 1 pm 

and 7 pm. The study was approved by the Swiss Cantonal Commission for Ethics of Human Research 

in the Canton of Vaud (CER-VD). 

Cardiorespiratory variables 
HRV is known to be dominated by parasympathetic (vagal) influence, which affects heart rate with 

short latencies around 0.5 s. In turn, sympathetic influence has a slower influence, peaking 

approximately within 4 s and returning to baseline after 20 s. 

HR was computed from the electrocardiogram (ECG) time-series (recorded wirelessly with a Biopac 

BioNomadix® unit), which was sampled at 1kHz and decimated to 500 Hz. These conditions allow the 

identification of the QRS complex with high precision, which requires sampling rates no lower than 

250 Hz 46,47. We used a Pan Tompkins algorithm 48 to detect the QRS complexes. After visual 

inspection for potential ECG artifacts or ectopic beats, the identified R peaks were used, and the R to 

R intervals were taken to create an IBI time-series. This was then processed for outliers with a 

standard deviation filter of 2.5. Detected outliers were removed and the neighboring R to R intervals 

used for linear interpolation. 
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HRV measures the temporal changes in HR beat after beat and has been formulated in several 

different ways, from time- and frequency-domain methods as well as geometric and non-linear 

methods 47. Here, we chose to use formulas that can be applied in short time intervals, ultra-short 

HRV 49–51, but avoided using spectral HRV measurements due to their sensitivity to the spectral 

computation method and choice of time window 52. Since the high-frequency HRV (HF-HRV) 

component is known to represent parasympathetic activity with good specificity 53, and the root 

mean square of successive differences (RMSSD) is highly correlated with it 19 and less affected by 

respiration than HF-HRV 54,55, we chose the latter time-domain formula for our analyses. Additionally, 

we used two other time-domain formulas that have been used with short length ECG data 51: 

standard deviation of the R to R intervals (SDNN) and the triangular index (HRVTi), the latter highly 

investitive to artifacts 56. 

HRV can be affected by breathing patterns 56 and in this experiment we did not ask participants to 

perform controlled breathing. Although the RMSSD formula is less affected by respiration than other 

indices of HRV 54,55, we recorded breathing with a respiration belt (Biopac BioNomadix®). Respiration 

rate (RR) was computed using the Matlab function findpeaks after filtering the respiration signal with 

a bandpass FIR with 0.17 to 0.73 Hz. We identified peaks above at least one robust standard 

deviation of the filtered respiration time-series [prctile(respiration,84.1)-prctile(respiration,15.9)]/2, 

separated by at least 0.8 s and with a minimum width of 0.4 s. The RR was finally computed as the 

median value of the temporal distance between the identified respiration peaks. 

Behavioral feature description 
Behavioral features were split into three categories: movement, trajectory and position; gait; 

movement burst / immobility. 

Movement comprises velocity (vel) and acceleration (acc) captured by the VR headset in the 3 

dimensions (x, y and z), resulting in vertical (vert) and horizontal (horz) components, during the 90 

seconds, and during the first 20 seconds of each exploration trial. Trajectory features were obtained 

from 57 and can be consulted in Supplementary Table 1. Position features vary according to the 

exploration trial (details in Supplementary Table 2). Gait features details in Supplementary Table 3. 

Movement burst / immobility features were computed by identifying periods respectively with and 

without more than 3 strides from the motion capture data. For movement burst features see 

Supplementary Table 4 and for immobility features see Supplementary Table 5. Features that have been 

collected in the empty room and elevated alley will be followed by (er) and (ea) respectively. 

Supplementary Table 1: Trajectory features 

Variable 

Name 

Variable Description 

Eccentricity 

(er, ea) 

Trajectory eccentricity. How much the trajectory deviates from being circular. 

Formally, eccentricity is defined as:  

sqrt(1 - a^2/b^2) 

where a and b are the major and minor axes of a minimum volume ellipsoid that 

encloses the trajectory points. 

