
MRI data acquisition 
 

The two imaging facilities are an outpatient imaging facility and a regional hospital that 

routinely perform breast MRI but have different service contracts and quality control guidelines. 

Note again that the repeatability and reproducibility of quantitative MRI at these centers was 

previously established [1, 2]. Breast MRI employed Siemens 3T scanners (Erlangen, Germany) 

equipped with an 8- or 16-channel receive double-breast coil (Sentinelle, Invivo, Gainesville, 

Florida). All images were acquired in the sagittal plane. Diffusion-weighted MRI (DW-MRI) was 

acquired using a monopolar, single-shot spin echo, echo planar imaging sequence in a diagonal 

diffusion-encoding direction. Six acquisitions were averaged for b-values of 0 and 200 s/mm2, 

while 18 acquisitions were averaged for a b-value of 800 s/mm2. (This allowed for approximately 

equal signal-to-noise ratios at all b-values.) DW-MRI was acquired over 10 slices with 5 mm 

thickness and no slice gap. Spectrally selective adiabatic inversion recovery (SPAIR) fat 

suppression was included for a total scan time of 1 minute 39 seconds. Additional acquisition 

parameters were repetition time/echo time (TR/TE) = 3000/52 ms, flip angle 90°, matrix = 128 × 

128 (over a 256 × 256 mm2 field-of-view), and a GeneRalized Autocalibrating Partial Parallel 

Acquisition (GRAPPA) acceleration of 2. 

The MRI protocol also included a high-resolution T1- weighted, 3D gradient-echo, FLASH 

(fast low angle shot) acquisition using the following parameters: TR/TE = 5.3/2.3 milliseconds, 

flip angle = 10°, acquisition matrix = 256 × 256, slice thickness = 1 mm, GRAPPA acceleration 

of 2, and SPAIR (Spectral Selection Attenuated Inversion Recovery) fat suppression. Acquisition 

time for the anatomical image was 3 minutes and 11 seconds. The DCE-MRI protocol consisted 

of a T1-weighted, VIBE (Volumetric Interpolated Breath-hold Examination; though no breath-

holding was employed in these studies) acquisition with TR/TE = 7.02/4.6 ms, a flip angle of 6°, 

matrix = 192 × 192, with 10 slices of 5 mm thickness each, and a GRAPPA acceleration factor of 

3 yielding a temporal resolution of 7.27 seconds for 1 minute prior to and 6 minutes post 

administration of a gadolinium-based contrast agent (Multihance (Bracco, Monroe Township, NJ) 

or Gadovist (Bayer, Leverkusen, Germany)) via a power injector followed by a saline flush. A 

Siemens TurboFLASH sequence was used to map the B1 field to correct for transmit 

inhomogeneity with the following acquisition parameters: TR/TE = 8680/2 milliseconds, flip angle 

= 8°, matrix = 96 × 96, and slice thickness = 5 mm. Due to the inclusion of a slice gap in the B1 

mapping protocol, two acquisitions were performed to cover the same field-of-view as the above 



measurements for a total acquisition time of 34 seconds. See Taable S.1 for a summary of all 

imaging parameters. 

 
Table S.1 Breast MRI acquisition parameters. All breast MRI data were acquired in the sagittal 
plane with a field of view of 256 × 256 mm. For the DW-MRI, six acquisitions were averaged for 
b-values of 0 and 200 s/mm2, while 18 acquisitions were averaged for a b-value of 800 s/mm2. 
DCE-MRI data had a temporal resolution of 7.27 seconds. 

MRI parameters DW-MRI B1 mapping* 

T1 mapping: 

variable flip 

angle 

DCE-MRI 

Scan sequence 

single-shot spin 

echo, echo 

planar 

TurboFLASH 
3D gradient-

echo FLASH 

T1-weighted, 

VIBE 

TR (ms) 3000 8680 5.3 7.02 

TE (ms) 52 2 2.3 4.6 

Flip angle 

(degrees) 
90 8 20 6 

Acquisition 

matrix 
128×128 96×96 256×256 192×192 

Slice thickness 5 5 1 5 

GRAPPA 

acceleration 

factor 

2 N/A 2 3 

Fat suppression SPAIR SPAIR SPAIR N/A 

*Due to the inclusion of a slice gap in the B1 mapping protocol, two acquisitions (at 17 seconds 
each) were performed to cover the same field-of-view as the other measurements. 
 
