

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039057
Article Type:	Original research
Date Submitted by the Author:	06-Apr-2020
Complete List of Authors:	de Jong, Lisa; University of Groningen, Unit of Pharmacotherapy, - Epidemiology and -Economics van der Velden, Annette; Martini Hospital, Department of Internal Medicine Hulst, Marinus; Martini Hospital, Department of Clinical Pharmacy and Toxicology; University Medical Centre Groningen, Department of Health Sciences Postma, Maarten; University Medical Centre Groningen, Department of Health Sciences; University of Groningen, Department of Economics, Econometrics & Finance
Keywords:	Anticoagulation < HAEMATOLOGY, ONCOLOGY, Thromboembolism < CARDIOLOGY, HEALTH ECONOMICS
	·

SCH	OL	AF	20	NE	TM
M	lar	้านร	cri	pt:	S

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	1	Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent
4	2	venous thromboembolism
5	2	
6 7	4	Short title: Economic evaluation of riverovaban in cancer nationts
8		Short title: Economic evaluation of rivaroxaban in cancer patients
9	5	Authorse
10	6	Authors: Lisa A. de Jong ¹ , Annette W.G. van der Velden ² , Marinus van Hulst ^{3,4*} , Maarten J. Postma ^{4,5*}
11 12	7 8	Lisa A. de Jong-, Annette W.G. van der velden-, Mannus van Huist ^{o,} , Maarten J. Postina ^{1,5}
13		
14	9	
15 16	10	Affiliations:
16 17	11	¹ Unit of PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen
18	12	Research Institute of Pharmacy (GRIP), Antonius Deusinglaan 1, Groningen, the Netherlands
19	13	² Department of Internal Medicine, Martini Hospital, Van Swietenplein 1, Groningen, The Netherlands
20 21	14	³ Department of Clinical Pharmacy and Toxicology, Martini Hospital, Van Swietenplein 1, Groningen,
22	15	The Netherlands
23	16	⁴ Department of Health Sciences, University of Groningen, University Medical Center Groningen,
24	17	Hanzeplein 1, Groningen, The Netherlands
25 26	18	⁵ Department of Economics, Econometrics & Finance, University of Groningen, Faculty of Economics &
27	19	Business, Nettelbosje 2, Groningen, The Netherlands
28	20	
29	21	
30 31	22	*Shared last author
32	23	
33	24	Corresponding author: Lisa A de Jong E-mail: <u>l.a.de.jong@rug.nl</u> Phone: +31630048956
34 35	25	Lisa A de Jong
36	26	E-mail: <u>l.a.de.jong@rug.nl</u>
37	27	Phone: +31630048956
38	28	ORCID ID: 0000-0001-8814-0670
39 40		
41		
42		
43 44		
45		
46		
47		
48 49		
50		
51		
52 53		
54		
55		
56		
57 58		
59		
60		

2		
3	29	Abstract
4 5	30	Objectives: We aim to calculate the cost-effectiveness and budget impact of rivaroxaban
6	31	compared to low molecular weight heparin (LMWH) in cancer patients at risk of recurrent venous
7	32	thromboembolism (VTE).
8 9	33	Setting: The analyses were performed for the Dutch healthcare setting. We built a Markov
9 10	34	model to calculate the cost-effectiveness from a societal perspective over a five-year time horizon.
11	35	Participants : A hypothetical cohort of 1,000 cancer patients with VTE entered the model with
12	36	baseline characteristics based on the SELECT-D trial.
13 14	37	Intervention : Six months treatment with rivaroxaban (15 mg twice daily for first three weeks
15	38	followed by 20 mg once daily) was compared to six months treatment with LMWH dalteparin (200
16	39	IU/kg daily during month one followed by 150 IU/kg daily).
17	40	Primary and secondary outcome measures: The primary outcome of the cost-effectiveness
18 19	41	analysis was the incremental cost-effectiveness ratio (ICER). The robustness of the model was
20	42	evaluated in probabilistic and univariate sensitivity analyses. A budget impact analysis was performed
21	43	to calculate the total annual financial consequences.
22 23	44	Results: In the base case and all scenarios, rivaroxaban appeared to be cost-saving while also
24	45	increasing the patient's health, resulting in dominant ICERs. In the probabilistic sensitivity analysis,
25	46	64.1% and 97.3% of the simulations were cost-saving and more effective for a five year and six month
26 27	47	time horizon, respectively. Rivaroxaban can save up to €9,834,144 in approximately 8,000 cancer
27	48	patients with VTE per year compared to LMWH.
29	49	Conclusions: Treatment with rivaroxaban is dominant over LMWH in cancer patients at risk for
30	50	recurrent VTE in the Netherlands. The use of rivaroxaban instead of LMWH can save almost ten million
31 32	51	euros per year, primarily driven by the difference in drug costs. Since treatment with rivaroxaban is
33	52	cost-saving and less invasive, we feel that many cancer patients can benefit from direct oral
34	53	anticoagulant treatment.
35 36	54	
37	55	Strengths and limitations of this study
38	56	• This analysis includes both cost-effectiveness and budget impact analyses; this way we present
39 40	57	the economic impact of the treatment of cancer patients with rivaroxaban on a patient level
40	58	as well as on a population level.
42	59	• To reflect clinical practice, tunnel states were used to model the occurrence of time-
43	60	dependent events, such as recurrent VTE and bleeding.
44 45	61	• Various additional scenarios were evaluated to show the effect of different assumptions and
46	62	clinical situations.
47	63	• Based on the design of the SELECT-D trial, we assumed a six month treatment duration for all
48 49	64	patients, while in clinical practice the treatment duration may vary between patients.
50	65	• Although trials have recently shown that apixaban and rivaroxaban are also effective as a
51	66	primary prophylaxis of VTE in cancer patients compared to a placebo, this study focuses just
52 53	67	on the secondary prevention of VTE in cancer patients.
55 54	68	
55	69	Funding statement: This work was supported by Bayer Pharma.
56	70	
57 58	71	Competing interests: LA De Jong, M van Hulst and AWG van der Velden declare that they have no
59	72	competing interest with relation to subject. Postma MJ has received research grants from various
60		

73 pharmaceutical companies, including but not limiting to Bayer, Pfizer, Bristol-Myers Squibb, GSK,

74 Roche and Novartis.

to beet terien only

75 Introduction

Venous thromboembolism (VTE), comprising both pulmonary embolism (PE) and deep vein thrombosis (DVT), is a major challenge in patients with cancer [1]. In addition to the characteristics of the cancer itself, cancer therapy (chemotherapy and cancer surgery) has effects on the patient's coagulation system and therefore increases the risk of VTE and bleeding [2–4]. VTE in cancer patients can cause unnecessary hospitalizations, interruption or postponement of cancer treatment, and increased mortality, leading to decreased quality of life and increased costs.

VTE is treated with anticoagulation therapy, and this is continued as prophylaxis over a longer period because of the high risk of recurrence during the first months after the initial VTE [5]. Vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs) are indicated for the treatment and prevention of VTE in the general population [6]. However, guidelines recommend therapeutic treatment with a daily subcutaneous injection of low molecular weight heparin (LMWH, e.g., dalteparin) in cancer patients [4,7–9].

The guidelines recommend against the use of VKAs in cancer patients because of potential drug interactions, liver dysfunction, and malnutrition, all of which lead to fluctuations of the international normalized ratio (INR) and could result in negative patient outcomes [4]. Moreover, trials in cancer patients with VTE have shown that LMWH is more effective in the prevention of recurrent VTE compared to VKA, without increasing bleeding risk [10–12].

DOACs have a more beneficial efficacy/safety ratio, do not require routine measurements of the INR, and show fewer food-drug and drug-drug interactions compared to VKAs [4,13]. Therefore, it is suggested that, unlike VKAs, DOACs can play an important role in the VTE treatment paradigm for cancer patients. However, the use of DOACs is not yet recommended by oncology guidelines because of the limited available data in cancer patients with VTE [4,9].

The SELECT-D is a multicenter, randomized, clinical pilot trial in the UK; it is a head-to-head comparison of rivaroxaban and the LMWH dalteparin in 406 patients with active cancer who had experienced a symptomatic PE, incidental PE, or symptomatic DVT [14]. Patients with upper gastrointestinal (GI) cancer were excluded because of a high bleeding risk. They found that rivaroxaban reduces the recurrence of VTE (six month cumulative VTE recurrence rate: 4% versus 11%) at the cost of an increased risk of bleeding (six month cumulative major bleeding [MB] rate: 6% versus 4%; six month cumulative clinically relevant non-major bleeding [CRNMB] rate: 13% versus 4%) compared to dalteparin. These results were comparable to those of a large retrospective study by Streiff et al. [15].

Based on the results of these studies and the fact that DOACs can be orally administered (unlike the subcutaneously injected LMWHs), an increase in the use of DOACs for VTE in cancer patients might be expected. Since the introduction of DOACs there has been an ongoing discussion about the economic impact of these drugs. By designing an economic model based on the SELECT-D trial, we aim to evaluate the cost-effectiveness and budget impact of rivaroxaban compared to LMWH in cancer patients at risk of recurrent venous thromboembolism in the Netherlands.

⁵⁴ 114 Methods

The economic model comparing rivaroxaban to LMWH was designed based on the SELECT-D trial [14],
 since this study presented the most comprehensive results reflecting recurrent VTE and bleeding
 complications per event type (symptomatic PE, incidental PE, and DVT) or severity (MB and CRNMB).
 The primary outcome of the cost-effectiveness analysis is the incremental cost-effectiveness ratio

(ICER); this is calculated by dividing the incremental costs by the incremental health effects, expressed in quality adjusted life-years (QALYs). In accordance with Dutch costing guidelines for economic evaluations in healthcare, the ICER was calculated from a societal perspective, which incorporates direct as well as indirect costs both inside and outside the healthcare sector [16]. We performed sensitivity and scenario analyses to test the robustness of the model. Additionally, we conducted a budget impact analysis to reflect the annual financial consequences of the use of rivaroxaban in the Netherlands.

12 126 13 127

15 128 Model outline

We developed a decision-tree-based Markov model to calculate the ICER. Figure 1 shows a schematic representation of the model, with the disease course being represented by separate health states. A hypothetical cohort of 1,000 cancer patients with VTE entered the model with incidental PE, symptomatic PE, or DVT, represented by the 'index VTE' health state. Incidental PEs are non-symptomatic PEs that are incidentally found during tumour imaging. According to guidelines, patients with incidental PE should be treated identically to those with symptomatic PE [8,9]. Patient characteristics were based on the SELECT-D trial (Table 1) [14]. The SELECT-D population is representative for the Dutch population, based on age, tumour type, and gender distribution [17]. Patients move through various health states in the model during the follow-up time of five years; five years was used because overall survival was assumed to be low after five years since the majority (58%) of the SELECT-D trial population had metastatic cancer [14]. We included the following health states in our model (see legend of Figure 1 for abbreviations): 'recurrent incidental PE', 'recurrent symptomatic PE', 'fatal recurrent VTE', 'recurrent DVT', 'ICH', 'non-ICH MB', 'fatal MB', 'CRNMB', 'death by any cause', and 'no event'. Patients were assumed to remain in these states for one cycle, after which they moved back to the 'index VTE' state or the chronic, debilitating 'post-ICH' state, in which they remained until death without being at risk for any further complications. Tunnel states (one month post-VTE, two months post-VTE, ..., 60 months post VTE) were used to implement time-dependency, with future transitions, costs, and health-related quality of life dependent on how long the patient has gone without a recurrent VTE event [18]. The chronic complications post-thrombotic syndrome (PTS) and chronic thromboembolic pulmonary hypertension (CTEPH) were modelled in the background. Only severe PTS was modelled, since the costs of minor PTS are considered negligible. For these chronic complications we also used tunnel states since the risks of PTS and CTEPH were also time-dependent.

- 46 152
 47 153
- 49 154

 Figure 1. Model outline. All patients enter the model in the 'Index VTE' state and move to other states upon the occurrence of one of the following events: recurrent incidental PE, recurrent symptomatic PE, fatal recurrent VTE, recurrent DVT, ICH, non-ICH MB, fatal MB, CRNMB, or death by any cause. The triangles represent the health state a patient will enter after an event. The blue squares are permanent states, in which a patient will remain until death while not being at risk for other events. The red squares represent a transient state: the patient will re-enter the model in the 'Index VTE' state.

Abbreviations: CRNMB, clinically relevant non-major bleeding; DVT, deep vein thrombosis; ICH, intracranial haemorrhage;
 MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

164 Table 1. Patient characteristics of the hypothetical cohort of 1,000 cancer patients at risk of recurrent VTE.

1
2
3
4
5
6 7
8
9
10
11
12
13
14
15
16 17
18
19
20
21
22
23
24
25
26 27
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
40 49
50
51

166

167 168

Unit	Value	Reference
Age (years)	67	[14]
Proportion male	53%	[14]
BMI (kg/m ²)	25.6	[14]
Type of cancer		
Early or locally advanced cancer	39%	[14]
Metastatic cancer	58%	[14]
Haematologic malignancy	2%	[14]
Distribution of PE and DVT		
% index VTE that is symptomatic PE	20%	[14]
% index VTE that is incidental PE	53%	[14]
% index VTE that is DVT	27%	[14]

Abbreviations: BMI, body mass index; DVT, deep vein thrombosis; LMWH, low-molecular weight heparin; PE, pulmonary embolism; VTE, venous thromboembolism

169 Transition probabilities

170 Transition probabilities were used to calculate the number of patients in each state per cycle. The cycle 171 length was one month. Table S1 summarizes all event rates presented in six-month risks (transition 172 probabilities). Event rates of recurrent VTE, MB, and CRNMB in the first six months of treatment were 173 based on the SELECT-D trial [14]. If the patient did not experience a recurrent event during this period, 174 anticoagulation treatment was discontinued. Recurrent VTE rates after treatment discontinuation 175 were based on a retrospective study in active-cancer patients experiencing a VTE [5]. Upon the 176 occurrence of a non-fatal recurrent VTE, patients were assigned to another six months treatment, with 177 corresponding event rates. Bleeding risks after treatment discontinuation were based on the outcomes 178 of the cancer population of the HOKUSAI VTE Cancer trial (which followed patients after edoxaban 179 discontinuation for an additional six months) because this data is not reported for the SELECT-D trial 180 [19]. The HOKUSAI VTE Cancer trial was also used to determine the distribution of ICH, non-ICH, and 181 fatal bleeding. The distributions of the types of VTE and MB were calculated based on the total number 182 of events and assumed to be treatment-independent, since the total number of events was low. The 183 distributions of the types of VTE event were based on the number of recurrent VTE events in the lower 184 extremities and pulmonary embolisms— other locations of VTE events (brachial, subclavian, jugular, 185 renal plus inferior vena cava, or the extrahepatic vein) were excluded [14]. Mortality rates (death by 186 any cause) were based on Dutch cancer mortality data from the Netherlands Cancer Registry [20]. In 187 the sensitivity analysis, all transition probabilities were varied over beta distributions. For percentages 188 of the type of recurrent VTE and MB, a Dirichlet distribution was used in the sensitivity analysis [18].

191 Costs

189 190

192 All cost parameters are presented in Table S2. Event-related healthcare costs were based on a previous 52 193 Dutch cost-effectiveness study for rivaroxaban in the general VTE population [21]. Costs of fatal 53 194 recurrent VTE were assumed to be similar to those of non-fatal symptomatic PE. We assumed no 54 55 195 event-related healthcare costs for patients with incidental PE. Costs for ICH and CTEPH consisted of 56 196 acute care costs during the first month after diagnosis, followed by long-term care costs until the 57 197 patient moved to the 'death' state. Costs of a fatal MB were assumed to be equal to those of non-fatal 58 59 198 non-ICH MB. 60

Drug costs were retrieved from the national medication costs database [22]. For rivaroxaban these costs were based on 15 mg twice daily for three weeks followed by 20 mg once daily. Drug costs of LMWH dalteparin were based on 200 IU/kg daily during month one followed by 150 IU/kg daily in months two to six [14,23]. Based on an average body mass index of 25.6 from the SELECT-D trial and an average height of 1.72 m for the Dutch population, we calculated that the average weight was between 69 and 82 kg, which corresponds with a dose of 15,000 IU daily during month one followed by 12,500 IU daily in months two to six [14,24]. Rivaroxaban users were assumed to require an annual check-up of their renal function [13]. We assumed no administration costs for LWMH because most patients can perform the injection themselves or through their proxies.

Informal care costs were only applied to patients with early or locally advanced cancer (39%), since patients with metastatic cancer or haematologic malignancies often already have home care or informal care. Based on a previously published report on informal care in the Netherlands, we made a distinction between intensive (26 hours per week) and non-intensive (8 hours per week) informal care [25]. This was multiplied by the average duration and tariff for informal care, obtained from the Dutch cost manual [16]. To prevent double counting, we did not include informal care costs for the chronic complications. Travel costs were taken into account for renal monitoring visits and upon the occurrence of a DVT or CRNMB. Considering the burden of cancer and the average age of 67 years (which is the Dutch retirement age), productivity losses were assumed to be negligible. Costs related to forgone leisure activity were not taken into account since there is no data available on the impact of a VTE or bleeding on leisure losses in cancer patients.

219 Costs were discounted at an annual rate of 4% [16]. In the sensitivity analysis, the costs were varied
 30 220 with gamma distributions corresponding to the 95% confidence interval (CI), as indicated in Table S2
 31 221 [18].

33 222

34 223

224 Utilities

Utility scores were derived from a sub-analysis from the CATCH study assessing the EQ-5D scores associated with VTE and recurrent VTE in cancer patients (Table S3) [26]. The CATCH study assessed the effectiveness of six months of treatment with tinzaparin versus warfarin for the treatment of acute venous thromboembolism in patients with active cancer; It was chosen because it aligns well with our population and events of interest. Utility decrements for CTEPH were based on a study assessing EQ-5D VAS scores in CTEPH patients more than 7 years after initial diagnosis [27]. Utility decrements for ICH and long-term PTS (> six months after diagnosis) were obtained from a previous cost-effectiveness study [28]. Utilities were discounted at 1.5% according to Dutch guidelines [16]. In the sensitivity analyses, utility scores were varied over their 95% CI with a beta distribution [18].