Focus (er, ea) Trajectory focus. How focused on specific points the trajectory is. Is it broad 

throughout the entire scenario or focused on specific points. Formally, focus is 

defined as: 
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1 - a*b/(trajectory_length^2 / (4*pi)) 

where a and b are the major and minor axes of a minimum volume ellipsoid that 

encloses the trajectory points. 

 

 

Supplementary Table 2: Position features 

Trial Variable Name Variable Description 

Empty room (er) Wall dist (er) Average minimum distance to walls 

Corner dist (er) Average minimum distance to corners 

Distance walked (er) Total distance walked 

Time on step (er) Time in initial red step 

Time in center (er) Time in center of room 

Time in edges (er) Time in the edges of the room 

Ratio time (er) Ratio between time in center and time in edges 

Theta (er) Average radius of polar coordinates. 

Ro (er) Average angle of coordinates  

Explored (%) (er) Percentage of area explored 

Elevated Alley (ea) Time on step (ea) Time in initial red step 

Distance walked (ea) Total distance walked 

Longitudinal max (ea) Maximum longitudinal position 

Latitude unsafe max (ea) Maximum lateral position in unsafe area 

Latitude patch 1 max (ea) Maximum lateral position in patch 1 

Latitude patch 2 max (ea) Maximum lateral position in patch 2 

Latitude patch 3 max (ea) Maximum lateral position in patch 3 

Longitudinal unsafe max (ea) Maximum longitudinal position in unsafe area 

Longitudinal patch 1 max (ea) Maximum longitudinal position in patch 1 

Longitudinal patch 2 max (ea) Maximum longitudinal position in patch 2 

Longitudinal patch 3 max (ea) Maximum longitudinal position in patch 3 

Theta (ea) Average radius of polar coordinates. 

Ro (ea) Average angle of coordinates  

Explored (%) (ea) Percentage of area explored 

Time unsafe (ea) Time spent in unsafe area 

Time safe (ea) Time spent in safe area 

Time patch 2 (ea) Time spent in patch 2 

Time patch 3 (ea) Time spent in path 3 
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Supplementary Table 3: Gait features 

Variable Name Variable Description 

GCT_mean (er, ea) Average gait cycle time 

Stance mean (er, ea) Average stance time 

Stride length mean (er, ea) Average stride length 

Stride speed mean (er, ea) Average stride speed 

Max heel mean (er, ea) Maximum heel height 

GCT sym (er, ea) Symmetry in gait cycle time 

Stance sym (er, ea) Symmetry in stance time 

Stride length sym (er, ea) Symmetry in stride length 

Stride speed Sym (er, ea) Symmetry in stride speed 

GCT var (er, ea) Standard deviation of gait cycle time 

Stance var (er, ea) Standard deviation of stance time 

Stride length var (er, ea) Standard deviation of stride length 

Stride speed Var (er, ea) Standard deviation of stride speed 

Max heel Var (er, ea) Standard deviation of heel height 

N steps (er, ea) Number of steps 

 

Supplementary Table 4: Movement burst features 

Variable Name Variable Description 

Burst num (er, ea) Number of movement bursts 

Burst ons accel (er, ea) Average burst onset acceleration (first 1 second) 

Burst speed (er, ea) Average speed during burst 

Burst head scan (er, ea) Average head movement during bursts 

Burst contrl scan (er, ea) Average hand controller movement during bursts 

Burst steps (er, ea) Average number of steps in burst 

Burst leg vel (er, ea) Average leg velocity 

Burst dur (er, ea) Average duration of bursts 

Pelv disp (er, ea) Amount of vertical pelvis movement during bursts 

Burst ecc (er, ea) Average eccentricity of trajectory during bursts 

Burst focus (er, ea) Average focus during bursts 

Burst len (er, ea) Average distance walked in bursts 

Burst ons (er, ea) Onset of first burst 

 

Supplementary Table 5: Immobility features 

Variable Name Variable Description 

Immmo num (er, ea) Number of immobility periods 

Immo head scan (er, ea) Average head movement during immobility 

Immo contrl scan (er, ea) Average hand controller movement during immobility 

Immo dur (er, ea) Average duration of immobility periods 
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Supplementary Results 

Statistics for physiology in exploration scenarios 
When exposed to the persistent threat scenario, participants showed autonomic activation (Fig. 2b). 