  



Data analysis techniques 
 

See Figure S.1 for a summary of all the data analysis and processing steps. Two types of 

image registrations were performed on each data set: intra-scan (registration within a single visit) 

and inter-scan (registration across visits). For each patient, the MR images acquired at each session 

(intra-scan) were aligned using a rigid registration algorithm where the B1, T1, and diffusion-

weighted images were registered to the DCE images. Images acquired at a different resolution 

compared to the DCE images were upsampled using a nearest neighbor approach via MATLAB’s 

(MathWorks, Natick, MA) function interp3. The rigid algorithm used for the intra-scan registration 

was implemented using MATLAB’s function imregister. For each patient, all image data sets were 

registered across time (inter-scan) to a common space via a non-rigid registration algorithm with 

a constraint that preserves the tumor volumes at each time point [3]. The inter-scan registration 

employs an adaptive basis algorithm performed using the software Elastix [4, 5].  

The DCE-MRI data were used for both tissue segmentation and characterizing the 

vasculature for each patient. The DCE-MRI data were used to segment the tumor region of interest 

(ROI) at each time point using a fuzzy c-means-based clustering algorithm [6]. The clustering 

algorithm partitions the voxels into classes based on a probability weighting for likely voxel 

membership to the tumor ROI. To generate masks of fibroglandular and adipose tissues, 

MATLAB’s adapthisteq function was first applied to enhance the post inter-scan registered DCE 

images, which uses a contrast-limited adaptive histogram equalization algorithm. The 

fibroglandular and adipose tissues were segmented using a k-means clustering algorithm (these 

masks are used for the assignment of tissue stiffness properties in the mathematical model detailed 

below).  

The DCE-MRI data were analyzed using the standard Kety-Tofts model:  

Ct(x",t) = Ktrans(x")∫ %Cp(u)・ exp%- Ktrans(x")
ve(x")

(t-u)&& du,t
0    (S1) 

where Ct(x",t) and Cp(t) are the concentrations of the contrast agent in the tissue and plasma at 

position x" and time t, respectively;	Ktrans(x") is the volume transfer constant from the plasma space 

to the tissue space at position x, and ve(x") is the volume fraction of the extravascular extracellular 

space at position x. (For more details on this model, see [7].)  Eq. (S.1) was fit to the DCE-MRI 

data from each voxel within the tumor using a population averaged Cplasma(t) that was established 



from the present data set according to the method developed in [8]. Voxels for which Eq. (S.1) did 

not converge or converged to non-physical values (i.e., Ktrans, ve < 0, or ve > 1) were removed.  

To approximate the drug distribution in each voxel of tissue, a normalized map of the blood 

volume is calculated by computing the area under the dynamic curve (AUC) of the baseline-

subtracted time course for each voxel, and then normalizing by the maximum AUC value from the 

whole tumor ROI. This normalized blood volume map is then scaled by the peak concentration of 

drug (as estimated from the Kety-Tofts model [9]) to define the initial drug distribution throughout 

the domain at the time of each dose of therapy. Specifically, the Kety-Tofts model (i.e., Eq. (S1)) 

and the DCE-MRI derived physiological parameters per voxel are used where the concentration 

of contrast agent in the plasma is replaced with the concentration of drug in the plasma from 

measured population curves for each therapy [10-13]. Therefore, the concentration of drug in the 

tumor tissue is spatially non-uniform and temporally varying based on the individual patient’s 

NAT schedule and vascular characteristics [9].  