49 234 50 235

⁵¹ 236 Sensitivity analysis

Sensitivity analyses were conducted to check the robustness of the model. In the probabilistic sensitivity analysis, all input parameters were varied simultaneously over their 95% CI. If the 95% CI was unavailable and calculating the 95% CI based on the number of events was not possible, the 95% CI was calculated based on a 25% standard error. The ICER was calculated with 2,000 iterations and plotted in a cost-effectiveness plane. A univariate sensitivity analysis was conducted to show the

 influence of an individual parameter on the ICER. The fifteen most influencing parameters werepresented in a tornado diagram.

9 246 Scenario analysis

We conducted several scenario analyses to show the effect on the outcomes of different (clinical) situations. In the Netherlands, guidelines advise to calculate the ICER from a societal perspective, while in countries such as the UK or Belgium, the healthcare payer's perspective is preferred. To make results comparable to other countries we also calculated the base case ICER from a healthcare payer's perspective, by excluding the indirect costs (scenario 1). The costs of LMWH vary with the patient's weight. For the base case analysis we assumed an average weight between 69 and 82 kg. In scenarios 2 and 3 we calculated the base case ICER with the costs of dalteparin based on weight categories of 57-68 kg (12,500 IE daily during month one followed by 10,000 IE daily in month two to six) and 83-98 kg (18,000 IE daily during month one followed by 15,000 IE daily in month two to six), respectively. The follow-up period of the SELECT-D trial was six months; therefore, outcomes beyond six months had to be based on other publications. In the scenario 4 analysis we calculated the ICER with a time horizon of six months. Scenario 5 was similar to scenario 4, except for the treatment period which was based on a study of Streiff et al., who-comparable to SELECT-D-compared rivaroxaban to LMWH for the prevention of recurrent VTE in cancer patients [15]. They found an average treatment duration of one month and three months for LMWH and rivaroxaban, respectively. In scenario 6 we assessed the effect of using drug-specific distributions of the types of VTE and MB based on the results of the SELECT-D and HOKUSAI VTE Cancer trials [14,19].

266 Budget impact

A budget impact analysis was conducted to estimate the total financial consequences of the implementation of rivaroxaban for the treatment and prevention of VTE in cancer patients within the Dutch healthcare setting. The budget impact was calculated from a societal perspective over a one-year time horizon. Results from the first year of the cost-effectiveness analysis were multiplied by the annual number of cancer patients with VTE in the Netherlands. This incidence and the total number of Dutch cancer patients were used to calculate the yearly number of cancer patients with VTE. The Netherlands Cancer Registry estimated a total of 579,781 cancer patients in 2017 [29]. The incidence of VTE in cancer patients was 13.9 per 1,000 person-years, based on a cohort study of linked UK databases [30]. The outcome of the budget impact analysis was presented as the total budget impact per year, including a subdivision of the costs per type (event-related costs, treatment costs and indirect costs) and corresponding 95% CIs derived from PSA.

50 278 51 279

53 280 **Results**

55 281 Cost-effectiveness analysis

Table 2 represents the deterministic results of the base case and scenario analyses. In each scenario,
 rivaroxaban appeared to be cost-saving compared to LMWH where the patient's health was
 comparable (incremental QALYs of 0.012 in the base case analysis). In the base case analysis,
 rivaroxaban saved €1,310 per patient compared to LMWH. There was increased cost savings compared

to the societal perspective when calculated from a healthcare payer's perspective (scenario 1). In scenario 2 and 3 we assessed the effect of variations in the patient's weight (and thus LMWH dosing) on the ICER. Compared to the base case analysis, there was decreased cost savings with a lower LMWH dose and increased cost savings with a higher LMWH dose, both still resulting in dominant ICERs. The scenario calculating the cost-effectiveness over six months resulted in cost savings of €1,147 per patient (scenario 4). When comparing three months of rivaroxaban treatment to one month of LMWH treatment, we found incremental QALYs of 0.017 and cost savings of €327 per patient (scenario 5). We assessed the effect of using drug-specific distributions of the types of VTE and MB, resulting in cost savings of €1,652 and incremental QALYs of 0.038 (scenario 6).

The number of events and the corresponding average costs per patient are presented in Table 3. Rivaroxaban is associated with a lower number of recurrent VTE events, preventing on average €131 and €108 in costs per patient over five years and over six months, respectively. On the other hand, rivaroxaban causes more bleeding events, especially in the treatment period. ICH, non-ICH MB, and CTEPH have the highest event-related costs. Treatment costs are higher for LMWH compared to rivaroxaban, with incremental costs of €1,559 and €1,306 in the five-year and the six-month time horizon, respectively. The indirect costs for rivaroxaban were higher compared to LMWH resulting in a difference of ≤ 23 and ≤ 2 for the five-year and the six-month time horizon, respectively.

	Costs	QALYs	∆ Costs	Δ QALYs	ICER	
Base case analysis - 5 year t	ime horizon from societal	perspective	L			
Rivaroxaban	€3,127	2.460	61 210	0.012	Deminent	
lmwh	€4,437	2.448	-€1,310	0.012	Dominant	
Scenario 1 – base case analy	sis from healthcare payer	's perspective				
Rivaroxaban	€2,942	2.460	61 224	0.012	Deminent	
lmwh	€4,276	2.448	-€1,334	0.012	Dominant	
Scenario 2 – base case analy	sis with LMWH dose of 12	,500 IU		ł		
Rivaroxaban	€3,127	2.460	-€913	0.012	Deminent	
LMWH	€4,040	2.448	-€913	0.012	Dominant	
Scenario 3 – base case analy	sis with LMWH dose of 18	,000 IU		ł		
Rivaroxaban	€3,127	2.460	€1,732	0.012	Dominant	
LMWH	€4,858	2.448	-€1,/32	0.012	Dominant	
Scenario 4 – 6 month time ł	norizon from societal persp	ective				
Rivaroxaban	€1,358	0.304		0.004	Dominant	
LMWH	€2,505	0.300	-€1,14/	0.004	Dominant	
Scenario 5 – scenario 4 with	treatment duration based	l on Streiff et al.		1	•	
Rivaroxaban	€1,285	0.289	-€327	0.017	Dominant	
LMWH	€1,611	0.272	-€327	0.017	Dominant	
Scenario 6 – base case analy	sis using drug-specific dist	ributions for the	e types of VTE and	d MB		
Rivaroxaban	€3,047	2.463	-€1,652	0.038	Dentin	
LMWH	€4.699	2.426	-€1,052	0.038	Dominant	

Abbreviations: ICER, incremental cost-effectiveness ratio; IU, international units; LMWH, low molecular weight heparin; QALY, quality adjusted life-years

Table 3. Number of events and costs per event per patient in a cohort of 1,000 cancer patients.

Base case (5 year time horizon)		
Rivaroxaban	LMWH	Incremental

	Number of	Costs per	Number of	Costs per	Number of	Costs per
	events	patient	events	patient	events	patient
Event costs						
Recurrent VTE	191	€311.85	275	€442.92	-84	-€1 32
Non-fatal symptomatic recurrent PE	33	€168.36	48	€239.13	-15	-€7:
Non-fatal incidental recurrent PE	58	-	84	-	-26	
Non-fatal recurrent DVT	83	€59.31	120	€84.23	-37	-€2
Fatal recurrent VTE	17	€84.18	24	€119.56	-7	-€3
ICH	11	€550.70	9	€438.40	2	€11
Non-ICH MB	98	€1,106.87	79	€902.47	19	€20
Fatal MB	5	€51.48	4	€41.98	1	€1
CRNMB	197	€56.28	92	€26.93	105	€2
PTS	61	€92.72	61	€92.37	0	€
СТЕРН	20	€223.79	20	€222.83	0	€
Treatment costs		€548.83		€2,108.33		-€1 <i>,</i> 55
Indirect costs		€184.22		€160.77		€2
	Scenario 4	(6 month tin	ne horizon)			
	Rivaro	xaban	LM	WH	Increm	nental
	N 1 C					
	Number of events	Costs per patient	Number of events	Costs per patient	Number of events	Costs per patient
Event costs		•				•
Event costs Recurrent VTE		•				patient
	events	patient	events	patient	events	•
Recurrent VTE Non-fatal symptomatic	events 38	patient €58.95	events	patient €166.96	events -70	patient -€10
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental	events 38 7	patient €58.95	events 109 19	patient €166.96	events -70 -12	patient -€10
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE	events 38 7 12	patient €58.95 €31.82	events 109 19 33	patient €166.96 €90.14	events -70 -12 -21	patient -€10 -€5
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT	events 38 7 12 17	patient €58.95 €31.82 - €11.21	events 109 19 33 47	patient €166.96 €90.14 - €31.75	events -70 -12 -21 -31	patient -€10 -€5 -€2 -€2
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE	events 38 7 12 17 3	patient €58.95 €31.82 - €11.21 €15.91	events 109 19 33 47 9	patient €166.96 €90.14 €31.75 €45.07	events -70 -12 -21 -31 -6	patient -€10 -€5 -€2 -€2 -€2 €4
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH	events 38 7 12 17 3 6	patient €58.95 €31.82 €11.21 €15.91 €142.82	events 109 19 33 47 9 4	patient €166.96 €90.14 €31.75 €45.07 €94.25	events -70 -12 -21 -31 -6 2	patient -€10 -€5 -€2 -€2 -€2 €4 €18
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB	events 38 7 12 17 3 6 50	patient €58.95 €31.82 €11.21 €11.21 €142.82 €539.38	events 109 19 33 47 9 4 33	patient €166.96 €90.14 €31.75 €45.07 €94.25 €355.95	events -70 -12 -21 -31 -6 2 17	patient -€10 -€5 -€5 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB Fatal MB	events 38 7 12 17 3 6 50 2	patient €58.95 €31.82 €11.21 €11.21 €142.82 €539.38 €25.09	events 109 19 33 47 9 4 33 0 2	patient €166.96 €90.14 - €31.75 €45.07 €94.25 €355.95 €16.56	events -70 -12 -21 -31 -6 2 17 1	patient -€10 -€5 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB Fatal MB CRNMB	events 38 7 12 17 3 6 50 2 130	patient €58.95 €31.82 €11.21 €15.91 €142.82 €539.38 €25.09 €35.99	events 109 19 33 47 9 4 33 2 38	patient €166.96 €90.14 - €31.75 €45.07 €94.25 €355.95 €16.56 €10.62	events -70 -12 -21 -31 -6 2 17 1 1 91	patient -€10 -€5 -€5 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB Fatal MB CRNMB PTS	events 38 7 12 17 3 6 50 2 130 14	patient €58.95 €31.82 €11.21 €115.91 €142.82 €539.38 €25.09 €35.99 €20.59	events 109 19 33 47 9 4 33 2 38 38 14	patient €166.96 €90.14 - €31.75 €45.07 €94.25 €355.95 €16.56 €10.62 €20.56	events -70 -12 -21 -31 -6 2 17 1 1 91 0	patient -€10 -€5

Abbreviations: CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; LMWH, low molecular weight heparin; MB, major bleeding; PE, pulmonary embolism; PTS, post thrombotic syndrome; VTE, venous thromboembolism

In the probabilistic sensitivity analysis we assessed the robustness of the model over a five-year time horizon (base case) and a six-month time horizon (scenario 4). The results are presented in cost-effectiveness planes in Figure 2 and Figure 3. Of the 2,000 iterations of the base case ICER, 77.0% were located in the south-eastern quadrant and 22.8% are considered cost-saving but less effective compared to LMWH. In scenario 4, 98.7% of the calculations were located in the south-eastern quadrant and in 1.2% rivaroxaban is considered cost-saving but less effective compared to LMWH.

The influence of the individual input parameters on the base case incremental costs and QALYs are analysed in the univariate sensitivity analysis. The tornado diagrams (Figure 4 and Figure 5) present the 15 input parameters with the highest impact. The risk of MB for both rivaroxaban and LMWH, treatment duration of LMWH, and recurrent VTE risks during the first six months after a VTE had the highest influence on the incremental costs. Similarly, the risk of MB and recurrent VTE in the first six months for rivaroxaban and LMWH showed the highest influence on the incremental QALYs.

Figure 2. Probabilistic sensitivity analysis of the base case with five year time horizon (base case analysis). Abbreviation: QALY, quality adjusted life-year

Figure 3. Probabilistic sensitivity analysis with six month time horizon (scenario 4). Abbreviation: QALY, quality adjusted lifeyear

Figure 4. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental costs. Abbreviations: ICH, intracranial haemorrhage; LMWH, low molecular weight heparin; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

Figure 5. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental QALYs. Abbreviations: CRNMB, clinically relevant non-major bleeding; ICH, intracranial haemorrhage; LMWH, low molecular weight heparin; MB, major bleeding; VTE, venous thromboembolism

Budget impact

The results of the budget impact analysis are presented in Table 4. The replacement of LMWH with rivaroxaban can lead to annual cost savings of a maximum of €9,991,357 (€4,419,972–€15,407,533) over approximately 8,000 cancer patients with VTE. A reduction in treatment costs can lead to savings of up to €11.2 million. Event-related costs and indirect costs slightly increase by €1,234,467 (€-2,364,452–€5,177,816) and €27,749 (€-137,276–€189,561), respectively, when LMWHs are replaced by rivaroxaban.

Budget impact	€-9,991,357 (€-15,407,533—€-4,419,972)			
Indirect costs	€27,749 (€-137,276—€189,561)			
Treatment costs	€-11,253,573 (€-15,363,435—€-7,309,562)			
Event-related costs	€1,234,467 (€-2,364,452—€5,177,816)			
Table 4. Budget impact over one year time in the Netherlands.				

Discussion

Thrombosis treatment is a challenge in cancer patients. According to the guidelines, LMWHs are the preferred treatment; however, DOACs have recently also been shown to be effective and safe in cancer patients with VTE. We have assessed the cost-effectiveness and budget impact of rivaroxaban in cancer patients based on the SELECT-D trial [14]. We conclude that, in the Netherlands, rivaroxaban is a cost-saving treatment option with a health benefit of 0.012 QALYs per patient over five years compared to LMWH. In a sensitivity analysis our model appeared to be robust.

In both the cost-effectiveness analysis and budget impact analysis we found that the event-related costs and indirect costs increase with the use of rivaroxaban compared to LMWH. In total, 42 events were prevented over five years; however, MB events were more frequent with rivaroxaban compared to LMWH (11 ICH and 98 non-ICH versus 9 ICH and 79 non-ICH, respectively). MB events are very burdensome and frequently severely disabling, causing high acute care and long-term direct and indirect costs which makes these events very expensive. This might explain why the indirect costs were higher for rivaroxaban than for LMWH. Moreover, there was no data available on leisure activity losses caused by the occurrence of a VTE event in patients who are already burdened with cancer. Therefore, the indirect costs might have been underestimated, possibly leading to lower cost savings results. The indirect costs account for €160 to €185 per patient over five years—approximately 3-5% of the total cost—however, they do not have a major influence on the differences between the two drugs (€23 and €2 for the five-year and 6-month time horizon, respectively). This suggests that, although the indirect costs might have been underestimated, rivaroxaban is still likely to be cost-saving compared to LMWH.

The main driver of the cost savings is the difference in treatment costs. In the cost-effectiveness analysis, we estimated that more than €1,500 per patient over a five-year period can be saved on treatment costs, compared to LMWH. We conservatively assumed no additional costs for training or assistance for administration of the LMWH injection. Moreover, in the scenario analysis we varied the price of dalteparin based on weight. Although the lowest dose (12,500 IU daily during month one followed by 10,000 IU in months two to six based on weight class 57-68 kg) had a lower price, €8.06 versus €9.93, the ICER remained cost-saving. Based on this same weight class, only LMWH nadroparin has a lower price compared to dalteparin. However, since the lower dose of dalteparin is still highly cost-saving, it is expected that compared to LMWHs other than dalteparin, rivaroxaban will also be a cost-saving alternative [22].

In the budget impact analysis, we calculated that rivaroxaban replacing LMWH leads to cost savings of a maximum of €9,991,357 within one year over a total of 8,000 cancer patients. This is the absolute maximum, since it is not possible to treat each patient with rivaroxaban from a clinical perspective. In practice, the market share of rivaroxaban will be lower—despite the fact that there are three other DOACs that could be prescribed—because there are some clinical considerations that should be taken into account. Firstly, although DOACs have far fewer drug interactions than VKAs, it should be noted that rivaroxaban is metabolized by CYP3A4 enzymes [1]. Cancer patients, especially those with haematological cancer, are at high risk for opportunistic and fungal infections, for which they are often treated with CYP3A4 inhibitors or inducers [31]. For this reason, prescription of rivaroxaban for the prevention of recurrent VTE in cancer patients must be done carefully [1]. This interaction does not play a role in LWMH treatment.

Secondly, the balance between the risk of thrombosis and the risk of bleeding should always be a consideration in the prescription of anticoagulants. For example, DOACs are not advised in patients with GI tumours, due to a higher risk of GI bleeding; for this reason they were not included in the SELECT-D trial [14]. Some prediction scores for primary prevention have been developed to predict thrombosis risk in cancer patients, since thrombosis prophylaxis is most effective in patients with an increased VTE risk. Unfortunately, for cancer these scores have still not been shown to reliably identify patients with the highest risk [32]. Predictive scores for bleeding, such as the HAS-BLED score used for atrial fibrillation patients, are also needed.

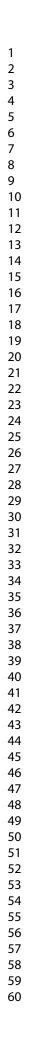
A third consideration is the oral administration of rivaroxaban. Although it is less burdensome than the LMWH injections, oral administration can be problematic in patients with anorexia and

417 vomiting, which is often seen as a side effect in cancer therapy [14]. Moreover, low food intake might
418 influence the metabolism of rivaroxaban resulting in lower bioavailability [33]. Lastly, adherence is
419 always a point of discussion, but since adherence to current guidelines is often low [32], we feel that
7 420 adherence might even increase due to the more patient-friendly administration.