Opposingly, when exposed to the virtual empty room (er) and the virtual elevated alley (ea), 

participants recovered on average as can be seen in Supplementary Fig. 1. 

 

Supplementary Fig. 1: Physiological response (HRV ad HR) during the empty room and the elevated alley. 

N=135 participants examined over 3 consecutive blocks of 30 seconds (S1, S2 and S3). Data are presented as 

mean values +/- SEM (vertical bars). A repeated measures analysis of variance (rm-ANOVA) was performed for 

HR and to HRV. Post-hoc tests were performed with two-sided paired t-tests, with p-values corrected for 

multiple comparisons (3 comparisons) with the Holm correction. * p-value < 0.05, *** p-value < 0.001. Exact p-

values and statistics are presented in Supplementary Tables 8-11. Source data are provided as a Source Data 

file. 

We analyzed the effects of time (in steps of 30 s) on HR, HRV (with the RMSSD) with a repeated 

measures analysis of variance (rm-ANOVA). An eventual significant effect of time step suggests that 

these dependent variables change throughout the exposure to these scenarios and post-hoc analysis 

will be used to verify the direction of the effect (increase of decrease with time). Post-hoc tests are 

performed with paired t-tests with p-values corrected for multiple comparisons (3 comparisons) with 

the Holm correction. Effect sizes are computed with the Cohen’s d for t-tests and with the partial Eta 

squared (ƞp
2) for the effect of time in the rm-ANOVA. Sphericity assumptions are always verified for 

the rm-ANOVA with the Maulchy’s test of sphericity and, if violated, the Greenhouse-Geisser 

correction to the degrees of freedom is applied. 

Dark maze 

For the dark maze (Fig. 2a) a significant effect of time step is present for HR (F2,268=16.90, P=1.223e -

7, ƞp
2=0.112). Post-hoc tests show a significant increase of HR after step S1, as can be seen in 

Supplementary Table 6. 

Supplementary Table 6: Post-hoc comparisons between 30 s time steps for the HR, during the dark corridor. 

Post Hoc Comparisons - Steps (30s)  

      Mean Difference  SE  t  Cohen's d  p holm  

S1  

   

S2  -3.363  0.689  -4.877  0.420  6.004e -6  

S3  -4.111  0.817  -5.035  0.433  4.532e -6  

S2  S3  -0.749  0.749  -1.000  0.086  0.319  
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A significant effect of time can also be seen in HRV (RMSS) (F2,268 =8.74, P=2.110e -4, ƞp
2=0.061). Post-

hoc tests show a significant decrease in HRV between steps S1 and S3 (Supplementary Table 7). 

Supplementary Table 7: Post-hoc comparisons between 30 s time steps for the HRV (RMSSD), during the 

elevated alley. 

Post Hoc Comparisons - Steps (30s)  

      Mean Difference  SE  t  Cohen's d  p holm  

S1  

   

S2  2.636  1.133  2.327  0.200  0.051  

S3  4.432  1.000  4.432  0.381  5.770e -5  

S2  S3  1.796  1.063  1.689  0.145  0.093  

 

Empty room 

For the empty room (Fig. 1a) a significant effect of time step is present for HR (F1.808,242.226=33.626, 

P=1.151e -12, ƞp
2=0.201). Post-hoc tests show a significant decrease of HR with time at each time 

step, as can be seen in Supplementary Table 8. 