The apparent diffusion coefficient (ADC) values for individual voxels were calculated 

using the DW-MRI data via standard methods [14]. Then the ADC value for each voxel within the 

tumor (as segmented using the above methods) was converted to an estimate for the number of 

tumor cells per voxel at each 3D position x" and time t, NTC(x",t), via our established methods [9, 

14-17]:  

NTC(x",t) = θ (ADCw	- ADC(x",t)
ADCw	- ADCmin

) ,     (S2) 

where ADCw is the ADC of free water (3 × 10-3mm2/s) [18], ADC(x",t) is the ADC value for the 

voxel at position x and time t, and ADCmin is the minimum ADC value over all tumor voxels for 

the patient [19, 20]. The parameter θ is the carrying capacity describing the maximum number of 

tumor cells that can physically fit within a voxel; its numerical value is determined by assuming a 

spherical packing density of 0.7405 [21], a nominal tumor cell radius of 10 μm, and the voxel 

volume (8.45 mm3).  

The tumor volume was approximated as the product of the total number of voxels within 

the segmented tumor ROI and the DCE-MRI voxel volume. To calculate the longest axis of each 

tumor, the 3D tumor ROI was evaluated by MATLAB’s regionprops3 function, which 

approximates the longest possible axis within a 3D object. These measures of tumor volume and 

longest axis are also applied to all the model’s predictions (where the model uses the same domain 

as the MR images) for direct comparison to the experimentally measured values. 



Figure S.1: The MRI data goes through four different steps prior to incorporation into the 
mathematical model: intra-scan registration, data processing, inter-scan registration, and 
calculation of the modeling quantities. While more details can be found in the above text and in 
the figure, briefly, inter-scan registration consists of the alignment of the different MRI data types 
(panels a and b) within each scan session to correct for any possible motion that occurred during 
the scan visit. The data processing step consists of deriving values from each of the MRI data sets 
to identify the region of interest (panel c), quantify the vasculature (panel d), and define values to 
determine cellular density of the tumors (panel e). The inter-scan registration consists of aligning 
all of the MRI scans for each patient across time (panel f). The final step consists of taking the 
registered data and defining the specific quantities to be used in the mathematical model including 
the breast region for modeling (panel g), tissue maps (panel h), tumor cell numbers (panel i), and 
drug concentrations (panel j). 

 



Mathematical Model 
 

To improve readability, we restate (from the main text) the model equations and 

descriptions. We have previously developed a 3D mathematical model that includes the 

mechanical coupling of tissue properties to tumor growth and the delivery of therapy [9]. This 

model was designed to be initialized with patient-specific, quantitative, MRI data for breast cancer 

to predict therapy response. The current work extends this previous approach to account for 

multiple chemotherapy terms. The governing equation for the spatiotemporal evolution of tumor 

cells, NTC(x",t), is:  

	∂NTC(x",t)
∂t

 = ∇∙(D(x",t)∇NTC(x",t))+,,,,,-,,,,,.
diffusion

 + k(x")(1- NTC(x",t)/θ(x"))NTC(x",t)+,,,,,,,,-,,,,,,,,.
growth

 - Cdrug(x",t)NTC(x",t)+,,,,-,,,,.
therapy

,  (S3) 

where the first term on the right-hand side describes tumor cell movement, the second term 

describes the logistic growth of the cells, and the third term describes the effect of chemotherapy. 

(See Tables S.1 and S.2 for descriptions of the variables and parameters, as well as how they are 

assigned.) For the growth term, k(x") is a spatially resolved proliferation rate map for tumor cells, 

and the parameter θ is the carrying capacity for logistic growth and is defined as in the previous 

supplemental section, while the proliferation rate is calibrated per voxel for each individual patient. 

The first term of Eq. (S3), representing the random diffusion (movement) of the tumor cells, D(x",t), 

is mechanically linked to the breast tissue’s material properties via: 

D(x",t) = D0exp(-γσvm(x",t)),          (S4) 

where D(x",t) is the diffusion coefficient, D0 the tumor cell diffusion constant in the absence of 

stress (please note that D0 is the diffusion value for the tumor cells and is not to be confused with 

the ADC, which is the apparent diffusion coefficient of water molecules), γ an empirical coupling 

constant for the von Mises stress, σvm. The von Mises stress reflects the total stress experienced 

for a given section of tissue; while it is often used as failure criterion in material testing, here it is 

used to reflect the interaction between the growing tumor and its environment. Therefore, when 

there is no stress, the diffusion coefficient is equal to D0. Additionally, a linear elastic, isotropic 

equilibrium between the tumor and its environment dependent upon changes in tumor cell number 

is enforced through: 