As with all cost-effectiveness models some assumptions need to be made due to lack of data. We assumed that patients were treated with anticoagulation over six months, which is in line with the guidelines of the Dutch Internist Society (NIV) [7]. Previous studies have shown that adherence to these guidelines is poor [32]. As seen in the study by Streiff et al, in practice, treatment with LMWH is often not six months, presumably due to the fact that LMWH injections are burdensome, there are concerns about the bleeding risk, and the complexity of the treatment of cancer patients [32]. However, this recommended treatment period was also not achieved in many patients treated with rivaroxaban, which resulted in an average duration of three months. We conducted a scenario analysis (scenario 5) to assess this difference in treatment duration. Incremental QALYs increased while still being cost-saving. On the other hand, there are some clinical situations in which the treatment period might be longer than six months: for example, in patients with a recurrent VTE event, patients with an active malignancy, or patients receiving treatment for their malignancy for over more than six months. Moreover, in the Netherlands anticoagulation is often continued after six months of initial treatment in case the cancer is still active. Unfortunately, we were unable to assess the effect of continued anticoagulation treatment due to lack of data. However, since rivaroxaban is associated with cost-saving results during the first six months, it is to be expected that during a longer treatment period the savings and health gains will increase even more compared to LMWH.

In the univariate sensitivity analysis we have shown that the risk of MB and VTE for both rivaroxaban and LMWH have a high influence on the incremental costs and QALYs. In the SELECT-D trial [14], the incidence of symptomatic and fatal PE events was relatively higher in patients treated with rivaroxaban. However, due to low numbers of VTE observed in the SELECT-D trial [14], we calculated the distribution of the type of VTE based on the total number of events and assumed it to be equal for both drugs. This may have led to an overestimation of the effect of rivaroxaban compared to LMWH, since symptomatic and fatal PE events have a higher impact on the costs and the patient's health compared to DVT and incidental PE. On the other hand, we used this same approach to calculate the distributions of the types of MB from the HOKUSAI VTE Cancer trial [19], in which the patients treated with LMWH had relatively more severe MB events compared to the NOAC (ICH: 17.6% versus 6.1%, respectively). This results in an overestimation of the safety of LMWH. We assessed the effect of using drug-specific distributions of the type of VTE and MB in scenario six, showing an increase in incremental cost savings and QALYs compared to the base case analysis. Therefore, we conclude that our approach of using equal distributions of the types of VTE and MB for rivaroxaban and LMWH is conservative.

This study focuses on the secondary prevention of VTE, based on the results of the SELECT-D and, partially, the HOKUSAI VTE Cancer trials. However, the AVERT and CASSINI trials have recently shown that apixaban and rivaroxaban are also effective as a primary prophylaxis of VTE in cancer patients compared to a placebo [34-36]. Based on these two studies, clinicians may consider DOAC prophylaxis in some of their cancer patients [36]. Therefore, future research is needed to assess if DOACs are also cost-effective for the primary prevention of VTE.


1			
2 3		Con	volucion
4	461	COI	nclusion
5 6	462		Treatment with rivaroxaban is dominant (cost-saving while slightly increasing the patient's
7	463		h) over LMWH in cancer patients at risk for recurrent VTE in the Netherlands. The use of
8	464		oxaban instead of LMWH can save almost ten million euros per year, which is primarily driven by
9	465		ifference in drug costs. Since treatment with rivaroxaban is cost-saving and less invasive, we feel
10 11	466		many cancer patients can benefit from DOAC treatment. However, with DOAC treatment
12	467	intera	actions, oral administration and adherence should be kept in mind.
13	468		
14	469		
15			
16 17	470	Ref	erences
18	471	1.	Gerotziafas GT, Mahé I, Elalamy I. Therapeutics and Clinical Risk Management Dovepress New
19	472		orally active anticoagulant agents for the prevention and treatment of venous
20	473		thromboembolism in cancer patients. Ther Clin Risk Manag. 2014;10:423–36.
21 22	474	2.	Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: biological and clinical aspects. J
22	475		Thromb Haemost. 2013;11(2):223–33.
24	476	3.	Lechner D, Weltermann A. Chemotherapy-induced thrombosis: a role for microparticles and
25	477		tissue factor? Semin Thromb Hemost. 2008;34(2):199–203.
26 27	478 479	4.	Mandala M, Falanga A, Roila F, ESMO Guidelines Working Group. Management of venous
27	479 480		thromboembolism (VTE) in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2011;22(Supplement 6):vi85–92.
29	481	5.	Cohen AT, Katholing A, Rietbrock S, Bamber L, Martinez C. Epidemiology of first and recurrent
30	482	0.	venous thromboembolism in patients with active cancer. Thromb Haemost. 2017;117(01):57–
31	483		65.
32 33	484	6.	Minister of Health W and S. Letter to the parlement - reimbursement rivaroxaban VTE
34	485		(Herbeoordeling uitbreiding nadere voorwaarden rivaroxaban (Xarelto®) bij VTE. 2015;
35	486	7.	Dutch Internist Society (NIV). Guideline Antithrombotic policy [Internet]. Utrecht; 2015.
36	487	8.	Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic Therapy
37 38	488	0	for VTE Disease: CHEST Guideline and Expert Panel Report. Chest. 2016;149(2):315–52.
39	489 490	9.	Lyman GH, Bohlke K, Khorana AA, Kuderer NM, Lee AY, Arcelus JI, et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: American Society of
40	490 491		Clinical Oncology Clinical Practice Guideline Update 2014. J Clin Oncol. 2015;33(6):654–6.
41	492	10.	Hull RD, Pineo GF, Brant RF, Mah AF, Burke N, Dear R, et al. Long-term low-molecular-weight
42 43	493		heparin versus usual care in proximal-vein thrombosis patients with cancer. Am J Med. 2006
43 44	494		Dec;119(12):1062–72.
45	495	11.	Lee AYY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Low-Molecular-Weight
46	496		Heparin versus a Coumarin for the Prevention of Recurrent Venous Thromboembolism in
47 49	497		Patients with Cancer. N Engl J Med. 2003;349(2):146–53.
48 49	498	12.	Meyer G, Marjanovic Z, Valcke J, Lorcerie B, Gruel Y, Solal-Celigny P, et al. Comparison of low-
50	499 500		molecular-weight heparin and warfarin for the secondary prevention of venous
51	500 501		thromboembolism in patients with cancer: a randomized controlled study. Arch Intern Med. 162(15):1729–35.
52	501	13.	Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, et al. The 2018 European
53 54	502	<i>1J</i> .	Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral
55	504		anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;
56	505	14.	Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an Oral
57	506		Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous
58 59	507		Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017-
60	508		23.

1 2			
3	509	15.	Streiff MB, Milentijevic D, McCrae K, Yannicelli D, Fortier J, Nelson WW, et al. Effectiveness and
4	510	15.	safety of anticoagulants for the treatment of venous thromboembolism in patients with cancer.
5	511		Am J Hematol. 2018;93(5):664–71.
6	512	16.	Hakkaart-van Roijen L, van der Linden N, Bouwmans C, Kanters T, Swan Tan S.
7	513	10.	Kostenhandleiding: Methodologie van kostenonderzoek en referentieprijzen voor
8 9	514		economische evaluaties in de gezondheidszorg. Zorginstituut Ned. 2016;1–120.
9 10	515	17.	National Institute of Public Health and the Environment (RIVM). Cancer numbers and context:
11	516		current situation [Internet]. volksgezondheidenzorg.info. 2017. p. 1.
12	517	18.	Briggs A, Claxton K, Sculpher M. Decision modelling for Health Economic Evaluation. 3rd ed.
13	518		New York: Oxford University Press; 2011. 57–58 p.
14	519	19.	Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the
15	520		Treatment of Cancer-Associated Venous Thromboembolism. N Engl J Med. 2018;378(7):615-
16 17	521		24.
18	522	20.	The Netherlands Cancer Registry. Survival statistics - all tumours 1961-2015 [Internet].
19	523	21.	Heisen M, Treur MJ, Heemstra HE, Giesen EBW, Postma MJ. Cost-effectiveness analysis of
20	524		rivaroxaban for treatment and secondary prevention of venous thromboembolism in the
21	525		Netherlands. J Med Econ. 2017 Aug 3;20(8):813–24.
22	526	22.	Medicijnkosten.nl. The National Health Care Institute (ZIN) [Internet].
23	527	23.	Summary of Product Characteristics Fragmin. 2015;
24 25	528	24.	Dutch Statistics. Length and weight of Dutch population [Internet]. 2017.
26	529	25.	de Klerk M, de Boer A, Plaisier I, Schyns P, Kooiker S. Informele hulp: wie doet er wat? - Rapport
27	530		- SCP [Internet]. 2015-35. 2015. 🚫
28	531	26.	Lloyd AJ, Dewilde S, Noble S, Reimer E, Lee AYY. What Impact Does Venous Thromboembolism
29	532		and Bleeding Have on Cancer Patients' Quality of Life? Value Heal. 2018;21(4):449–55.
30	533	27.	Roman A, Barbera JA, Castillo MJ, Muñoz R, Escribano P. Health-related quality of life in a
31	534		national cohort of patients with pulmonary arterial hypertension or chronic thromboembolic
32 33	535		pulmonary hypertension. Arch Bronconeumol. 2013;49(5):181–8.
34	536	28.	Stevanović J, de Jong LA, Kappelhoff BS, Dvortsin EP, Voorhaar M, Postma MJ. Dabigatran for
35	537		the Treatment and Secondary Prevention of Venous Thromboembolism; A Cost-Effectiveness
36	538		Analysis for the Netherlands. PLoS One. 2016;11(10):e0163550.
37	539	29.	The Netherlands Cancer Registry. Prevalence statistics - all tumours [Internet].
38	540	30.	Walker AJ, Card TR, West J, Crooks C, Grainge MJ. Incidence of venous thromboembolism in
39 40	541		patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer. 2013
40 41	542	24	Apr;49(6):1404–13.
42	543	31.	Vedham V, Divi RL, Starks VL, Verma M. Multiple Infections and Cancer: Implications in
43	544 545	32.	Epidemiology. Technol Cancer Res Treat. 2014;13(2):177–94. Mahé I, Chidiac J, Helfer H, Noble S. Factors influencing adherence to clinical guidelines in the
44	545 546	52.	management of cancer-associated thrombosis. J Thromb Haemost. 2016;14(11):2107–13.
45	547	33.	Committee for Medicinal Products for Human Use (CHMP). Summary of product characteristics
46	548	55.	- rivaroxaban 20 mg [Internet].
47 48	549	34.	Khorana AA, Soff GA, Kakkar AK, Vadhan-Raj S, Riess H, Wun T, et al. Rivaroxaban for
49	550	54.	Thromboprophylaxis in High-Risk Ambulatory Patients with Cancer. N Engl J Med. 2019
50	551		Feb;380(8):720–8.
51	552	35.	Carrier M, Abou-Nassar K, Mallick R, Tagalakis V, Shivakumar S, Schattner A, et al. Apixaban to
52	553		Prevent Venous Thromboembolism in Patients with Cancer. N Engl J Med. 2019;380(8):711–9.
53	554	36.	Agnelli G. Direct Oral Anticoagulants for Thromboprophylaxis in Ambulatory Patients with
54 55	555		Cancer. N Engl J Med. 2019;380(8):781–3.
55 56	556		
57	557		
58	558	Auth	or contributions
59			
60			

Page 17 of 30

BMJ Open

1		
2 3	559	Lisa A. de Jong built the economic model, performed the analyses, and contributed to the design of
4	560	the work, interpretation of the results, writing of the manuscript.
5	561	Annette W.G. van der Velden contributed to the interpretation of the results, writing of the
6 7	562	manuscript, and critical revision for important intellectual content.
8	563	Marinus van Hulst contributed to the design of the work, interpretation of the results, writing of the
9	564	manuscript, and critical revision for important intellectual content.
10 11	565	Maarten J. Postma contributed to the design of the work, interpretation of the results, writing of the
12	566	manuscript, and critical revision for important intellectual content.
13	567	All authors approved of the version to be published.
14 15	568	
16	569	Checklist for the appropriate reporting statement: This manuscript was written in accordance with
17	570	the CHEERS checklist for reporting economic evaluations of health interventions.
18 19	571	
20	572	Data sharing statement: All relevant data are included in the manuscript. The analyses were
21	573	conducted based on publicly available information which is presented and referenced in the
22	574	manuscript.
23 24	575	
25	576	Word count: 4,508 (excluding table and figure descriptions and references)
26	577	
27 28	578	Patient consent and ethical approval: The analyses were conducted based on publicly available
29	579	information which is presented and referenced in the article and Supporting Information files, and did
30	580	therefore not require any patient consent forms or approval from an ethical review board.
31 32	581	
33	582	Patient and public involvement statement: It was not appropriate to involve patients or the public in
34	583	the design, or conduct, or reporting, or dissemination plans of our research, because this health
35 36	584	economic analysis was based on publicly available data and solely concentrated on the analysis of the
37	585	economics consequence of treating cancer patients with rivaroxaban instead of the current standard
38	586	of care.
39 40		
40 41		
42		
43 44		
44 45		
46		
47		
48 49		
50		
51		
52 53		
54		
55		
56 57		
58		

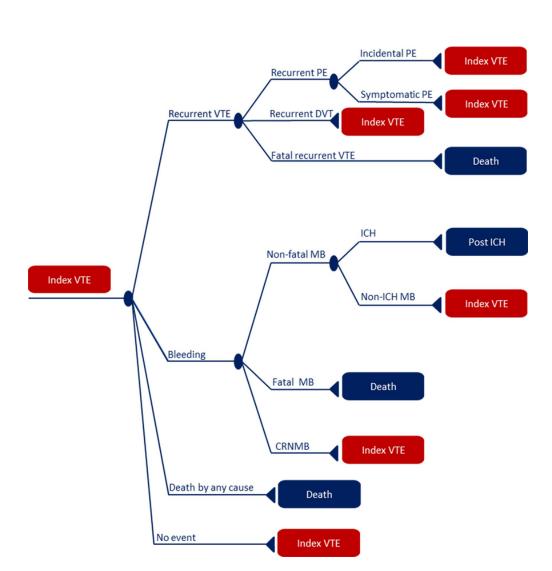
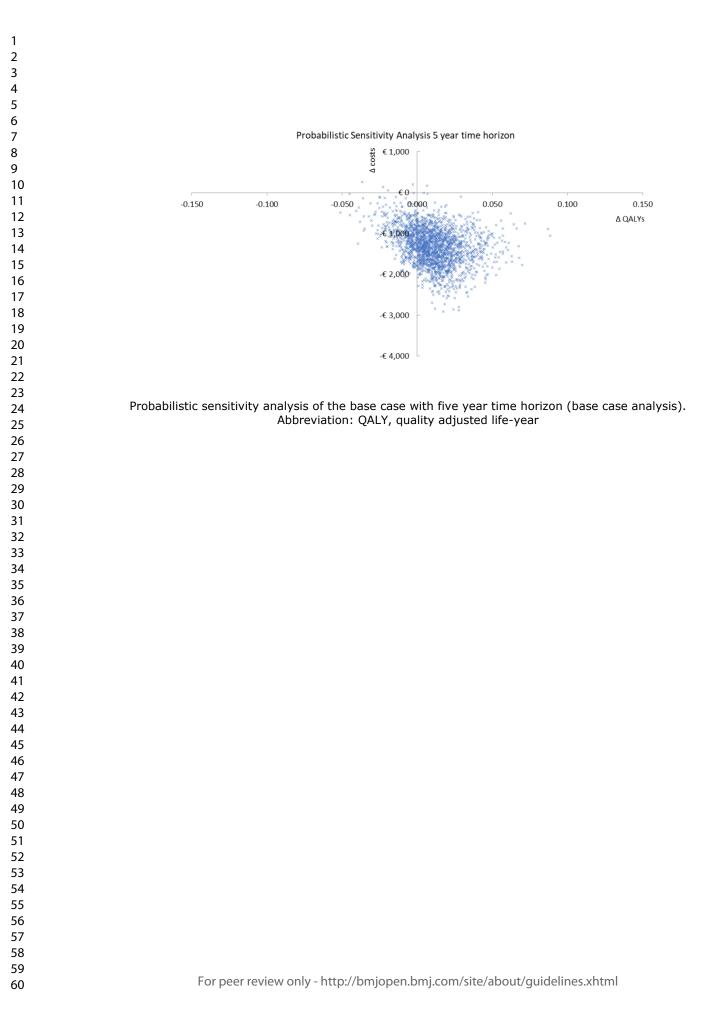
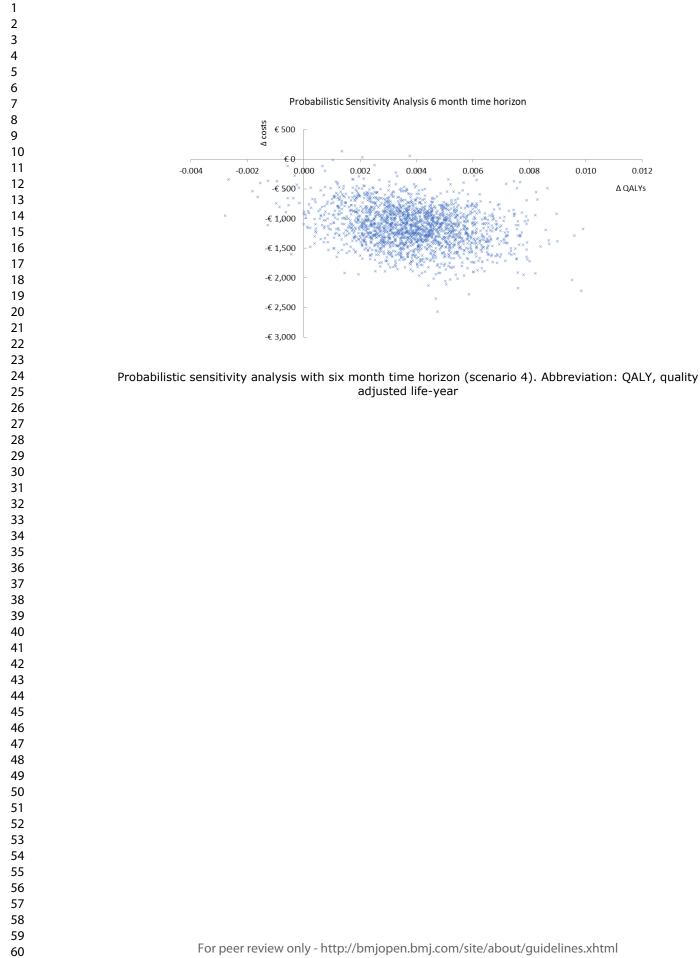
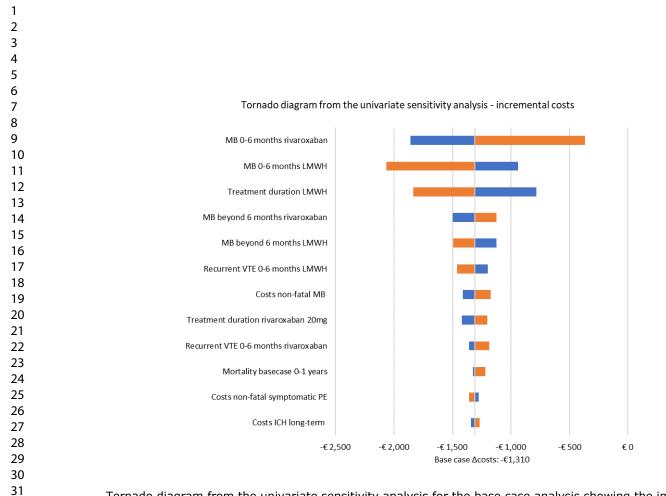