Supplementary Table 8: Post-hoc comparisons between 30 s time steps for the HR, during the empty room. 

Post Hoc Comparisons - Steps (30s)  

      Mean Difference  SE  t  Cohen's d  p holm  

S1  

   

S2  1.529  0.398  3.839  0.330  1.895e  -4  

S3  3.080  0.411  7.490  0.645  2.497e -11  

S2  S3  1.551  0.309  5.020  0.432  3.228e  -6  

 

A significant effect of time can also be seen in HRV (RMSS) (F2,268=3.94, P=0.021, ƞp
2=0.029). Post-hoc 

tests show a significant increase in HRV from step S1 to step S3 (Supplementary Table 9). 

Supplementary Table 9: Post-hoc comparisons between 30 s time steps for the HRV (RMSSD), during the 

empty room. 

Post Hoc Comparisons - Steps (30s)  

      Mean Difference  SE  t  Cohen's d  p holm  

S1  

   

S2  -0.742  0.897  -0.827  0.071  0.409  

S3  -2.502  0.925  -2.706  0.233  0.023  

S2  S3  -1.760  0.927  -1.899  0.163  0.119  

 

Elevated alley 

For the elevated alley (Fig. 1b) a significant effect of time step is present for HR (F2,268=21.92, 

P=1.523e -9, ƞp
2=0.141). Post-hoc tests show a significant decrease of HR after the time step S2, as 

can be seen in Supplementary Table 10.  
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Supplementary Table 10: Post-hoc comparisons between 30 s time steps for the HR, during the elevated alley. 

Post Hoc Comparisons - Steps (30s)  

      Mean Difference  SE  t  Cohen's d  p holm  

S1  

   

S2  0.919  0.650  1.414  0.122  0.160  

S3  4.035  0.670  6.026  0.519  4.593e -8  

S2  S3  3.116  0.594  5.242  0.451  1.203e -6  

 

A significant effect of time can also be seen in HRV (RMSS) (F1.894,237.632=11.59, P=3.762e -5, 

ƞp
2=0.080). Similar to HR, post-hoc tests show a significant increase in HRV after step S2 

(Supplementary Table 11). 

Supplementary Table 11: Post-hoc comparisons between 30 s time steps for the HRV (RMSSD), during the 

elevated alley. 

Post Hoc Comparisons - Steps (30s)  

      Mean Difference  SE  t  Cohen's d  p holm  

S1  

   

S2  -1.396  1.231  -1.134  0.098  0.259  

S3  -6.687  1.686  -3.966  0.341  3.548e -4  

S2  S3  -5.292  1.446  -3.659  0.315  7.259e -4  

 

PCA compression for cardiorespiratory variables 
Principal component analysis (PCA) was applied to the cardiorespiratory variables (HR, RMSSD, 

SDNN, HRVTi and RR) in order to obtain a principal component (PC) that represents autonomic 

influence. Hence, we expected to have a component independent from RR and that would generalize 

well to the different HRV formulas. Component PC1 (see Supplementary Fig. 2) fulfils these requests.  

Correction for outliers was performed before PCA by applying the median absolute deviation (MAD) 

and replacing the detected outliers with the median of the population. PCA was performed in 

MATLAB® with the function PCA. No rotation was applied. 

 

  

Supplementary Fig. 2: Loadings for PCA applied to the cardiorespiratory 
variables. PC1 explains 43% of the variance in the dataset and loads 
negatively (blue color) to HR and positively to the HRV variables (mainly 
RMSSD and SDNN). PC2 loads mainly to the respiration rate negatively 
and explains 20% of the variance. PC3 loads mainly to the HRVTi 
formula positively (red color) and explains 17% of the variance. PC4 
loads mainly to HR negatively and explains only 13% of the variance. 
Source data are provided as a Source Data file. 
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Model validation on the training dataset 
Our model’s performance in unseen data from the training dataset was carried out using a 10-fold 

cross validation that resulted in a significant correlation between the predictions of the 10 folds with 

the training iHRV (r=0.28, p=0.025, Supplementary Fig. 3). These data indicate that the training set 

contain more difficult examples than the testing set. Other model evaluation metrics also show a 

slightly better performance on the test set, but not as pronounced as the correlation values. For the 

test set (MAE: 1.020, MSE: 1.563, RMSE: 1.251, RMSE/IQR: 0.600) and 10-fold CV train set (MAE: 