    ∇∙G∇u/⃑  + ∇ G
1 - 2ν

(∇∙u/⃑ )	- λ∇NTC(x",t) = 0,         (S5) 



where G = E/(2(1	-	ν)) is the shear modulus with Young’s modulus (E) and Poisson’s ratio (ν) 

material properties, u/⃑  is the displacement due to tumor cell growth, and 𝜆 is another empirical 

coupling constant  [15, 16, 22-28]. Briefly, this model describes tumor growth changes that can 

cause deformations in the surrounding healthy tissues (breast fibroglandular tissue and adipose 

tissue), potentially increasing stress and therefore reducing the outward expansion of the tumor.  

The therapy term in Eq. (S3) describes the spatiotemporal distribution of each drug in the 

tissue and its effect on the cells of each voxel. Here we have expanded the model (from previous 

efforts [9]) to acknowledge their differing efficacies and decay rates using the following equation: 

    Cdrug(x",t) = α1Cdrug1
(x",t*)exp(-β1t)+,,,,,,-,,,,,,.

chemotherapy 1

 + α2Cdrug2
(x",t*)exp(-β2t)+,,,,,,-,,,,,,.

chemotherapy 2

,        (S6) 

where αi is the efficacy of the ith drug on the tumor cells, Cdrugi
(x",t*)	is the initial concentration of 

each drug for each dose with the variable t*	being time relative to the patient scan data (described 

in more detail below), and the exponential decay terms,	exp(-βit), represent the eventual washout 

of the drug over time after each dose. The αi and βi parameters are calibrated for each patient and 

each drug, where the βi calibration is restricted using bounds defined from ranges found in the 

literature for the terminal half-lives of each drug [29-34]. The initial concentration of drug, 

Cdrugi
(x",t*), is approximated using the DCE-MRI data as described in the previous section. This 

concentration is dependent on the time t*, indicating that for the calibration of the model the drug 

distribution map may be derived from scan 1, but an updated drug distribution map from scan 2 is 

provided to the model to predict the tumor at the time of scan 3. Therefore, the concentration of 

drug in the tumor tissue is spatially non-uniform and temporally varying based on the individual 

patient’s response to therapy and NAT schedule.  

All simulation codes and numerical calculations were written and executed in MATLAB 

(MathWorks, Natick, MA). The model was implemented in three dimensions (3D) using a fully 

explicit finite difference scheme with ∆t = 0.25 day with the mesh dimensions defined by the size 

of the DCE-MRI voxels. The size of the computational domain is set by a rectangle whose 

dimensions are determined by the size of the breast for each patient. To reduce computation time 

for all calibrations, the voxel matrix within this designated rectangular domain was down sampled 

by a factor of two. A no flux boundary condition was prescribed at the boundary of the breast. To 

calibrate model parameters, a Levenberg–Marquardt (LM) least squares non-linear optimization 



is used, where the sum of squared errors between the simulated tumor cell numbers from the model 

and the calculated tumor cell densities from the imaging data is minimized. See ref. [25] for 

additional details on the full development of these numerical methods. 

 
Table S.2: Description of the variables of the model system including the assigned parameter 
values and specification of units. 
Variable Description How assigned 

   NTC(x",t) Number of tumor cells in the voxel at position x" 
at time t 

Derived from the DW-MRI data 

D(x",t) Diffusion coefficient of tumor cells, where D = 
D0exp(-γσvm(x",t)) (mm2/day) 

Coupled to the breast tissues 

σvm Von Mises stress (kPa) Calculated 

u/⃑ (x",t) Displacement vector due to tumor cell growth 
(mm) 

Calculated 

G Shear modulus due to breast tissue properties, 
where G = E/(2(1-ν)) (kPa) 

Calculated 

Ctissue
drug (x",t) 

Concentration of drug in the tissue in the voxel 
at position x" at time t (μM) 