Figure 1. Model outline. All patients enter the model in the 'Index VTE' state and move to other states upon the occurrence of one of the following events: recurrent incidental PE, recurrent symptomatic PE, fatal recurrent VTE, recurrent DVT, ICH, non-ICH MB, fatal MB, CRNMB, or death by any cause. The triangles represent the health state a patient will enter after an event. The blue squares are permanent states, in which a patient will remain until death while not being at risk for other events. The red squares represent a transient state: the patient will re-enter the model in the 'Index VTE' state.
Abbreviations: CRNMB, clinically relevant non-major bleeding; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

74x75mm (300 x 300 DPI)

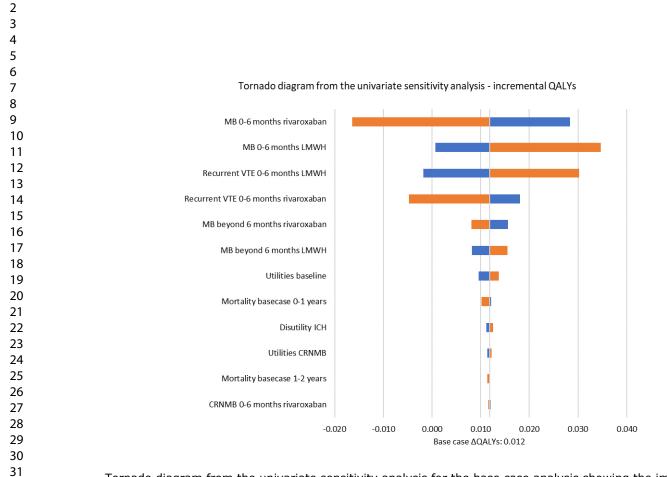


0.010


0.012

 Δ QALYs

0.008



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental costs. Abbreviations: ICH, intracranial haemorrhage; LMWH, low molecular weight heparin; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental QALYs. Abbreviations: CRNMB, clinically relevant non-major bleeding; ICH, intracranial haemorrhage; LMWH, low molecular weight heparin; MB, major bleeding; VTE, venous thromboembolism

Supplementary data file – Table S1

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

		Rivaroxaban (95% CI)	LMWH (95% CI)	Distribution	Reference
Recurre	nt VTE				
	0–6 months	0.040 (0.020 – 0.090)	0.110 (0.070 – 0.160)	Beta	[1]
	6–12 months	0.040 (0.0	31 – 0.050)	Beta	[2]
	1–2 years	0.034 (0.0	27 – 0.042)	Beta	[2]
	2–3 years	0.021 (0.0	14 – 0.029)	Beta	[2]
	3–4 years	0.016 (0.0	09 – 0.026)	Beta	[2]
	4–5 months	0.013 (0.0	06 – 0.024)	Beta	[2]
Type of	recurrent VTE				
	Symptomatic PE		= 4, β = 19)	Dirichlet	[1]
	Incidental PE		= 7, β = 16)	Dirichlet	[1]
	DVT	43.5% (α =	= 10, β = 13)	Dirichlet	[1]
	Fatal PE	8.7% (α =	= 2, β = 21)	Dirichlet	[1]
MB					
	0–6 months	0.060 (0.030 – 0.110)	0.040 (0.020 – 0.080)	Beta	[1]
	Beyond 6 months	0.008.(0.0	06 – 0.010)	Beta	[3]
	treatment	0.008 (0.0	00 0.010)		
Type of	MB				
	ICH	10% (α =	5, β = 45)	Dirichlet	[3]
	Non-ICH MB	86% (α =	43, β = 7)	Dirichlet	[3]
	Fatal MB	4% (α =	2, β = 48)	Dirichlet	[3]
CRNMB				•	
	0–6 months	0.130 (0.090 – 0.190)	0.040 (0.020 – 0.090)	Beta	[1]
	Beyond 6 months	0.008.(0.0	06 – 0.010)	Beta	[3]
	treatment	0.008 (0.0	00-0.010)		
PTS					
	0–6 months	0.015 (0.011 – 0.019)		Beta	[4]
	6–12 months	0.012 (0.009 – 0.015)		Beta	[4]
	12–18 months	0.008 (0.006 – 0.010)		Beta	[4]
	18–24 months	0.025 (0.023 – 0.019)		Beta	[4]
	24–30 months	0.011 (0.008 – 0.014)		Beta	[4]
	30–36 months	0.006 (0.005 – 0.008)		Beta	[4]
	3–4 years	0.001 (0.0008 – 0.0013)		Beta	[4]
	4–5 years	0.001 (0.00	08 – 0.0013)	Beta	[4]
CTEPH (a	annual risk)	0.0057 (0.0	002 – 0.012)	Beta	[5]
Mortalit	ty (annual risk)				
	0–1 years	0.230 (0.2	00 – 0.390)	Beta	[6]
	1–2 years	0.104 (0.0	88 – 0.180)	Beta	[6]
	2–3 years	0.058 (0.0	55 – 0.120)	Beta	[6]
	3–4 years	0.046 (0.0	43 – 0.068)	Beta	[6]
	4–5 years	0.032 (0.0	30 – 0.073)	Beta	[6]
Relative	risk of recurrent VTE, MB	, and CRNMB for LMWH vers	sus placebo, used in scenario	5	
	Recurrent VTE (any)	5.:	170	Fixed	[7]
	МВ	0.3	242	Fixed	[7]

CRNMB	1.0	000	Fixed	[7]
Drug-specific distribution of the	type of VTE, used in scenario 6	5		
Symptomatic PE	28.6% (α = 2, β = 5)	12.5% (α = 2, β = 14)	Dirichlet	[1]
Incidental PE	14.3% (α = 1, β = 6)	37.5% (α = 6, β = 10)	Dirichlet	[1]
DVT	42.9% (α = 3, β = 4)	43.8% (α = 7, β = 9)	Dirichlet	[1]
Fatal PE	14.3% (α = 1, β = 6)	6.3% (α = 1, β = 15)	Dirichlet	[1]
Drug-specific distribution of the	type of MB, used in scenario 6	j	·	
ICH	6.1% (α = 2, β = 31)	17.6% (α = 3, β = 14)	Dirichlet	[3]
Non-ICH MB	93.9% (α = 31, β = 2)	70.6% (α = 12, β = 5)	Dirichlet	[3]
Fatal MB	0% (α = 0, β = 33)	11.8% (α = 2, β = 15)	Dirichlet	[3]

Abbreviations: CI, confidence interval; CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; LMWH, low-molecular weight heparin; MB, major bleeding; PE, pulmonary embolism; PTS, post-thrombotic syndrome; SE, standard error; VTE, venous thromboembolism

References

- Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017– 23.
- Cohen AT, Katholing A, Rietbrock S, Bamber L, Martinez C. Epidemiology of first and recurrent venous thromboembolism in patients with active cancer. Thromb Haemost. 2017;117(01):57– 65.
- Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N Engl J Med. 2018;378(7):615– 24.
- 4. Prandoni P, Villalta S, Bagatella P, Rossi L, Marchiori A, Piccioli A, et al. The clinical course of deep-vein thrombosis. Prospective long-term follow-up of 528 symptomatic patients. Haematologica. 1997;82(4):423–8.
- 5. Klok FA, van Kralingen KW, van Dijk APJ, Heyning FH, Vliegen HW, Huisman M V. Prospective cardiopulmonary screening program to detect chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Haematologica. 2010;95(6):970–5.
- 6. The Netherlands Cancer Registry. Survival statistics all tumours 1961-2015 [Internet].
- Napolitano M, Saccullo G, Malato A, Sprini D, Ageno W, Imberti D, et al. Optimal duration of low molecular weight heparin for the treatment of cancer-related deep vein thrombosis: the Cancer-DACUS Study. J Clin Oncol. 2014;32(32):3607–12.

Supplementary data file – Table S2

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Table S2. Costs included in the cost-effectiveness model (Euros, 2019)

	Value (95% CI)	Distribution	Reference
Event costs		I	
Recurrent VTE			
Symptomatic PE	€4,717 (€2,364 – €7,868)	Gamma	[1]
Incidental PE	€0	Fixed	Assumption
DVT	€663 (€464 – €862)	Gamma	[1]
Fatal recurrent VTE a	€4,717 (€2,364 – €7,868)	Gamma	[1]
ICH acute care costs	€22,769 (€11,644 – €31,175)	Gamma	[2]
ICH long-term costs (monthly)	€637 (€319 – €1,063)	Gamma	[1]
Non-ICH MB	€10,685 (€5,356 - €17,824)	Gamma	[1]
Fatal MB	€10,685 (€5,356 - €17,824)	Gamma	[1]
CRNMB	€274 (€137 – €457)	Gamma	[1]
PTS	€1,431 (€717 – €2,387)	Gamma	[1]
CTEPH acute care costs	€7,843 (€3,931 – €16,433)	Gamma	[1]
CTEPH long-term costs (monthly)	€89 (€45 – €149)	Gamma	[1]
Treatment costs		1	
Drug cost (daily)	6		
LMWH _b	€9.93	Fixed	[3]
Rivaroxaban 15 mg	€4.58	Fixed	[3]
Rivaroxaban 20 mg	€2.29	Fixed	[3]
Treatment duration (days)			
LMWH	183 (137 – 228)	Gamma	[4]
Rivaroxaban 15 mg	21 (16 – 26)	Gamma	[4]
Rivaroxaban 20 mg	162 (121 – 202)	Gamma	[4]
Renal monitoring c	€1.64 (€1.23 - €2.05)	Gamma	[5]
Indirect costs			
Travel costs			
Cost per km	€0.20 (€0.15 – €0.25)	Gamma	[6]
Distance to hospital (km)	7	Fixed	[6]
Distance to GP (km)	1.1	Fixed	[6]
Informal care costs			
PE	€1,515 (€1,136 – €1,894)	Gamma	[7,8]
DVT	€233 (€175 – €291)	Gamma	[7,8]
ICH (acute informal care costs)	€1,515 (€1,136 – €1,894)	Gamma	[7,8]
ICH (long-term informal care costs, monthly)	€626 (€470 – €783)	Gamma	[9]
Non-ICH MB	€758 (€568 – €947)	Gamma	[7,8]
CRNMB	€117 (€87 – €146)	Gamma	[7,8]

Abbreviations: CI, confidence interval; CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; GP, general practitioner; ICH, intracranial haemorrhage; LMWH, low-molecular weight heparin; MB, major bleeding; PE, pulmonary embolism; PTS, post-thrombotic syndrome; VTE, venous thromboembolism

_a Assumed to be equal to the costs of non-fatal PE

_b Based on an average weight between 69 and 82 kg.

 $_{
m c}$ Based on DRG code 070419 and only taken into account for rivaroxaban treated patients

References

- 1. Heisen M, Treur MJ, Heemstra HE, Giesen EBW, Postma MJ. Cost-effectiveness analysis of rivaroxaban for treatment and secondary prevention of venous thromboembolism in the Netherlands. J Med Econ. 2017 Aug 3;20(8):813–24.
- 2. Baeten S a, van Exel NJ a, Dirks M, Koopmanschap M a, Dippel DW, Niessen LW. Lifetime health effects and medical costs of integrated stroke services a non-randomized controlled cluster-trial based life table approach. Cost Eff Resour Alloc. 2010;8(1):21.
- 3. Medicijnkosten.nl. The National Health Care Institute (ZIN) [Internet].
- 4. Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017– 23.
- 5. Dutch Health Authorities. NZa zorgproductapplicatie. Declaration code: 070419. [Internet]. 2018.
- 6. Roijen LH, Linden N van der, Bouwmans C, Kanters T, Tan SS. Dutch manual for costing studies in health care. Diemen; 2015.
- 7. Hakkaart-van Roijen L, van der Linden N, Bouwmans C, Kanters T, Swan Tan S. Kostenhandleiding: Methodologie van kostenonderzoek en referentieprijzen voor economische evaluaties in de gezondheidszorg. Zorginstituut Ned. 2016;1–120.
- 8. de Klerk M, de Boer A, Plaisier I, Schyns P, Kooiker S. Informele hulp: wie doet er wat? -Rapport - SCP [Internet]. 2015-35. 2015.
- 9. van den Berg B, Brouwer W, van Exel J, Koopmanschap M, van den Bos GAM, Rutten F. Economic valuation of informal care: lessons from the application of the opportunity costs and proxy good methods. Soc Sci Med. 2006;62(4):835–45.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary data file – Table S3

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Table S3. Utility values included in the cost-effectiveness model

	Value (95% CI)	Distribution	Reference
Utilities	1	1	
Index VTE			
0–1 month	0.565 (0.501 – 0.620)	Beta	[1]
1–2 months	0.655 (0.585 – 0.713)	Beta	[1]
2–3 months	0.674 (0.606 – 0.729)	Beta	[1]
3–4 months	0.698 (0.635 – 0.750)	Beta	[1]
4–5 months	0.707 (0.645 – 0.758)	Beta	[1]
5–6 months	0.709 (0.647 – 0.760)	Beta	[1]
Baseline utility 6 months after index VTE	0.715 (0.646 – 0.770)	Beta	[1]
Recurrent VTE			
DVT	0.605 (0.514 – 0.678)	Beta	[1]
Non-fatal symptomatic PE	0.621 (0.477 – 0.725)	Beta	[1]
Non-fatal incidental PE	0.664 (0.615 – 0.707)	Beta	[1]
Fatal PE	0.456 (0.268 – 0.595)	Beta	[1]
Non-ICH MB	0.593 (0.461 – 0.693)	Beta	[1]
CRNMB	0.622 (0.568 – 0.669)	Beta	[1]
Utility decrements			
Recurrent VTE within first six months after index VTE			
DVT	0.040 (0.000 - 0.158)	Beta	[1]
Symptomatic PE	0.024 (0.000 – 0.195)	Beta	[1]
Incidental PE	0.189 (0.021 - 0.404)	Beta	[1]
ICH	0.380 (0.285 – 0.475)	Beta	[2]
Severe PTS (<6 months after diagnosis)	0.186 (0.090 - 0.280)	Beta	[1]
Severe PTS (>6 months after diagnosis)	0.070 (0.053 – 0.088)	Beta	[2]
СТЕРН			
0-1 year	0.194 (0.071 – 0.303)	Beta	[3]
1–4 years	0.109 (0.000 - 0.244)	Beta	[3]
4–7 years	0.079 (0.000 – 0.277)	Beta	[3]
>7 years	0.065 (0.000 - 0.164)	Beta	[3]

Abbreviations: CI, confidence interval; CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; PTS, post-thrombotic syndrome; VTE, venous thromboembolism

References

- Lloyd AJ, Dewilde S, Noble S, Reimer E, Lee AYY. What Impact Does Venous Thromboembolism and Bleeding Have on Cancer Patients' Quality of Life? Value Heal. 2018;21(4):449–55.
- 2. Stevanović J, de Jong LA, Kappelhoff BS, Dvortsin EP, Voorhaar M, Postma MJ. Dabigatran for the Treatment and Secondary Prevention of Venous Thromboembolism; A Cost-Effectiveness Analysis for the Netherlands. PLoS One. 2016;11(10):e0163550.
- 3. Roman A, Barbera JA, Castillo MJ, Muñoz R, Escribano P. Health-related quality of life in a national cohort of patients with pulmonary arterial hypertension or chronic thromboembolic

pulmonary hypertension. Arch Bronconeumol. 2013;49(5):181-8.

for peer terien ony

CHEERS checklist—Items to include when reporting economic evaluations of health interventions

	Item		Reported on page No/
Section/item	No	Recommendation	line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness	Page 1, line 9-10
		analysis", and describe the interventions compared.	
Abstract	2	Provide a structured summary of objectives,	Page 1, line 34-64
		perspective, setting, methods (including study design	
		and inputs), results (including base case and	
		uncertainty analyses), and conclusions.	
Introduction			
Background and	3	Provide an explicit statement of the broader context	Page 4, line 91-120
objectives		for the study.	
		Present the study question and its relevance for	Page 4, line 121-126
		health policy or practice decisions.	
Methods			
Target population and	4	Describe characteristics of the base case population	Page 5, line 149-15:
subgroups		and subgroups analysed, including why they were	Page 5, line 179
• • • • • • •	_	chosen.	D
Setting and location	5	State relevant aspects of the system(s) in which the desiries (x) to be mode	Page 4, line 130-140
Ct	6	decision(s) need(s) to be made.	Dana 5 June 425 42
Study perspective	6	Describe the perspective of the study and relate this	Page 5, line 135-137
<u></u>	-	to the costs being evaluated.	Dana 4 lina 420 421
Comparators	7	Describe the interventions or strategies being	Page 4, line 130-132
		compared and state why they were chosen.	
Time horizon	8	State the time horizon(s) over which costs and	Page 5, line 152-154
		consequences are being evaluated and say why	
Discount anto		appropriate.	Dana O lina 24
Discount rate	9	Report the choice of discount rate(s) used for costs	Page 8, line 24:
	10	and outcomes and say why appropriate.	Page 9, line 264
Choice of health	10	Describe what outcomes were used as the measure(s)	Page 4, line 133-140
outcomes		of benefit in the evaluation and their relevance for	
NAssaurant of	11-	the type of analysis performed.	
Measurement of	11a	Single study-based estimates: Describe fully the	
effectiveness		design features of the single effectiveness study and	
		why the single study was a sufficient source of clinical effectiveness data.	
	11b	Synthesis-based estimates: Describe fully the methods	
	110	used for identification of included studies and	Page 6, line 184-210
		synthesis of clinical effectiveness data.	
Measurement and	12	If applicable, describe the population and methods	
valuation of preference	12	used to elicit preferences for outcomes.	
based outcomes		used to elicit preferences for outcomes.	
Estimating resources and	13a	Single study-based economic evaluation: Describe	
costs	129	approaches used to estimate resource use associated	
0515		with the alternative interventions. Describe primary	
		or secondary research methods for valuing each	
		resource item in terms of its unit cost. Describe any	
		adjustments made to approximate to opportunity	
		costs.	
	13b	Model-based economic evaluation: Describe	Page 8, line 213-253
	120	would bused economic evaluation. Describe	rage 0, 1111e 213-233