1.121, MSE: 1.914, RMSE: 1.383, RMSE/IQR: 0.732). 

 

 

 

  

Supplementary Fig. 3: Spearman correlation (two-
tailed p=0.025) between the XGBoost model’s 
prediction and the integrated HRV index (iHRV) 
using a 10-fold cross validated performance (i.e., 
when predictions are made on the unseen data of 
each one of the 10 folds of cross validation) for the 
training set. 95% confidence interval for the 
regression lines drawn using translucent bands. 
Source data are provided as a Source Data file. 
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Selected features 
Supplementary Table 12: Resulting 18 features after feature selection. 

Em
p

ty
 r

o
o

m
 

Focus (er) Trajectory focus. 

Corner dist (er) Average minimum distance to corners 

Distance walked (er) Total distance walked 

Ratio time (er) Ratio between time in center and time in edges 

Burst head scan (er) Average head movement during bursts 

Burst contrl scan (er) Average hand controller movement during bursts 

Immo dur (er) Average duration of immobility periods 

GCT var (er) Standard deviation of gait cycle time 

Stance var (er) Standard deviation of stance time 

Stride speed Var (er) Standard deviation of stride speed 

N steps (er) Number of steps 

El
ev

a
te

d
 A

lle
y 

Vertical acceleration (ea) Average vertical acceleration during the 90 s. 

Time on step (ea) Time in initial red step 

Latitude unsafe max (ea) Maximum lateral position in unsafe area 

Longitudinal patch 1 max (ea) Maximum longitudinal position in patch 1 

Time patch 3 (ea) Time spent in path 3 

Horizontal acceleration delta (ea) Difference from er in average horizontal acceleration 
during the 90 s in ea. 

Vertical acceleration delta (ea) Difference from er in average vertical acceleration 
during the 90 s in ea. 

 

XGBoost algorithm 
After Bayesian optimization, the resulting hyperparamteres for the model were: 

(n_estimators = 8, colsample_bytree=0.84, learning_rate = 0.546, max_depth = 6, min_child_weight 

= 5, subsample = 0.724, gamma = 0.427, reg_lambda = 0.59, reg_alpha = 0.67) 

The resulting decision trees for the 8 estimators can be in Supplementary Figs 4-11: 

 

Supplementary Fig. 4: Decision tree for estimator 1. 
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Supplementary Fig. 5: Decision tree for estimator 2. 

 

 

Supplementary Fig. 6: Decision tree for estimator 3. 
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Supplementary Fig. 7: Decision tree for estimator 4. 

 

 

Supplementary Fig. 8: Decision tree for estimator 5. 

 

 

Supplementary Fig. 9: Decision tree for estimator 6. 
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Supplementary Fig. 10: Decision tree for estimator 7. 

 

 

Supplementary Fig. 11: Decision tree for estimator 8. 
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Finally, the model’s final decision based on the 8 estimators results in the scores presented in 

Supplementary Fig. 12 compared to the actual scores. The contribution of the behavioral features is 

informed by the SHAP values, which represent how the features, for each individual, influence the 

model’s output (negatively or positively). 

 
Supplementary Fig. 12: True PC1 scores versus model’s prediction (upper viridis color scale panel). SHAP values 

(lower magma color panel). Source data are provided as a Source Data file. 