Derived from the DCE-MRI data 

 
 
Table S.3: Description of the parameters for the model system including the assigned values and 
specification of units. 
Parameter Description How assigned 

D0 Diffusion coefficient of tumor cells 
without stress Calibrated, mm2/day 

γ Mechanical coupling coefficient for stress Assigned at 2.0 ´ 10-3 (1/kPa) 
ν Poisson’s ratio Assigned, 0.45 (dimensionless) 

E Young’s modulus for adipose, 
fibroglandular, and tumor tissues 

Assigned, 4 kPa, 2kPa, and 20 kPa, 
respectively [35] 

λ Coupling constant for displacement of 
tumor cells 

Assigned as 2.5 ´ 10-3 
(dimensionless) 

k(x") Proliferation rate of tumor cells per voxel Calibrated, 1/day 

θ  Carrying capacity of tumor cells in the 
voxel at position  x" Calculated, 2.02 ´ 106 cells 

α Efficacy of the drug against tumor cells Calibrated, 1/(μM∙day) 
β Drug exponential decay rate Calibrated, 1/day  

 
  



Statistical analysis 

To test the accuracy of the model’s predictions, we generate a Monte Carlo estimated p 

value for testing the significance of the average absolute difference between the model’s 

predictions and measured outcomes versus random sampling. This is a standard bootstrap random 

resampling approach, described in detail in ref. [1]. For our particular application, we test the null 

hypothesis that the mean difference is not equal to a delta value of 10%, 15%, or 20% error 

(determined using the established variation in the MRI measurements [2]) via the following steps: 

1. Calculate the absolute difference between the model’s prediction and measured tumor 

response for each patient (N = 18) 

2. Calculate the average absolute difference for the cohort 

3. Sample 500 times with replacement (sample size N = 18) the absolute differences of step 1 

4. Calculate the average of each of the 500 samples constructed in step 3  

5. Subtract the corresponding average delta from the average of each of the 500 samples 

6. Calculate the proportion of times each delta adjusted sample average is less than the cohort 

average calculated in step 2. 

7. Subtract the proportion calculated in step 6 from 1.0 to determine the Monte Carlo estimated 

p value. 

We calculate this p values for each of the tumor response measures (i.e., total cellularity, volume, 

and longest axis). 

 
 
  



Table S.4: Measured percent changes in total tumor cellularity, volume, and longest axis between 
scans. Highlighted patients were designated as “responders” by the RECIST criteria (CR or PR) 
applied to changes in longest dimension between scan 1 and scan 3. 
 

 Tumor cellularity percent 
change 

Tumor volume percent 
change 

Longest axis percent 
change 

Patient Scan 1 to 
Scan 2 

Scan 1 to 
Scan 3 

Scan 1 to 
Scan 2 

Scan 1 to 
Scan 3 

Scan 1 to  
Scan 2 

Scan 1 to  
Scan 3 

1 - - - - - - 
2 -3 -75 -2 -74 -2 -5 
3 -31 -17 -25 -12 -8 -10 
4 -33 -100 -37 -100 -14 -100 
5 -15 -13 0 -18 23 7 
6 11 -6 -1 -23 -14 -11 
7 - - - - - - 
8 -31 -81 -32 -87 -12 -41 
9 -52 -69 -47 -60 -16 -18 
10 -27 -67 -21 -70 -25 -43 
11 -66 -84 -65 -81 -22 -52 
12 -73 -37 -74 -59 -34 32 
13 44 21 -20 -24 -7 -13 
14 -73 -86 -75 -86 -65 -63 
15 -14 -62 -21 -63 -4 -22 
16 -8 - -5 - -3 - 
17 -43 -30 -47 -39 -44 -37 
18 -39 -53 -40 -60 -24 -37 
19 -24 -64 -21 -67 -10 -23 
20 -4 -79 1 -78 23 -33 
21 -52 -89 -40 -89 -12 -25 

Median -27 -65 -25 -65 -12 -24 
Quartile 
Range [-52, -4] [-82, -26] [-47, -5] [-82, -36] [-24,-4] [-41,-11] 
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