	Item		Reported on page No/
Section/item	No	Recommendation	line No
		resource use associated with model health states.	
		Describe primary or secondary research methods for	
		valuing each resource item in terms of its unit cost.	
		Describe any adjustments made to approximate to	
		opportunity costs.	
Currency, price date, and	14	Report the dates of the estimated resource quantities	Page 8, line 246
conversion		and unit costs. Describe methods for adjusting	
		estimated unit costs to the year of reported costs if	
		necessary. Describe methods for converting costs into	
		a common currency base and the exchange rate.	
Choice of model	15	Describe and give reasons for the specific type of	Page 5, line 143-176
		decision-analytical model used. Providing a figure to	
		show model structure is strongly recommended.	
	16	Describe all structural or other assumptions	Page 5, line 162-166
Assumptions	10	underpinning the decision-analytical model.	Page 8, line 230-240
Analytical methods	17		
Analytical methods	17	Describe all analytical methods supporting the ovaluation. This could include methods for dealing	Page 7, line 190-201 Page 10, line 284-301
		evaluation. This could include methods for dealing	Page 10, IIIIe 284-301
		with skewed, missing, or censored data; extrapolation	
		methods; methods for pooling data; approaches to	
		validate or make adjustments (such as half cycle	
		corrections) to a model; and methods for handling	
Deculto		population heterogeneity and uncertainty.	
Results	10	Papart the values ranges references and if used	Dago 6 lino 201 21(
Study parameters	18	Report the values, ranges, references, and, if used,	Page 6, line 201-210
		probability distributions for all parameters. Report	Page 8, line 241-253
		reasons or sources for distributions used to represent	Page 9, line 264-272
		uncertainty where appropriate. Providing a table to	Page 10, line 276-278
		show the input values is strongly recommended.	
Incremental costs and	19	For each intervention, report mean values for the	Page 11, line 320-323
outcomes		main categories of estimated costs and outcomes of	Page 14, line 393-398
		interest, as well as mean differences between the	
		comparator groups. If applicable, report incremental	
<u> </u>		cost-effectiveness ratios.	
Characterising uncertainty	20a	Single study-based economic evaluation: Describe the	
		effects of sampling uncertainty for the estimated	
		incremental cost and incremental effectiveness	
		parameters, together with the impact of	
		methodological assumptions (such as discount rate,	
		study perspective).	
	20b	Model-based economic evaluation: Describe the	Page 13, line 354-389
		effects on the results of uncertainty for all input	
		parameters, and uncertainty related to the structure	
		of the model and assumptions.	
Characterising	21	If applicable, report differences in costs, outcomes, or	Page 12, line 311-333
heterogeneity		cost-effectiveness that can be explained by variations	
		between subgroups of patients with different baseline	
		characteristics or other observed variability in effects	
		that are not reducible by more information.	
Discussion			
	22	Summarise key study findings and describe how they	Page 11, line 323-35
Study findings, limitations,			
generalisability, and		support the conclusions reached. Discuss limitations	
		support the conclusions reached. Discuss limitations and the generalisability of the findings and how the	

	Item		Reported on page No/
Section/item	No	Recommendation	line No
Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non- monetary sources of support.	Page 3, line
Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	Page 3, line 81-
For consistency, the CH	EERS state	ment checklist format is based on the format of the CON	SORT statement checklist

BMJ Open

Cost-effectiveness analysis and budget impact of rivaroxaban compared with dalteparin in cancer patients at risk of recurrent venous thromboembolism

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039057.R1
Article Type:	Original research
Date Submitted by the Author:	04-Aug-2020
Complete List of Authors:	de Jong, Lisa; University of Groningen, Unit of Pharmacotherapy, - Epidemiology and -Economics van der Velden, Annette; Martini Hospital, Department of Internal Medicine Hulst, Marinus; Martini Hospital, Department of Clinical Pharmacy and Toxicology; University Medical Centre Groningen, Department of Health Sciences Postma, Maarten; University Medical Centre Groningen, Department of Health Sciences; University of Groningen, Department of Economics, Econometrics & Finance
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Cardiovascular medicine, Health economics
Keywords:	Anticoagulation < HAEMATOLOGY, ONCOLOGY, Thromboembolism < CARDIOLOGY, HEALTH ECONOMICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	1	Cost-effectiveness analysis and budget impact of rivaroxaban compared with dalteparin in cancer
4	2	patients at risk of recurrent venous thromboembolism
5 6	3	
7	4	Short title: Economic evaluation of rivaroxaban in cancer patients
8	5	Shore the Leonomie evaluation of fiveroxaban in earlier patients
9		Authors
10	6	Authors:
11	7	Lisa A. de Jong ¹ , Annette W.G. van der Velden ² , Marinus van Hulst ^{3,4*} , Maarten J. Postma ^{4,5*}
12 13	8	
13 14	9	
15	10	Affiliations:
16	11	¹ Unit of PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen
17	12	Research Institute of Pharmacy (GRIP), Antonius Deusinglaan 1, Groningen, the Netherlands
18	13	² Department of Internal Medicine, Martini Hospital, Van Swietenplein 1, Groningen, The Netherlands
19 20	14	³ Department of Clinical Pharmacy and Toxicology, Martini Hospital, Van Swietenplein 1, Groningen,
20		The Netherlands
22	15	
23	16	⁴ Department of Health Sciences, University of Groningen, University Medical Center Groningen,
24	17	Hanzeplein 1, Groningen, The Netherlands
25	18	⁵ Department of Economics, Econometrics & Finance, University of Groningen, Faculty of Economics &
26 27	19	Business, Nettelbosje 2, Groningen, The Netherlands
27	20	
29	21	
30	22	*Shared last author
31	23	
32		Corresponding author: Lisa A de Jong E-mail: <u>l.a.de.jong@rug.nl</u> Phone: +31630048956 ORCID ID: 0000-0001-8814-0670
33	24	Corresponding author:
34 35	25	Lisa A de Jong
36	26	E-mail: <u>l.a.de.jong@rug.nl</u>
37	27	Phone: +31630048956
38	28	ORCID ID: 0000-0001-8814-0670
39	29	
40	30	
41 42	31	Author contributions:
43	32	LA de Jong contributed to the design, interpretation of the data, modelling, drafting the manuscript
44	33	and revisions. M van Hulst, MJ Postma and AWG van der Velden contributed to the design,
45		
46	34	interpretation of the data, validation of the model and drafting the manuscript.
47		
48 49		
49 50		
51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

BMJ Open

2		
3		A betweet
4	35	Abstract
5	36	Objectives: We aim to calculate the cost-effectiveness and budget impact of rivaroxaban
6 7	37	compared with dalteparin in cancer patients at risk of recurrent venous thromboembolism (VTE).
8	38	Setting: The analyses were performed for the Dutch healthcare setting. We built a Markov
9	39	model to calculate the cost-effectiveness from a societal perspective over a five-year time horizon.
10	40	Participants: A hypothetical cohort of 1,000 cancer patients with VTE entered the model with
11 12	41	baseline characteristics based on the SELECT-D trial.
12	42	Intervention: Six months treatment with rivaroxaban (15 mg twice daily for first three weeks
14	43	followed by 20 mg once daily) was compared with six months treatment with dalteparin (200 IU/kg
15	44	daily during month one followed by 150 IU/kg daily).
16 17	45	Primary and secondary outcome measures: The primary outcome of the cost-effectiveness
18	46	analysis was the incremental cost-effectiveness ratio (ICER). The robustness of the model was
19	47	evaluated in probabilistic and univariate sensitivity analyses. A budget impact analysis was performed
20	48	to calculate the total annual financial consequences for the society.
21 22	49	Results: In the base case and all scenarios, rivaroxaban were cost-saving while also slightly
22	50	improving the patient's health, resulting in economically dominant ICERs. In the probabilistic sensitivity
24	51	analysis, 77.8% and 98.7% of the simulations showed rivaroxaban to be cost-saving and more effective
25	52	for a five year and six-month time horizon, respectively. Rivaroxaban can save up to €11,326,763
26 27	53	(confidence interval: €5,164,254–€17,363,231) in approximately 8,000 cancer patients with VTE per
28	54	year compared with dalteparin based on a one-year time horizon.
29	55	Conclusions: Treatment with rivaroxaban is economically dominant over dalteparin in cancer
30	56	patients at risk for recurrent VTE in the Netherlands. The use of rivaroxaban instead of a LMWH can
31 32	57	save up to ten million euros per year, primarily driven by the difference in drug costs.
33	58	save up to territimion euros per year, primarily anven by the uncrence in and costs.
34	59	Strengths and limitations of this study
35	60	• This analysis includes both cost-effectiveness and budget impact analyses, presenting the
36 37	61	economic impact on a patient as well as on a population level.
38	62	 Markov tunnel states were used to model the occurrence of time-dependent events.
39	63	 Various additional scenarios were used to analyse the effect of different assumptions and
40	64	clinical situations.
41 42	65	
43		• We assumed a six-month treatment duration for all patients, while in clinical practice the treatment duration may yang between patients
44	66 67	treatment duration may vary between patients.
45 46	67 68	 Due to lack of data, the productivity losses were not taken into account.
47		Funding statements This work was supported by Davies Discuss Netherlands. The support size should
48	69 70	Funding statement: This work was supported by Bayer Pharma Netherlands. The sponsor was involved
49	70	with the start of the project, but they were not involved in the identification of data, design, conduct,
50 51	71	and reporting of the analysis. Award/grant number: not applicable.
52	72	
53	73	Competing interests: LA De Jong, M van Hulst and AWG van der Velden declare that they have no
54	74	competing interest with relation to subject. Postma MJ has received research grants from various
55 56	75	pharmaceutical companies, including but not limiting to Bayer, Pfizer, Bristol-Myers Squibb, GSK,
57	76	Roche and Novartis.
58		
59 60		
00		

Introduction

Venous thromboembolism (VTE), comprising both pulmonary embolism (PE) and deep vein thrombosis (DVT), is a major challenge in patients with cancer [1]. In addition to the characteristics of the cancer itself, cancer therapy (chemotherapy and cancer surgery) has effects on the patient's coagulation system and therefore increases the risk of VTE and bleeding [2,3]. VTE in cancer patients can cause unnecessary hospitalizations, interruption or postponement of cancer treatment, and increased mortality, leading to decreased quality of life and increased costs.

VTE is treated with anticoagulation therapy, and this is continued as prophylaxis for recurrence over a longer period because of the high risk of recurrence during the first months after the initial VTE [4]. Vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs) are indicated for the treatment and prevention of VTE in the general population [5]. DOACs, are a relatively new class of anticoagulants. Apixaban, dabigatran, edoxaban and rivaroxaban are the four DOACs that are currently registered for the prevention of recurrent VTE in Europe. DOACs have a more beneficial efficacy/safety ratio, do not require routine measurements of the INR, and show fewer food-drug and drug-drug interactions compared with VKAs [6,7].

The guidelines recommend against the use of VKAs in cancer patients because of potential drug interactions, liver dysfunction, and malnutrition, all of which lead to fluctuations of the international normalized ratio (INR) and could result in negative patient outcomes [8–11]. Moreover, trials in cancer patients with VTE have shown that LMWH is more effective in the prevention of recurrent VTE compared with VKA, without increasing bleeding risk [12–14]. Therefore, the guidelines recommend at least 6 months of therapeutic treatment with a daily subcutaneous injection of low molecular weight heparin (LMWH, e.g., dalteparin) in cancer patients [8-11]. However, recently, DOACs rivaroxaban and edoxaban were also added as treatment options for the prevention of recurrent VTE in cancer patients. This recommendation was based on the results from the SELECT-D and HOKUSAI VTE Cancer trials [15,16].

The SELECT-D is a multicenter, randomized, clinical pilot trial in the UK; it is a head-to-head comparison of rivaroxaban and dalteparin in 406 patients with active cancer who had experienced a symptomatic PE, incidental PE, or symptomatic DVT [15]. Incidental PEs are non-symptomatic PEs that are incidentally found during tumour imaging. The trial researchers found that rivaroxaban reduces the recurrence of VTE (six month cumulative VTE recurrence rate: 4% versus 11%) at the cost of an increased risk of bleeding (six month cumulative major bleeding [MB] rate: 6% versus 4%; six month cumulative clinically relevant non-major bleeding [CRNMB] rate: 13% versus 4%) compared with dalteparin. These results were comparable to those of a large retrospective study by Streiff et al. [17].

Based on the results of these studies and the fact that DOACs can be orally administered (unlike the subcutaneously injected LMWHs), a greater utilisation of DOACs for VTE in cancer patients might be expected. Since the introduction of DOACs there has been an ongoing discussion about the economic impact of these drugs. By designing an economic model based on the SELECT-D trial, we aim to evaluate the cost-effectiveness and budget impact of rivaroxaban compared with dalteparin in cancer patients at risk of recurrent VTE in the Netherlands.

Methods

The economic model comparing rivaroxaban with dalteparin was designed based on the SELECT-D trial [15], since this study presented the most comprehensive results reflecting recurrent VTE and bleeding

complications per event type (symptomatic PE, incidental PE, and DVT) or severity (MB and CRNMB).

The primary outcome of the cost-effectiveness analysis is the incremental cost-effectiveness ratio

(ICER); this is calculated by dividing the incremental costs by the incremental health effects, expressed

in quality adjusted life-years (QALYs). In accordance with Dutch costing guidelines for economic

evaluations in healthcare, the ICER was calculated from a societal perspective, which incorporates

direct as well as indirect costs both inside and outside the healthcare sector[18]. We performed

sensitivity and scenario analyses to test the robustness of the model. Additionally, we conducted a

budget impact analysis to reflect the annual financial consequences of the use of rivaroxaban in cancer

patients at risk of recurrent VTE in the Netherlands. The analysis was carried out early 2019. The

analyses were conducted based on publicly available information which is presented and referenced

in the article and Supporting Information files, and did therefore not require any patient consent forms

²¹ 135 Model outline

or approval from an ethical review board.

We developed a decision-tree-based Markov model using Microsoft Excel 2016 to calculate the ICER. Figure 1 shows a schematic representation of the model, with the disease course being represented by separate health states. A hypothetical cohort of 1,000 cancer patients with VTE entered the model with incidental PE, symptomatic PE, or DVT, represented by the 'index VTE' health state. According to the guidelines, patients with incidental PE should be treated identically to those with symptomatic PE [8,10]. Patient characteristics were based on the SELECT-D trial protocol (Table 1) [15]. The SELECT-D population is representative for the Dutch cancer population, based on age, tumour type, and gender distribution [19]. Patients move through various health states in the model during the follow-up time of five years. Five years was used because overall survival was assumed to be low after five years since the majority (58%) of the SELECT-D trial population had metastatic cancer [15]. We included the following health states in our model (see legend of Figure 1 for abbreviations): 'recurrent incidental PE', 'recurrent symptomatic PE', 'fatal recurrent VTE', 'recurrent DVT', 'ICH', 'non-ICH MB', 'fatal MB', 'CRNMB', 'death by any cause', and 'no event'. Patients were assumed to remain in these states for one cycle, after which they moved back to the 'index VTE' state or the chronic, debilitating 'post-ICH' state, in which they remained until death without being at risk for any further complications. The cycle length was one month. Markov tunnel states (one-month post-VTE, two months post-VTE, ..., 60 months post VTE) were used to implement time-dependency. These temporary states can only be visited once, which allows time-dependent future transitions, costs, and health-related quality of life dependent on how long the patient has gone without a recurrent VTE event [20]. The chronic complications post-thrombotic syndrome (PTS) and chronic thromboembolic pulmonary hypertension (CTEPH) were modelled in the background. This means that PTS or CTEPH could occur at any time in the model, regardless of the health state the patient is in. Costs and health effects of these events were taken into account. However, only the severe cases of PTS were modelled, since the costs of minor PTS are considered negligible. For these chronic complications we also used tunnel states since the risks of PTS and CTEPH were also time-dependent.

Figure 1. Model outline. All patients enter the model in the 'Index VTE' state and move to other states upon the occurrence
 of one of the following events: recurrent incidental PE, recurrent symptomatic PE, fatal recurrent VTE, recurrent DVT, ICH,

BMJ Open

non-ICH MB, fatal MB, CRNMB, or death by any cause. The triangles represent the health state a patient will enter after an
 event. The blue squares are permanent states, in which a patient will remain until death while not being at risk for other

168 events. The red squares represent a transient state: the patient will re-enter the model in the 'Index VTE' state.

169 Abbreviations: CRNMB, clinically relevant non-major bleeding; DVT, deep vein thrombosis; ICH, intracranial haemorrhage;

170 MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

171
172

173 Table 1. Patient characteristics of the hypothetical cohort of 1,000 cancer patients at risk of recurrent VTE.

Unit	Value	Reference
Age (years)	67	[15]
Proportion male	53%	[15]
BMI (kg/m ²)	25.6	[15]
Type of cancer		
Early or locally advanced cancer	39%	[15]
Metastatic cancer	58%	[15]
Haematologic malignancy	2%	[15]
Distribution of PE and DVT		
% index VTE that is symptomatic PE	20%	[15]
% index VTE that is incidental PE	53%	[15]
% index VTE that is DVT	27%	[15]

Abbreviations: BMI, body mass index; DVT, deep vein thrombosis; PE, pulmonary embolism; VTE, venous thromboembolism

177 Transition probabilities

Transition probabilities were used to calculate the number of patients in each health state per one month cycle. Table S1 summarizes all event rates presented in six-month risks. The event rates were
 translated into monthly transition probabilities with the following formula:

$P = 1 - \exp\{-rt\}$

183 Where P is the transition probability, r is the event rate, and t is the cycle length (one month) [20].

Event rates of recurrent VTE, MB, and CRNMB in the first six months of treatment were based on the SELECT-D trial [15]. If patients did not experience a recurrent event during this period, anticoagulation treatment was discontinued. Recurrent VTE rates after treatment discontinuation were based on a retrospective study in active-cancer patients experiencing a VTE [4]. Upon the occurrence of a non-fatal recurrent VTE, patients were assigned to another six months treatment, with corresponding event rates. Bleeding risks after treatment discontinuation were based on the outcomes of the cancer population of the HOKUSAI VTE Cancer trial (which followed patients after edoxaban discontinuation for an additional six months) because these data is not reported for the SELECT-D trial [16]. The HOKUSAI VTE Cancer trial was also used to determine the distribution of ICH, non-ICH, and fatal bleeding. The distributions among the different types of VTE (incidental PE, symptomatic PE, DVT, and fatal PE) and MB (ICH, non-ICH, fatal MB) were calculated based on the total number of events in both arms (rivaroxaban and dalteparin) together and assumed it to be treatment-independent, since the total number of events in the trials was low. The distributions of the types of VTE event were based on the number of recurrent VTE events observed in the SELECT-D trial in the lower extremities and pulmonary embolisms— other locations of VTE events (brachial, subclavian, jugular, renal plus inferior vena cava, or the extrahepatic vein) were excluded [15]. Mortality rates (death by any cause) were based on Dutch cancer mortality data from the Netherlands Cancer Registry [21]. In the sensitivity

BMJ Open

analysis, all transition probabilities were varied over beta distributions. For percentages of the type of
recurrent VTE and MB, a Dirichlet distribution was used in the sensitivity analysis. As recommended by
the Dutch guidelines for economic evaluation of healthcare, the distributions were based on Briggs et
al., who described the use of distributions around model input parameters (e.g., distributions limited
to positive values (costs) or even confined between 0-1 (probabilities)) [18,20].