 

Statistics for physiology in Fig. 4b 
We analyzed the effects of the stress task (in four steps of 2.5 minutes during the stress task and one 

2.5 minutes baseline) on HR and HRV (with the RMSSD) with a repeated measures analysis of 

variance (rm-ANOVA) in the generalization sample. Due to excessive movement artifact in the 2.5 

minutes steps ECG, a total 8 subjects were removed for this analysis. An eventual significant effect of 

time step suggests that these dependent variables change throughout the exposure to the stress task 

in comparison to the baseline or within the stress test. Post-hoc tests will be used upon a significant 

effect of time to verify the direction and location of the effects (increase of decrease with time with 

relation to the baseline or within the stress test). Post-hoc tests are performed with paired t-tests 

with p-values corrected for multiple comparisons (10 comparisons) with the Holm correction. Effect 

sizes are computed with the Cohen’s d for t-tests and with the partial Eta squared (ƞp
2) for the effect 

of time in the rm-ANOVA. Sphericity assumptions are always verified for the rm-ANOVA analyses 

with the Maulchy’s test of sphericity and, if violated, the Greenhouse-Geisser correction to the 

degrees of freedom is applied. 
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Physiology analysis 

A significant effect of time step is present for HR (F2.701,264=41.14, P<0.001, ƞp
2=0.296) as can be seen 

in Supplementary Table 13 post-hoc tests show a significant large increase of HR compared to the 

baseline step BL, and a consistent gradual increase after step S2. 

Supplementary Table 13: Post-hoc comparisons between baseline (BL) and stress (S1-4) time steps for the HR. 

Post Hoc Comparisons - Stress  

      Mean Difference  SE  t  Cohen's d  p holm  

BL  

   

   

   

S1  -5.266  0.647  -8.137  0.818  1.034e -11  

S2  -5.156  0.728  -7.080  0.712  1.535e  -9  

S3  -6.290  0.704  -8.932  0.898  2.263e -13  

S4  -7.408  0.812  -9.125  0.917  9.609e -14  

S1  

   

   

S2  0.110  0.575  0.192  0.019  0.848  

S3  -1.024  0.626  -1.637  0.165  0.210  

S4  -2.141  0.719  -2.977  0.299  0.015  

S2  

   

S3  -1.134  0.430  -2.638  0.265  0.029  

S4  -2.252  0.534  -4.215  0.424  3.338e  -4  

S3  S4  -1.117  0.353  -3.161  0.318  0.010  

 

A significant effect of time step is present for HRV (RMSSD) (F2.914,285.546=12.96, P<0.001, ƞp
2=0.117). 

As can be seen in Supplementary Table 14 post-hoc tests show a significant decrease of HRV in steps 

S3 and S4 when compared to the baseline step BL and to steps S1 and S2. 

Supplementary Table 14: Post-hoc comparisons between baseline (BL) and stress (S1-4) time steps for the HRV 

(RMSSD). 

Post Hoc Comparisons - Stress  

      Mean Difference  SE  t  Cohen's d  p holm  

BL  

   

   

   

S1  1.781  1.022  1.743  0.175  0.253  

S2  2.679  1.066  2.513  0.253  0.054  

S3  5.243  1.021  5.136  0.516  1.425e -5  

S4  5.167  1.084  4.767  0.479  5.855e -5  

S1  

   

   

S2  0.898  0.884  1.015  0.102  0.625  

S3  3.463  0.831  4.167  0.419  5.333e -4  

S4  3.386  0.908  3.728  0.375  0.002  

S2  

   