209 Costs

All cost parameters are standardised to 2019 Euros, and summarised in Table S2. Event-related healthcare costs were based on a previous Dutch cost-effectiveness study for rivaroxaban in the general VTE population [22]. Costs of fatal recurrent VTE were assumed to be similar to those of non-fatal symptomatic PE. We assumed no event-related healthcare costs for patients with incidental PE, because these embolisms were found incidentally and did therefore not require physician visits. However, since patients with incidental PE should be treated identically to those with symptomatic PE, we did take medication costs into account. Costs for ICH and CTEPH consisted of acute care costs during the first month after diagnosis, followed by long-term care costs until the patient moved to the 'death' state. Costs of a fatal MB were assumed to be equal to those of non-fatal non-ICH MB.

- Drug costs were retrieved from the national medication costs database [23]. For rivaroxaban these costs were based on 15 mg twice daily for three weeks followed by 20 mg once daily. Drug costs of dalteparin were based on 200 IU/kg daily during month one followed by 150 IU/kg daily in months two to six [15,24]. Based on an average body mass index of 25.6 from the SELECT-D trial and an average height of 1.72 m for the Dutch population, we calculated that the average weight was between 69 and 82 kg, which corresponds with a dose of 15,000 IU daily during month one followed by 12,500 IU daily in months two to six [15,25]. Rivaroxaban users were assumed to require an annual check-up of their renal function [6]. We included one-time costs for an injection instruction by a home-caregiver. Administration costs were only accounted to patients with early or locally advanced cancer (39%), since patients with metastatic cancer or haematologic malignancies often already have home care or an informal caregiver who can administer the dalteparin injection. Similarly, informal care costs were only taken into account for this same subgroup.
- Based on a previously published report on informal care in the Netherlands, we made a distinction between intensive (26 hours per week) and non-intensive (8 hours per week) informal care [26]. This was multiplied by the average duration and tariff for informal care, obtained from the Dutch cost manual [27]. To prevent double counting, we did not include informal care costs for the chronic complications. Travel costs were taken into account for renal monitoring visits and upon the occurrence of a DVT or CRNMB. Costs related to forgone leisure activity were not taken into account since there is no data available on the impact of a VTE or bleeding on leisure losses in cancer patients. Moreover, the starting age of the population in the model was 67 years (which is the Dutch retirement age) based on the average age of the SELECT-D trial and the fact that the majority (58%) of the patients in the SELECT-D trial had metastatic cancer may indicate a low employment rate.
- Costs were discounted at an annual rate of 4% [18]. In the sensitivity analysis, the costs were varied
 with gamma distributions corresponding to the 95% confidence interval (CI) [18,20], as indicated in
 Table S2.
- 57 244 58 244

Utilities

Utility scores, used to calculate the QALYs, were derived from a sub-analysis from the CATCH study assessing the EQ-5D scores associated with VTE and recurrent VTE in cancer patients (Table S3) [28]. The CATCH study assessed the effectiveness of six months of treatment with tinzaparin versus warfarin for the treatment of acute venous thromboembolism in patients with active cancer. It was chosen because it aligns well with our population and events of interest. Utility decrements for CTEPH were based on a study assessing EQ-5D VAS scores in CTEPH patients up to 5 years after their initial diagnosis [29]. Utility decrements for ICH and long-term PTS (>6months after diagnosis) were obtained from a previous cost-effectiveness study [30]. QALYs related to fatal events, such as death to any cause, fatal PE and fatal MB, were assumed to be 0. QALYs were discounted at 1.5% per annum according to Dutch guidelines [18]. In the sensitivity analyses, utility scores were varied over their 95% CI with a beta distribution [18,20].

Sensitivity analysis

Sensitivity analyses were conducted to check the robustness of the model results to uncertainty and known variations in key input parameters. In the probabilistic sensitivity analysis, all input parameters were varied simultaneously over their 95% CI. If the 95% CI was unavailable and calculating the 95% CI based on the number of events was not possible, the 95% CI was calculated based on a 25% standard error. The ICER was calculated with 2,000 iterations and plotted in a cost-effectiveness plane. A univariate sensitivity analysis was conducted to show the influence of an individual parameter on the ICER. The 12 most influencing parameters were presented in a tornado diagram.

Scenario analysis

We conducted several scenario analyses to show the effect on the outcomes of different (clinical) situations (Table 2).

Scenario	Description	Details
Base	5-year time horizon from	-
case	societal perspective	
1	6-month time horizon from	The follow-up period of the SELECT-D trial was six months; therefore, outcomes
	societal perspective	beyond six months had to be extrapolated based on other publications.
2	Base case analysis from	In the Netherlands, guidelines advise to calculate the ICER from a societa
	healthcare payer's	perspective, while in countries such as the UK or Belgium, the healthcare
	perspective	payer's perspective is preferred. To make results comparable to other countries
		we also calculated the base case ICER from a healthcare payer's perspective, by
		excluding the indirect costs.
3	Base case analysis with	The costs of dalteparin vary with the patient's weight. For the base case
	dalteparin dose of 12,500 IU	analysis, we assumed an average weight between 69 and 82 kg. In scenarios 3
		and 4 we calculated the base case ICER with the costs of dalteparin based or
4	Base case analysis with	weight categories of 57–68 kg (12,500 IE daily during month one followed b
	dalteparin dose of 18,000 IU	10,000 IE daily in month two to six) and 83–98 kg (18,000 IE daily during montl
		one followed by 15,000 IE daily in month two to six), respectively.

59

60

2		
3		5 Scenario 1 with treatment This scenario was similar to scenario 1, except for the treatment period which
4		duration based on Streiff et was based on a study of Streiff et al., who-comparable to SELECT-D-
5		al. compared rivaroxaban to LMWH for the prevention of recurrent VTE in cancer
6		patients [15]. They found an average treatment duration of one month and
7 8		three months for LMWH and rivaroxaban, respectively.
8 9		6 Base case analysis using Due to low numbers of VTE and MB events observed in the SELECT-D trial [14]
10		drug-specific distributions and HOKUSAI VTE Cancer [16] trials, respectively, we calculated the distribution
11		for the types of VTE and MB of the types of VTE and MB in the base case analysis based on the total number
12		of events and assumed it to be equal for both drugs. In this scenario we assess the effect of this assumption on the cost-effectiveness results by using the
13		drug-specific distributions of the types of VTE and MB based on the results of
14 15		the SELECT-D and HOKUSAI VTE Cancer trials [14,19].
15 16	276	Abbreviations: IU, international units; MB, major bleeding; VTE, venous thromboembolism.
17	277	
18	278	
19	279	Budget impact
20 21	280	A budget impact analysis was conducted to estimate the total annual financial consequences of the
22	280	
23		implementation of rivaroxaban for the treatment and prevention of VTE in cancer patients within the
24	282	Dutch healthcare setting. The budget impact was calculated from a societal perspective using the costs
25 26	283	calculations from the cost-effectiveness model with a one-year time horizon. We extracted from the
26 27	284	model the costs (event-related, treatment, and indirect costs) per patient with a cut-off point of one
28	285	year for rivaroxaban and dalteparin. The difference in cost per patient was multiplied by the annual
29	286	number of cancer patients with VTE in the Netherlands. The incidence of VTE in cancer patients and
30	287	the total number of Dutch cancer patients were used to calculate the yearly number of cancer patients
31	288	with VTE. The Netherlands Cancer Registry estimated a total of 579,781 cancer patients in 2017 [31].
32 33	289	The incidence of VTE in cancer patients was 13.9 per 1,000 person-years, based on a cohort study of
34	290	linked UK databases [32]. The outcome of the budget impact analysis was presented as the total
35	291	budget impact per year, including a subdivision of the costs per type (event-related costs, treatment
36	292	costs and indirect costs) and corresponding 95% CIs derived from PSA.
37	293	
38 39	294	
40		
41	295	Results
42	296	Cost-effectiveness analysis
43	297	Table 3 represents the deterministic results of the base case and scenario analyses. In each scenario,
44 45	298	rivaroxaban was economically dominant-meaning that it simultaneously confers better clinical and
46	299	quality-of-life outcomes at less cost-over dalteparin. As such, a numerical ICER is not presented
47		
48	300	because it has no meaning. Despite the fact that every scenario shows an improvement in the patient's
49 50	301	health, the difference in QALYs was very low (incremental QALYs of 0.012 over 5 years' time horizon,
50	302	which equals 4.4 quality-adjusted life days, in the base case analysis). In the base case analysis,
52	303	rivaroxaban saved €1,376 per patient compared with dalteparin. The scenario calculating the cost-
53	304	effectiveness over a six-month time horizon resulted in cost-savings of €1,312 per patient (scenario 1).
54	305	There was increased cost-savings compared with the societal perspective when calculated from a
	306	healthcare payer's perspective (scenario 2). In scenarios 3 and 4 we assessed the effect of variations
	307	in the patient's weight (and thus dalteparin dosing) on the ICER. Compared with the base case analysis,
	308	
55 56 57 58	306	healthcare payer's perspective (scenario 2). In scenarios 3 and 4 we assessed the effect of variations

there was decreased cost-savings with a lower dalteparin dose and increased cost-savings with a higher
 dalteparin dose, both still resulting in dominant ICERs. When comparing three months of rivaroxaban

treatment to one month of dalteparin treatment, we found incremental QALYs of 0.016 and costsavings of €702 per patient (scenario 5). We assessed the effect of using drug-specific distributions of the types of VTE and MB, resulting in cost-savings of €1,815 and incremental QALYs of 0.037 (scenario 6).

The number of events and the corresponding average costs per patient in the base case analysis and scenario 4 (base case analysis with a time horizon of 6 months) are presented in Table 4. Rivaroxaban is associated with a lower number of recurrent VTE events, preventing on average €131 and €108 in costs per patient over five years and over six months, respectively. On the other hand, rivaroxaban causes more bleeding events, especially in the treatment period. ICH and non-ICH MB have the highest incremental event costs per patient. Treatment costs are higher for dalteparin compared with rivaroxaban, with incremental costs of €1,721 and €1,468 in the five-year and the six-month time horizon, respectively. The differences in indirect costs for rivaroxaban compared with dalteparin were €19 and -€2 for the five-year and the six-month time horizon, respectively.

Table 3. Deterministic results per patient of the base case and scenario analyses in a cohort of 1,000 cancer patients

	Costs	QALYs	∆ Costs	Δ QALYs	ICER	
Base case analysis - 5-year	time horizon from societal p	perspective		·	·	
Rivaroxaban	€3,139	2.459	-€1,476	0.012	Dominant	
Dalteparin	€4,615	2.448	-€1,470	0.012	Dominant	
Scenario 1 – 6-month time	horizon from societal persp	ective				
Rivaroxaban	€1,361	0.304	-€1,312	0.004	Dominant	
Dalteparin	€2,673	0.300	-€1,512	0.004	Dominant	
Scenario 2 – base case ana	lysis from healthcare payer's	s perspective	· ·			
Rivaroxaban	€2,942	2.459	£1.406	0.012	Dominant	
Dalteparin	€4,438	2.448	-€1,496	0.012	Dominant	
Scenario 3 – base case ana	lysis with dalteparin dose of	12,500 IU		ł		
Rivaroxaban	€3,139	2.459	61.070	0.012	Dominant	
Dalteparin	€4,218	2.448	-€1,079	0.012		
Scenario 4 – base case ana	lysis with dalteparin dose of	18,000 IU				
Rivaroxaban	€3,139	2.459	61 909	0.012	Dominant	
Dalteparin	€5,037	2.448	-€1,898	0.012	Dominant	
Scenario 5 – scenario 1 wit	h treatment duration based	on Streiff et al.				
Rivaroxaban	€1,299	0.289	€702	0.016	Dominant	
Dalteparin	€2,001	0.273	-€/02	0.016	Dominant	
Scenario 6 – base case ana	lysis using drug-specific distr	ributions for the	e types of VTE and	d MB		
Rivaroxaban	€3,065	2.463	£1.91F	0.037	Dominant	
Dalteparin	€4,880	2.425	-€1,815	0.037		

Abbreviations: ICER, incremental cost-effectiveness ratio; IU, international units; MB, major bleeding; QALY, quality adjusted life-years; VTE, venous thromboembolism.

Table 4. Number of events and costs per event per patient in a cohort of 1,000 cancer patients (2019, Euros).

	Base cas	e (5-year time	e horizon)			
	Rivaroxaban		Dalteparin		Incremental	
	Number of	Costs per	Number of	Costs per	Number of	Costs per
	events	patient	events	patient	events	patient
Event costs						
Recurrent VTE	191	€311.85	275	€442.92	-84	-€131
Non-fatal symptomatic recurrent PE	33	€168.36	48	€239.13	-15	-€71

	1	1	1			
Non-fatal incidental	58	_	84	-	-26	
recurrent PE						
Non-fatal recurrent DVT	83	€59.31	120	€84.23	-37	-€2
Fatal recurrent VTE	17	€84.18	24	€119.56	-7	-€3
ICH	11	€550.70	9	€438.40	2	€112
Non-ICH MB	98	€1,106.87	79	€902.47	19	€204
Fatal MB	5	€51.48	4	€41.98	1	€10
CRNMB	197	€56.28	92	€26.93	105	€2
PTS	61	€92.72	61	€92.37	0	€
СТЕРН	20	€223.79	20	€222.83	0	€
Total event costs		€2,705.54		€2,610.83		€9
Treatment costs		€548.83		€2,270.33		-€1,72
Indirect costs		€196.31		€177.08		€1
	Scenario 1	1 (6-month tin	ne horizon)			
	1	oxaban		parin	Incren	nental
	Number of	Costs per	Number of	Costs per	Number of	Costs per
	events	patient	events	patient	events	patient
Event costs						
Recurrent VTE	38	€58.95	109	€166.96	-70	-€10
Non-fatal symptomatic recurrent PE	7	€31.82	19	€90.14	-12	-€5
Non-fatal incidental recurrent PE	12	-	33	-	-21	
Non-fatal recurrent DVT	17	€11.21	47	€31.75	-31	-€2
Fatal recurrent VTE	3	€15.91	9	€45.07	-6	-€2
ICH	6	€142.82	4	€94.25	2	€4
Non-ICH MB	50	€539.38	33	€355.95	17	€18
Fatal MB	2	€25.09	2	€16.56	1	€
CRNMB	130	€35.99	38	€10.62	91	€2
PTS	14	€20.59	14	€20.56	0	€
СТЕРН	3	€21.96	3	€21.93	0	€
Total event costs	1	€903.72		€2,639.25		-€1,73
Treatment costs	1	€479.40		€1,947.45		-€1,46
Indirect costs	1	€36.50		€38.39		-€
	1					<u> </u>

Abbreviations: CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension;
 DVT, deep vein thrombosis; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; PTS, post
 thrombotic syndrome; VTE, venous thromboembolism

In the probabilistic sensitivity analysis, we assessed the robustness of the model over a five-year time horizon (base case) and a six-month time horizon (scenario 1). The results are presented in costeffectiveness planes in Figure 2 and Figure S1. In the base case analysis, rivaroxaban was in the majority (77.8%) of the 2,000 iterations cost-saving and more effective compared with dalteparin. In 22.2% of the iterations rivaroxaban is considered cost-saving but less effective compared with dalteparin. In scenario 1, rivaroxaban was in almost all (98.7%) the iterations cost-saving and more effective compared with dalteparin.

The influence of the individual input parameters on the base case incremental costs and QALYs are analysed in the univariate sensitivity analysis. The tornado diagrams (Figure 3 and Figure 4) present the 12 input parameters with the highest impact in the base case analysis. The risk of MB for both rivaroxaban and dalteparin, treatment duration of dalteparin, and recurrent VTE risks during the first six months after a VTE had the highest influence on the incremental costs. Similarly, the risk of MB and recurrent VTE in the first six months for rivaroxaban and dalteparin showed the highest influence on the incremental QALYs. Similar results were found in the univariate sensitivity analysis of scenario 1 (Figure S2 and Figure S3).

Figure 2. Probabilistic sensitivity analysis of the base case with five-year time horizon (base case analysis). The red mark represents the deterministic incremental cost-effectiveness ratio. Abbreviation: QALY, quality adjusted life-year

Figure 3. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental costs. *Abbreviations: ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism*

Figure 4. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental QALYs. *Abbreviations: CRNMB, clinically relevant non-major bleeding; ICH, intracranial haemorrhage; MB, major bleeding; VTE, venous thromboembolism*

71 Budget impact

The results of the budget impact analysis are presented in Table 5. The replacement of LMWHs (including dalteparin) with rivaroxaban can lead to cost-savings of a maximum of \pounds 11,326,763 (\pounds 5,164,254– \pounds 17,363,231) over approximately 8,000 cancer patients with VTE based on a one-year time horizon. A reduction in treatment costs can lead to savings of up to \pounds 12.6 million. Event-related costs and indirect costs slightly increase by \pounds 1,234,467 (\pounds -2,103,366– \pounds 5,231,955) and \pounds 2,101 (\pounds -173,830– \pounds 184,677), respectively, when LMWHs are replaced by rivaroxaban.