S3  2.565  0.669  3.835  0.385  0.002  

S4  2.488  0.695  3.579  0.360  0.003  

S3  S4  -0.077  0.463  -0.166  0.017  0.869  
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Stress test 
Stress was assessed using an adaptation of the Montreal Imaging Stress Task (MIST) 58 to virtual 

reality, itself derived from the widely-validated Trier Mental Challenge Test 59. Designed to 

investigate stress in a constrained functional imaging environment, the MIST experimental condition 

consists of a succession of mental arithmetic questions which are manipulated to induce a high 

failure rate in each participant. Feedback is provided after each response (“correct” or “incorrect”), 

and two performance measures are displayed at all times: individual average performance and 

average performance of all participants. The latter, rigged to be higher than individual performance, 

adds a psychosocial evaluative threat component to the task, which has been demonstrated to help 

induce stress 58,60,61. Psychosocial stress in the MIST is supplemented by intermittent reminders 

during the task that performance needs to be improved, as well as prior instructions stating that 

individual performance is being monitored by experimenters. 

In our adaptation, all components were implemented in a virtual reality setting, consisting of an 

empty room with tiled flooring in which the participant could navigate by walking. Mental arithmetic 

questions appeared in the heads-up display and could be answered by pressing on two controller 

buttons (“True” or “False”). Participant’s performance was compared to average performance from 

other participants and, similarly to the MIST, the level of challenge was titrated for performance to 

be below this average. A wrong response would result in a tile exploding, through were the 

participant could fall. Eventually the participant would fall due to a navigation mistake or to the lack 

of tiles to stand on. A fast-paced classical music played in the background. Participants were free to 

move around the room at will and were requested to avoid falling in holes and to perform as well as 

possible. Three intermittent reminders were given during the task informing the participant that 

performance needs to be improved. In the second reminder, the experiment restarts since 

performance was presumably too low. To further increase the sense of uncontrollability 61, there was 

a 5% chance of a correct response to be taken as false. 

At the end of the experiment, participants were debriefed on the purpose of the experiment, that 

performance was artificially lowered to be below a fake average and notified that mental arithmetic 

ability was not being recorded. 

In addition, a second block was added in which participants were exposed to a ‘control’ and relaxing 

VR scenario, in which physiological measures were taken as baseline. 

Sustained anticipatory anxiety paradigm: Fear conditioning test 
Several days prior to the tasks in VR, participants were invited to participate in a fear conditioning 

experiment, based on a classical differential delayed fear conditioning paradigm 62, at our laboratory. 

We considered the habituation phase of this test as a sustained anticipatory anxiety paradigm since 

participants were informed that shocks would be administered but at some point, but during 

habituation shocks are never delivered. They sat 50 cm in front of a 24 inch computer screen, resting 

their chin on the the EyeLink 1000 chinrest, which was used to track the gaze and pupil dilation. Pulse 

and skin conductance were measured from the participant’s left had, which was resting on a cushion 

on the table, with a Biopac MP150 device. Electric shocks were delivered by an electric shocker from 

Psychlab Contact Precision Instruments plugged into the computer’s USB port. Shocks lasted 0.5 s 

and their intensity ranged from 2 mA to 5 mA, which was adapted for each participant following the 

shock workup suggested in 63: four shock samples are administered, starting at 2 mA up to a 
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maximum of 5 mA. Participants are asked to rated each shock on a scale from 1 (barely felt) to 5 

(very unpleasant / uncomfortable). The shock increases in steps of 1 mA until the rating of 4 is 

reached. If the rating of 4 is reached before the fourth shock, additional shocks of the current 

intensity are given to reach a total of four shocks. If the rating of 4 is not reached after four shocks, 

the maximum intensity of 5 mA is used. Fear conditioning consisted of an initial anticipation block 

where participants are exposed to the two neutral stimuli (and no shocks are delivered (even though 

participants are expecting shocks to be delivered), two fear acquisition blocks where one of the 

neutral stimuli is paired with the electric shock (CS+) 50% of the time and the other stimulus is left 

unpaired (CS-), and an extinction block where the CS+ is no longer paired with the electric shock. 

During anticipation, no shocks were delivered and participants are only exposed to the neutral 

images (CS+ and CS-) during 5 s, separated by a fixation cross with a jittered interval from 4.5 to 7.5 s. 

Both the CS+ and CS- images are presented in a pseudorandom order 6 times each. During each 

acquisition block shocks are delivered (lasting 0.5 s) at the end of the CS+ stimulus (4.5 s after CS+ 

presentation) 50% of the times the CS+ is presented. The fixation cross separates stimuli 

presentation with a jittered interval from 7.5 to 12.5 s. Both the CS+ and CS- images are presented in 

a pseudorandom order 16 times each, 8 shocks are delivered. At the beginning of the experiment, 

participants were informed by written instructions that images will be presented and that socks will 

be delivered at certain moments. No information was given regarding the contingency.  

Conditioning 

Conditioning is successfully achieved as can be seen in Supplementary Fig. 13 from the effect of fear 

conditioning block on the difference in skin conductance response between the CS+ and CS- (delta 

EDA AUC; F1.467,151.132=6.55, P=0.005, ƞp
2=0.060) in the generalization sample. Due to missing EDA and 

pule data, 3 subjects were removed for this analysis. Both acquisition blocks are significantly 

different (see post-hoc tests in Supplementary Table 15), with larger skin conductance differences 

(Macq1 = 10.39 SDacq1=14.92; Macq2 = 8.86 SDacq2=32.69), than the anticipation block (Mhab = 0.23 

SDhab=13.65). 

 

 

Supplementary Fig. 13: Difference in total skin conductance response (area under the curve – AUC) between 

CS+ and CS- during the three fear conditioning blocks. A positive difference is expected if conditioning is 

successful since the CS+ should elicit a response while the CS- shouldn’t. N=104 participants examined over 3 
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consecutive experimental blocks (Hab, Acq1 and Acq2). Data are presented as mean values +/- SEM (vertical 

bars). Source data are provided as a Source Data file. 

Supplementary Table 15: Post-hoc comparisons between habituation (Hab) and acquisition (Acq1 and Acq2) 

blocks for the difference in skin conductance responses between CS+ and CS-. 

Post Hoc Comparisons - Block  

      Mean Difference  SE  t  Cohen's d  p holm  

Hab  Acq1  -10.157  1.910  -5.319  0.522  1.829e -6  

   Acq2  -8.631  3.488  -2.474  0.243  0.030  

Acq1  Acq2  1.527  3.412  0.447  0.044  0.656  

 

Possible higher anxiety during anticipation 

Due to the expectation of a shock already during anticipation (which was never delivered in this 

block), and for this block to be the first, hence more novelty, we expect participants to be in a higher 

state of anxiety here. This is suggested by a larger skin conductance response to CS- stimuli during 

habituation than acquisition blocks (Supplementary Fig. 14; F1.719.701,177.019=8.79, P<0.001, ƞp
2=0.079). 

The skin conductance response in the anticipation block is significantly higher (Mhab = 1123.29 

SDhab=9.71; see post-hoc tests in Supplementary Table 16) than in both acquisition blocks (Macq1 = 

1118.93 SDacq1=8.56; Macq2 = 1119.07 SDacq2=9.00). 

 

Supplementary Fig. 14: total skin conductance response (area under the curve – AUC) for CS- stimuli during the 

three fear conditioning blocks. N=104 participants examined over 3 consecutive experimental blocks (Hab, 

Acq1 and Acq2). Data are presented as mean values +/- SEM (vertical bars). Source data are provided as a 

Source Data file. 

Supplementary Table 16: Post-hoc comparisons between habituation (Hab) and acquisition (Acq1 and Acq2) 

blocks for the skin conductance responses to CS- stimuli. 

Post Hoc Comparisons - Block  

      Mean Difference  SE  t  Cohen's d  p holm  

Hab  Acq1  4.358  1.221  3.568  0.350  0.002  

   Acq2  4.218  1.352  3.119  0.306  0.005  

Acq1  Acq2  -0.139  0.930  -0.150  0.015  0.881  
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