Budget impact	€-11,326,763 (€-17,363,231—€-5,164,254)				
Indirect costs	€-2,101 (€-173,830—€184,677)				
Treatment costs	€-12,559,130 (€-17,327,405—€-8,149,498)				
Event-related costs	€1,234,467 (€-2,103,366—€5,231,955)				
Table 5. Budget impact over one-year time horizon in the Netherlands.					

33 Discussion

Thrombosis treatment is a challenge in cancer patients. According to the guidelines, LMWHs and DOACs edoxaban and rivaroxaban are the preferred treatment for the prevention of recurrent VTE in cancer patients [8–11]. We have assessed the cost-effectiveness and budget impact of rivaroxaban in cancer patients at risk of recurrent VTE based on the SELECT-D trial [15]. We conclude that, in the Netherlands, rivaroxaban is a cost-saving treatment option with a small health benefit per patient over five years compared with dalteparin. In sensitivity analyses our model appeared to be robust.

The cost-savings were mainly driven by the difference in treatment costs. It should be noted that this is specifically the case for the Netherlands, and may differ in other countries. On the other hand, both the cost-effectiveness and budget impact analyses showed that the event-related costs and indirect costs increase with the use of rivaroxaban compared with dalteparin. A total of 84 VTE-related events were prevented over five years, leading to an average cost-saving of €131 per patient. This is line with findings from a recent study that assessed the VTE-related healthcare costs in cancer patients,

BMJ Open

which found that rivaroxaban treated patients had a significantly lower total VTE-related costs relative
to patients treated with LMWH [33]. Although the cost difference between the rivaroxaban and LWMH
cohorts was even greater with \$12,004 per patient per year.

On the other hand, MB events were more frequent with rivaroxaban compared with dalteparin (11 ICH and 98 non-ICH versus 9 ICH and 79 non-ICH, respectively). MB events are very burdensome and frequently severely disabling, leading to high acute and long-term direct and indirect costs. This explains why the indirect costs were higher for rivaroxaban than for dalteparin in the base case scenario. Moreover, there was no data available on leisure activity losses caused by the occurrence of a VTE event in patients who are already burdened with cancer. Therefore, the indirect costs might have been underestimated, possibly leading to lower cost-saving results. The indirect costs account for €196 to €177 per patient over five years—approximately 4-6% of the total cost—however, they do not have a major influence on the differences between the two drugs (€19 and -€2 for the five-year and 6-month time horizon, respectively). This suggests that, although the indirect costs might have been underestimated, rivaroxaban is still likely to be cost-saving compared with dalteparin.

As mentioned, the main driver of the cost-savings is the difference in treatment costs. In the cost-effectiveness analysis, we estimated that more than €1,700 per patient over a five-year period can be saved on treatment costs, compared with dalteparin. Moreover, in the scenario analysis we varied the price of dalteparin based on weight. Although the lowest dose (12,500 IU daily during month one followed by 10,000 IU in months two to six based on weight class 57-68 kg) had a lower price, €8.06 versus €9.93, the ICER remained cost-saving. Rivaroxaban users were assumed to require an annual check-up of their renal function. However, cancer patients (especially those with metastatic cancer) are at higher risk for renal impairment and may be tested much more frequently [34]. This may have caused an overestimation of the costs of rivaroxaban, and therefore underestimated the total cost-savings of rivaroxaban compared with dalteparin.

In the budget impact analysis, we calculated that rivaroxaban replacing LMWH (including dalteparin) leads to cost-savings of a maximum of €11,326,763 within one year over a total of 8,000 cancer patients. This is the absolute maximum, since it is not possible to treat each patient with rivaroxaban from a clinical perspective. In practice, the market share of rivaroxaban will be lower-despite the fact that there are three other DOACs that could be prescribed—because there are some clinical considerations that should be taken into account. Firstly, although DOACs have far fewer drug interactions than VKAs, it should be noted that rivaroxaban is metabolized by CYP3A4 enzymes [1]. Cancer patients, especially those with haematological cancer, are at high risk for opportunistic and fungal infections, for which they are often treated with CYP3A4 inhibitors or inducers [35]. For this reason, prescription of rivaroxaban for the prevention of recurrent VTE in cancer patients must be done carefully [1]. This interaction does not play a role in LWMH treatment.

Secondly, the balance between the risk of thrombosis and the risk of bleeding should always be a consideration in the prescription of anticoagulants. For example, DOACs are not advised in patients with GI tumours, due to a higher risk of GI bleeding [8–11]. Some prediction scores for primary prevention have been developed to predict thrombosis risk in cancer patients, since thrombosis prophylaxis is most effective in patients with an increased VTE risk. Unfortunately, for cancer these scores have still not been shown to reliably identify patients with the highest risk [36]. Predictive scores for bleeding, such as the HAS-BLED score used for atrial fibrillation patients, are also needed.

57438A third consideration is the oral administration of rivaroxaban. Although it is less burdensome58439than the LMWH injections, oral administration can be problematic in patients with anorexia and60440vomiting, which is often seen as a side effect in cancer therapy [15]. Moreover, low food intake might

BMJ Open

441 influence the metabolism of rivaroxaban resulting in lower bioavailability [37]. Lastly, adherence is
442 always a point of discussion, but since adherence to current guidelines is often low [36], we feel that
443 adherence might even increase due to the more patient-friendly administration.

Our analysis is not without limitations. It should also be noted that 58% of the patients included in the SELECT-D trial were having metastatic cancer, and thus results and conclusions pertain mostly to severely ill patients. Also, the majority (53%) of the initial VTE events were incidental PE, related to computed tomography imaging for tumour status [15]. Additionally, as with all cost-effectiveness models some assumptions need to be made due to lack of data.

We assumed that patients were treated with anticoagulation over six months, which is in line with the guidelines [8–11]. Previous studies have shown that adherence to these guidelines is poor [36]. As seen in the study by Streiff et al, in practice, treatment with LMWH is often not six months, presumably due to the fact that LMWH injections are burdensome, there are concerns about the bleeding risk, and the complexity of the treatment of cancer patients [36]. However, this recommended treatment period was also not achieved in many patients treated with rivaroxaban, which resulted in an average duration of three months. We conducted a scenario analysis (scenario 5) to assess this difference in treatment duration (one month of LMWH versus three months of rivaroxaban). These results favoured rivaroxaban, because the incremental QALYs increased while still being cost-saving. On the other hand, there are also some clinical situations in which the treatment period might be longer than six months: for example, in patients with a recurrent VTE event, patients with an active malignancy, or patients receiving cancer treatment for their malignancy beyond six months. Moreover, in the Netherlands anticoagulation is often continued after six months of initial treatment in case the cancer is still active. Unfortunately, we were unable to assess the effect of continued anticoagulation treatment due to lack of data. However, since rivaroxaban is associated with cost-saving results during the first six months, it is to be expected that during a longer treatment period the cost-savings and health gains will accrue even more compared with dalteparin.

In the univariate sensitivity analysis, we have shown that the risk of MB and VTE for both rivaroxaban and dalteparin have a high influence on the incremental costs and QALYs. In the SELECT-D trial [15], the incidence of symptomatic and fatal PE events was relatively higher in patients treated with rivaroxaban. However, due to low numbers of VTE observed in the SELECT-D trial [15], we calculated the distribution of the type of VTE based on the total number of events and assumed it to be equal for both drugs. This may have led to an overestimation of the effect of rivaroxaban compared with dalteparin, since symptomatic and fatal PE events have a higher impact on the costs and the patient's health compared to DVT and incidental PE. On the other hand, we used this same approach to calculate the distributions of the types of MB from the HOKUSAI VTE Cancer trial [16], in which the patients treated with dalteparin had relatively more severe MB events compared with the NOAC edoxaban (ICH: 17.6% versus 6.1%, respectively). This results in an underestimation of the number of MBs in dalteparin-treated patients. We assessed the effect of using drug-specific distributions of the type of VTE and MB in scenario six, showing an increase in incremental cost-savings and QALYs compared to the base case analysis. Therefore, we conclude that our approach of using equal distributions of the types of VTE and MB for rivaroxaban and dalteparin is conservative.

This study focuses on the secondary prevention of VTE, based on the results of the SELECT-D and, partially, the HOKUSAI VTE Cancer trials. However, recently, apixaban was also assessed in cancer patients at risk of recurrent VTE and found to be non-inferior compared to dalteparin [38,39]. Moreover, the AVERT and CASSINI trials have shown that apixaban and rivaroxaban are also effective as a primary prophylaxis of VTE in cancer patients compared with a placebo [40–42]. Based on these

two studies, clinicians may consider DOAC prophylaxis in some of their cancer patients [42]. Therefore,
future research is needed to assess if DOACs are also cost-effective for the primary prevention of VTE.

490 Conclusion

Treatment with rivaroxaban is dominant (cost-saving while slightly improving the patient's health) over dalteparin in cancer patients at risk for recurrent VTE in the Netherlands. The use of rivaroxaban instead of LMWH can save more than eleven million euros per year, which is primarily driven by the difference in treatment costs. Since treatment with rivaroxaban is economically dominant compared with dalteparin and its oral administration is more convenient than daily subcutaneous injection, we feel that certain cancer patients can benefit from DOAC treatment.

499 References

1. Gerotziafas GT, Mahé I, Elalamy I. Therapeutics and Clinical Risk Management Dovepress New orally active anticoagulant agents for the prevention and treatment of venous thromboembolism in cancer patients. Ther Clin Risk Manag. 2014;10:423–36. 2. Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: Biological and clinical aspects. J Thromb Haemost. 2013;11(2):223–33. 3. Lechner D, Weltermann A. Chemotherapy-induced thrombosis: a role for microparticles and tissue factor? Semin Thromb Hemost. 2008;34(2):199-203. 4. Cohen AT, Katholing A, Rietbrock S, Bamber L, Martinez C. Epidemiology of first and recurrent venous thromboembolism in patients with active cancer. Thromb Haemost. 2017;117(01):57-65. 5. Minister of Health W and S. Letter to the parlement - reimbursement rivaroxaban VTE (Herbeoordeling uitbreiding nadere voorwaarden rivaroxaban (Xarelto®) bij VTE. 2015; 6. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018; 7. Mandala M, Falanga A, Roila F, ESMO Guidelines Working Group. Management of venous thromboembolism (VTE) in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2011;22(Supplement 6):vi85-92. Key NS, Khorana AA, Kuderer NM, Bohlke K, Lee AYY, Arcelus JI, et al. Venous 8. thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2020;38(5):496-520. 9. Farge D, Frere C, Connors JM, Ay C, Khorana AA, Munoz A, et al. 2019 International Clinical Practice Guidelines for the Treatment and Prophylaxis of Venous Thromboembolism in Patients With Cancer. Lancet Oncol. 2019;20(10):e566-81. 10. Konstantinides S V., Meyer G, Bueno H, Galié N, Gibbs JSR, Ageno W, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur Heart J. 2020;41(4):543–603. Streiff MB, Holmstrom B, Angelini D, Ashrani A, Bockenstedt PL, Chesney C, et al. NCCN 11. Guidelines[®] insights cancer-associated venous thromboembolic disease, version 2.2018 featured updates to the NCCN guidelines. JNCCN J Natl Compr Cancer Netw. 2018;16(11):1289-303. 12. Hull RD, Pineo GF, Brant RF, Mah AF, Burke N, Dear R, et al. Long-term low-molecular-weight heparin versus usual care in proximal-vein thrombosis patients with cancer. Am J Med. 2006

2			
3	533		Dec;119(12):1062–72.
4	534	13.	Lee AYY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Low-Molecular-Weight
5 6	535		Heparin versus a Coumarin for the Prevention of Recurrent Venous Thromboembolism in
7	536		Patients with Cancer. N Engl J Med. 2003;349(2):146–53.
8	537	14.	Meyer G, Marjanovic Z, Valcke J, Lorcerie B, Gruel Y, Solal-Celigny P, et al. Comparison of low-
9	538		molecular-weight heparin and warfarin for the secondary prevention of venous
10	539		thromboembolism in patients with cancer: a randomized controlled study. Arch Intern Med.
11	540		162(15):1729–35.
12	541	15.	Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an Oral
13 14	542		Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous
15	543		Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017–
16	544		23.
17	545	16.	Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the
18	546		Treatment of Cancer-Associated Venous Thromboembolism. N Engl J Med. 2018;378(7):615–
19	547		24.
20	548	17.	Streiff MB, Milentijevic D, McCrae K, Yannicelli D, Fortier J, Nelson WW, et al. Effectiveness
21	549		and safety of anticoagulants for the treatment of venous thromboembolism in patients with
22 23	550		cancer. Am J Hematol. 2018;93(5):664–71.
24	551	18.	Dutch Institute National Health Care (Zorginstituut Nederland). Richtlijn voor het uitvoeren
25	552		van economische evaluaties in de gezondheidzorg (Protocol for the execution of economic
26	553		evaluation in healthcare). 29-02-2016. 2016;(november):120.
27	554	19.	National Institute of Public Health and the Environment (RIVM). Cancer numbers and context:
28	555		current situation [Internet]. volksgezondheidenzorg.info. 2017. p. 1.
29	556	20.	Briggs A, Claxton K, Sculpher M. Decision modelling for Health Economic Evaluation. 3rd ed.
30 21	557		New York: Oxford University Press; 2011. 57–58 p.
31 32	558	21.	The Netherlands Cancer Registry. Survival statistics - all tumours 1961-2015 [Internet].
33	559	22.	Heisen M, Treur MJ, Heemstra HE, Giesen EBW, Postma MJ. Cost-effectiveness analysis of
34	560		rivaroxaban for treatment and secondary prevention of venous thromboembolism in the
35	561	22	Netherlands. J Med Econ. 2017 Aug 3;20(8):813–24.
36	562	23.	Medicijnkosten.nl. The National Health Care Institute (ZIN) [Internet].
37	563	24.	Summary of Product Characteristics Fragmin. 2015;
38	564	25.	Dutch Statistics. Length and weight of Dutch population [Internet]. 2017.
39 40	565	26.	de Klerk M, de Boer A, Plaisier I, Schyns P, Kooiker S. Informele hulp: wie doet er wat? -
40	566	27	Rapport - SCP [Internet]. 2015-35. 2015.
42	567	27.	Hakkaart-van Roijen L, van der Linden N, Bouwmans C, Kanters T, Swan Tan S.
43	568		Kostenhandleiding: Methodologie van kostenonderzoek en referentieprijzen voor
44	569	20	economische evaluaties in de gezondheidszorg. Zorginstituut Ned. 2016;1–120.
45	570	28.	Lloyd AJ, Dewilde S, Noble S, Reimer E, Lee AYY. What Impact Does Venous Thromboembolism and Bleeding Have on Cancer Patients' Quality of Life? Value Heal.
46	571 572		
47	572 573	29.	2018;21(4):449–55. Roman A. Barbara IA. Castilla MI. Muñaz B. Escribana B. Health related quality of life in a
48 49	573 574	29.	Roman A, Barbera JA, Castillo MJ, Muñoz R, Escribano P. Health-related quality of life in a national cohort of patients with pulmonary arterial hypertension or chronic thromboembolic
50	574 575		pulmonary hypertension. Arch Bronconeumol. 2013;49(5):181–8.
51	575	30.	Stevanović J, de Jong LA, Kappelhoff BS, Dvortsin EP, Voorhaar M, Postma MJ. Dabigatran for
52	570	30.	the Treatment and Secondary Prevention of Venous Thromboembolism; A Cost-Effectiveness
53	578		Analysis for the Netherlands. PLoS One. 2016;11(10):e0163550.
54	579	31.	The Netherlands Cancer Registry. Prevalence statistics - all tumours [Internet].
55	579	31. 32.	Walker AJ, Card TR, West J, Crooks C, Grainge MJ. Incidence of venous thromboembolism in
56 57	580 581	52.	patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer.
57 58	582		2013 Apr;49(6):1404–13.
59	583	33.	Streiff M, Milentijevic D, McCrae KR, Laliberté F, Lejeune D, Lefebvre P, et al. Healthcare
60	584	55.	resource utilization and costs associated with venous thromboembolism in cancer patients

1			
2 3	EOE		treated with anticeasculants I Med Econ 2010;22(11):1124 40
4	585 586	24	treated with anticoagulants. J Med Econ. 2019;22(11):1134–40. Aapro M, Launay-Vacher V. Importance of monitoring renal function in patients with cancer.
5	580 587	34.	Cancer Treat Rev. 2012;38(3):235–40.
6	588	35.	Vedham V, Divi RL, Starks VL, Verma M. Multiple Infections and Cancer: Implications in
7	589	55.	Epidemiology. Technol Cancer Res Treat. 2014;13(2):177–94.
8 9	590	36.	Mahé I, Chidiac J, Helfer H, Noble S. Factors influencing adherence to clinical guidelines in the
9 10	591	50.	management of cancer-associated thrombosis. J Thromb Haemost. 2016;14(11):2107–13.
11	592	37.	Committee for Medicinal Products for Human Use (CHMP). Summary of product
12	593		characteristics - rivaroxaban 20 mg [Internet].
13	594	38.	Agnelli G, Becattini C, Meyer G, Muñoz A, Huisman M V., Connors JM, et al. Apixaban for the
14	595		treatment of venous thromboembolism associated with cancer. N Engl J Med.
15 16	596		2020;382(17):1599–607.
10	597	39.	McBane RD, Wysokinski WE, Le-Rademacher JG, Zemla T, Ashrani A, Tafur A, et al. Apixaban
18	598		and dalteparin in active malignancy-associated venous thromboembolism: The ADAM VTE
19	599		trial. J Thromb Haemost. 2020;18(2):411–21.
20	600	40.	Khorana AA, Soff GA, Kakkar AK, Vadhan-Raj S, Riess H, Wun T, et al. Rivaroxaban for
21	601		Thromboprophylaxis in High-Risk Ambulatory Patients with Cancer. N Engl J Med. 2019
22	602		Feb;380(8):720–8.
23 24	603	41.	Carrier M, Abou-Nassar K, Mallick R, Tagalakis V, Shivakumar S, Schattner A, et al. Apixaban to
25	604		Prevent Venous Thromboembolism in Patients with Cancer. N Engl J Med. 2019;380(8):711–9.
26	605	42.	Agnelli G. Direct Oral Anticoagulants for Thromboprophylaxis in Ambulatory Patients with
27	606		Cancer. N Engl J Med. 2019;380(8):781–3.
28	607		
29	608	_	
30 31	609		or contributions
32	610	Lisa A	A. de Jong built the economic model, performed the analyses, and contributed to the design of
33	611	the w	ork, interpretation of the results, writing of the manuscript.
34	612	Anne	tte W.G. van der Velden contributed to the interpretation of the results, writing of the
35	613	manu	script, and critical revision for important intellectual content.
36 37	614	Marir	nus van Hulst contributed to the design of the work, interpretation of the results, writing of the
38	615		script, and critical revision for important intellectual content.
39	616		ten J. Postma contributed to the design of the work, interpretation of the results, writing of the
40	617		iscript, and critical revision for important intellectual content.
41			
42	618	All au	thors approved of the version to be published.
43 44	619		
45	620		klist for the appropriate reporting statement: This manuscript was written in accordance with
46	621	the C	HEERS checklist for reporting economic evaluations of health interventions.
47	622		
48	623	Data	sharing statement: All relevant data are included in the manuscript. The analyses were
49 50	624	condu	ucted based on publicly available information which is presented and referenced in the
50 51	625		iscript.
52	626		
53	627	More	l count: 4,508 (excluding table and figure descriptions and references)
54		VV 010	
55	628	.	and a second
56 57	629		nt consent and ethical approval: The analyses were conducted based on publicly available
57 58	630		nation which is presented and referenced in the article and Supporting Information files, and did
59	631	there	fore not require any patient consent forms or approval from an ethical review board.
60	632		

2		
3	633	Patient and public involvement statement: It was not appropriate to involve patients or the public in
4	634	the design, or conduct, or reporting, or dissemination plans of our research, because this health
6	635	economic analysis was based on publicly available data and solely concentrated on the analysis of the
7	636	economics consequence of treating cancer patients with rivaroxaban instead of the current standard
8	637	of care.
9 10		
11		
12		
13		

to occurrence of the terms of the occurrence of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

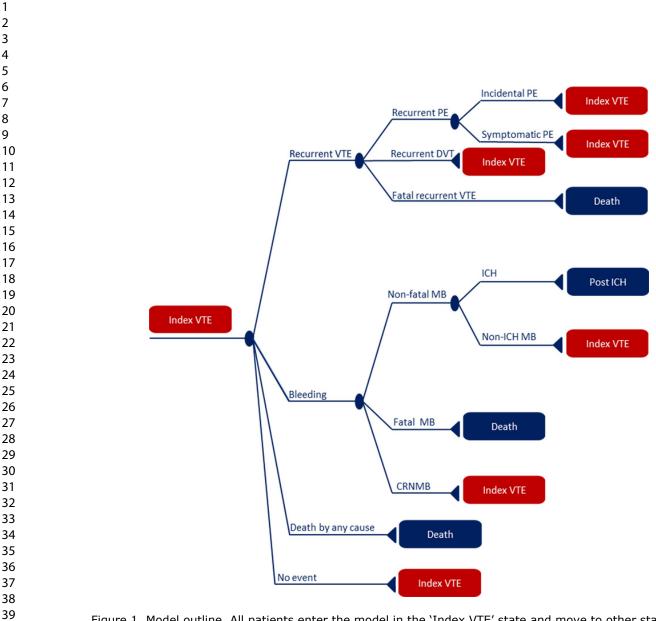
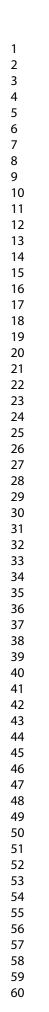



Figure 1. Model outline. All patients enter the model in the 'Index VTE' state and move to other states upon the occurrence of one of the following events: recurrent incidental PE, recurrent symptomatic PE, fatal recurrent VTE, recurrent DVT, ICH, non-ICH MB, fatal MB, CRNMB, or death by any cause. The triangles represent the health state a patient will enter after an event. The blue squares are permanent states, in which a patient will remain until death while not being at risk for other events. The red squares represent a transient state: the patient will re-enter the model in the 'Index VTE' state.
Abbreviations: CRNMB, clinically relevant non-major bleeding; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

74x75mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

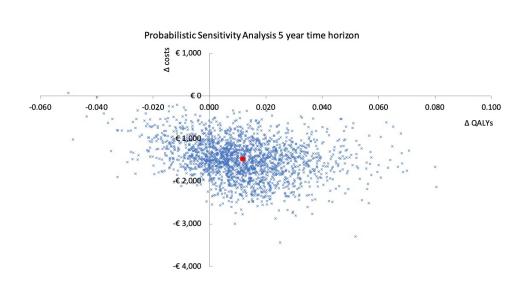


Figure 2. Probabilistic sensitivity analysis of the base case with five-year time horizon (base case analysis). The red mark represents the deterministic incremental cost-effectiveness ratio. Abbreviation: QALY, quality adjusted life-year

206x112mm (144 x 144 DPI)

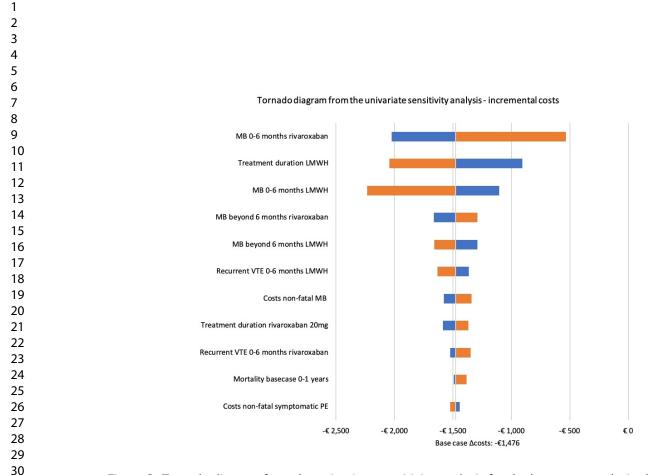


Figure 3. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental costs. Abbreviations: ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

194x143mm (144 x 144 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

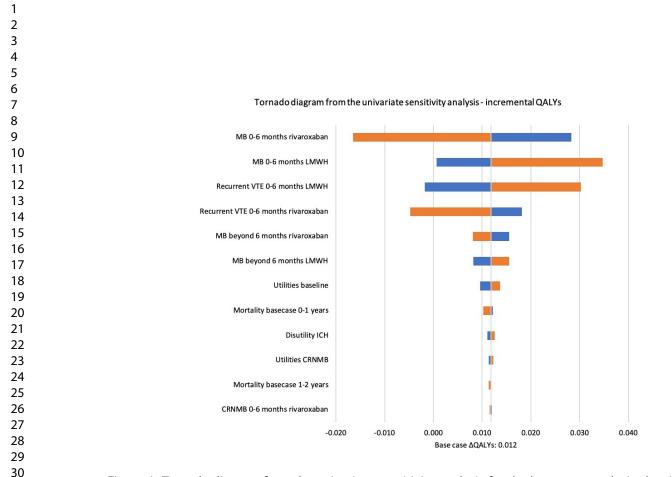


Figure 4. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental QALYs. Abbreviations: CRNMB, clinically relevant non-major bleeding; ICH, intracranial haemorrhage; MB, major bleeding; VTE, venous thromboembolism

194x143mm (144 x 144 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary data file – Table S1

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Table S1. Transition probabilities used in the cost-effectiveness model

	Rivaroxaban (95% CI)	LMWH (95% CI)	Distribution	Reference
Recurrent VTE				
0–6 months	0.040 (0.020 - 0.090)	0.110 (0.070 - 0.160)	Beta	[1]
6–12 months	0.040 (0.0)31 – 0.050)	Beta	[2]
1–2 years	0.034 (0.027 – 0.042)		Beta	[2]
2–3 years	0.021 (0.0)14 – 0.029)	Beta	[2]
3–4 years	0.016 (0.0	009 – 0.026)	Beta	[2]
4–5 months	0.013 (0.0	006 – 0.024)	Beta	[2]
Type of recurrent VTE			•	
Symptomatic PE	17.4% (α	= 4, β = 19)	Dirichlet	[1]
Incidental PE	30.4% (α	= 7, β = 16)	Dirichlet	[1]
DVT	43.5% (α	= 10, β = 13)	Dirichlet	[1]
Fatal PE	8.7% (α	= 2, β = 21)	Dirichlet	[1]
МВ				
0–6 months	0.060 (0.030 - 0.110)	0.040 (0.020 - 0.080)	Beta	[1]
Beyond 6 months			Beta	[3]
treatment	0.008 (0.0	006 – 0.010)		
Type of MB				
ICH	10% (α =	= 5, β = 45)	Dirichlet	[3]
Non-ICH MB	86% (α =	= 43, β = 7)	Dirichlet	[3]
Fatal MB	4% (α =	2, $\beta = 48$)	Dirichlet	[3]
CRNMB				
0–6 months	0.130 (0.090 - 0.190)	0.040 (0.020 - 0.090)	Beta	[1]
Beyond 6 months			Beta	[3]
treatment	0.008 (0.006 – 0.010)			
PTS			1	
0–6 months	0.015 (0.0)11 – 0.019)	Beta	[4]
6–12 months	0.012 (0.0	009 – 0.015)	Beta	[4]
12–18 months	0.008 (0.0	006 – 0.010)	Beta	[4]
18–24 months	0.025 (0.0)23 – 0.019)	Beta	[4]
24–30 months	0.011 (0.0	008 - 0.014)	Beta	[4]
30–36 months	0.006 (0.0	005 – 0.008)	Beta	[4]
3–4 years	0.001 (0.00	008 - 0.0013)	Beta	[4]
4–5 years		008 - 0.0013)	Beta	[4]
CTEPH (annual risk)		0002 - 0.012)	Beta	[5]
Mortality (annual risk)				
0–1 years	0.230 (0.2	200 – 0.390)	Beta	[6]
1–2 years		088 – 0.180)	Beta	[6]
2–3 years)55 – 0.120)	Beta	[6]
3–4 years	,	043 - 0.068)	Beta	[6]
4–5 years)30 – 0.073)	Beta	[6]
Relative risk of recurrent VTE, N	· ·			1-1
Recurrent VTE (any)		.170	Fixed	[7]
MB		.242	Fixed	[7]
CRNMB		.000	Fixed	[7]

Drug-specific distribution of the type of VTE, used in scenario 6						
Symptomatic PE	28.6% (α = 2, β = 5)	12.5% (α = 2, β = 14)	Dirichlet	[1]		
Incidental PE	14.3% (α = 1, β = 6)	37.5% (α = 6, β = 10)	Dirichlet	[1]		
DVT	42.9% (α = 3, β = 4)	43.8% (α = 7, β = 9)	Dirichlet	[1]		
Fatal PE	14.3% (α = 1, β = 6)	6.3% (α = 1, β = 15)	Dirichlet	[1]		
Drug-specific distribution of the type of MB, used in scenario 6						
ICH	6.1% (α = 2, β = 31)	17.6% (α = 3, β = 14)	Dirichlet	[3]		
Non-ICH MB	93.9% (α = 31, β = 2)	70.6% (α = 12, β = 5)	Dirichlet	[3]		
Fatal MB	0% (α = 0, β = 33)	11.8% (α = 2, β = 15)	Dirichlet	[3]		

Abbreviations: CI, confidence interval; CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; LMWH, low-molecular weight heparin; MB, major bleeding; PE, pulmonary embolism; PTS, post-thrombotic syndrome; SE, standard error; VTE, venous thromboembolism

References

- Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017– 23.
- Cohen AT, Katholing A, Rietbrock S, Bamber L, Martinez C. Epidemiology of first and recurrent venous thromboembolism in patients with active cancer. Thromb Haemost. 2017;117(01):57–65.
- Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N Engl J Med. 2018;378(7):615– 24.
- 4. Prandoni P, Villalta S, Bagatella P, Rossi L, Marchiori A, Piccioli A, et al. The clinical course of deep-vein thrombosis. Prospective long-term follow-up of 528 symptomatic patients. Haematologica. 1997;82(4):423–8.
- 5. Klok FA, van Kralingen KW, van Dijk APJ, Heyning FH, Vliegen HW, Huisman M V. Prospective cardiopulmonary screening program to detect chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Haematologica. 2010;95(6):970–5.
- 6. The Netherlands Cancer Registry. Survival statistics all tumours 1961-2015 [Internet].
- 7. Napolitano M, Saccullo G, Malato A, Sprini D, Ageno W, Imberti D, et al. Optimal duration of low molecular weight heparin for the treatment of cancer-related deep vein thrombosis: the Cancer-DACUS Study. J Clin Oncol. 2014;32(32):3607–12.

Supplementary data file – Table S2

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Table S2. Costs included in the cost-effectiveness model (Euros, 2019)

	Value (95% CI)	Distribution	Reference
Event costs		•	
Recurrent VTE			
Symptomatic PE	€4,717 (€2,364 – €7,868)	Gamma	[1]
Incidental PE	€0	Fixed	Assumption
DVT	€663 (€464 – €862)	Gamma	[1]
Fatal recurrent VTE a	€4,717 (€2,364 – €7,868)	Gamma	[1]
ICH acute care costs	€22,769 (€11,644 – €31,175)	Gamma	[2]
ICH long-term costs (monthly)	€637 (€319 - €1,063)	Gamma	[1]
Non-ICH MB	€10,685 (€5,356 - €17,824)	Gamma	[1]
Fatal MB	€10,685 (€5,356 - €17,824)	Gamma	[1]
CRNMB	€274 (€137 – €457)	Gamma	[1]
PTS	€1,431 (€717 – €2,387)	Gamma	[1]
CTEPH acute care costs	€7,843 (€3,931 – €16,433)	Gamma	[1]
CTEPH long-term costs (monthly)	€89 (€45 – €149)	Gamma	[1]
Treatment costs	1		
Drug cost (daily)			
LMWH b	€9.93	Fixed	[3]
Rivaroxaban 15 mg	€4.58	Fixed	[3]
Rivaroxaban 20 mg	€2.29	Fixed	[3]
Treatment duration (days)			
LMWH	183 (137 – 228)	Gamma	[4]
Rivaroxaban 15 mg	21 (16 – 26)	Gamma	[4]
Rivaroxaban 20 mg	162 (121 – 202)	Gamma	[4]
LMWH administration costs			
Costs for home caregiver (per hour)	€59.34 (€44.51 – €74.18)	Gamma	[5]
Duration of at home administration (hour)	0.25 (0.19 - 0.31)	Gamma	Assumption
Hospitalisation duration PE (days) $^{\circ}$	6.6 (5.0 - 8.3)	Gamma	[6]
Renal monitoring c	€1.64 (€1.23 – €2.05)	Gamma	[7]
Indirect costs			
Travel costs			
Cost per km	€0.20 (€0.15 – €0.25)	Gamma	[8]
Distance to hospital (km)	7	Fixed	[8]
Distance to GP (km)	1.1	Fixed	[8]
Informal care costs			
PE	€1,515 (€1,136 – €1,894)	Gamma	[5,9]
DVT	€233 (€175 – €291)	Gamma	[5,9]
ICH (acute informal care costs)	€1,515 (€1,136 – €1,894)	Gamma	[5,9]
ICH (long-term informal care costs,	€626 (€470 – €783)	Gamma	[10]
monthly)			
Non-ICH MB	€758 (€568 – €947)	Gamma	[5,9]
CRNMB	€117 (€87 – €146)	Gamma	[5,9]

Abbreviations: CI, confidence interval; CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; GP, general practitioner; ICH, intracranial haemorrhage; LMWH, low-molecular weight heparin; MB, major bleeding; PE, pulmonary embolism; PTS, post-thrombotic syndrome; VTE, venous thromboembolism

^a Assumed to be equal to the costs of non-fatal PE

^b Based on an average weight between 69 and 82 kg.

_c Based on DRG code 070419 and only taken into account for rivaroxaban treated patients

References

- 1. Heisen M, Treur MJ, Heemstra HE, Giesen EBW, Postma MJ. Cost-effectiveness analysis of rivaroxaban for treatment and secondary prevention of venous thromboembolism in the Netherlands. J Med Econ. 2017 Aug 3;20(8):813–24.
- 2. Baeten S a, van Exel NJ a, Dirks M, Koopmanschap M a, Dippel DW, Niessen LW. Lifetime health effects and medical costs of integrated stroke services a non-randomized controlled cluster-trial based life table approach. Cost Eff Resour Alloc. 2010;8(1):21.
- 3. Medicijnkosten.nl. The National Health Care Institute (ZIN) [Internet].
- Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017– 23.
- 5. Hakkaart-van Roijen L, van der Linden N, Bouwmans C, Kanters T, Swan Tan S. Kostenhandleiding: Methodologie van kostenonderzoek en referentieprijzen voor economische evaluaties in de gezondheidszorg. Zorginstituut Ned. 2016;1–120.
- 6. van Bellen B, Bamber L, Correa de Carvalho F, Prins M, Wang M, Lensing AWA. Reduction in the length of stay with rivaroxaban as a single-drug regimen for the treatment of deep vein thrombosis and pulmonary embolism. Curr Med Res Opin. 2014;30(5):829–37.
- Dutch Health Authorities. NZa zorgproductapplicatie. Declaration code: 070419. [Internet].
 2018.
- 8. Roijen LH, Linden N van der, Bouwmans C, Kanters T, Tan SS. Dutch manual for costing studies in health care. Diemen; 2015.
- 9. de Klerk M, de Boer A, Plaisier I, Schyns P, Kooiker S. Informele hulp: wie doet er wat? -Rapport - SCP [Internet]. 2015-35. 2015.
- 10. van den Berg B, Brouwer W, van Exel J, Koopmanschap M, van den Bos GAM, Rutten F. Economic valuation of informal care: lessons from the application of the opportunity costs and proxy good methods. Soc Sci Med. 2006;62(4):835–45.

Supplementary data file – Table S3

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Table S3. Utility values included in the cost-effectiveness model

	Value (95% CI)	Distribution	Reference
Utilities			•
Index VTE			
0–1 month	0.565 (0.501 – 0.620)	Beta	[1]
1–2 months	0.655 (0.585 – 0.713)	Beta	[1]
2–3 months	0.674 (0.606 – 0.729)	Beta	[1]
3–4 months	0.698 (0.635 – 0.750)	Beta	[1]
4–5 months	0.707 (0.645 – 0.758)	Beta	[1]
Baseline utility 6 months after index VTE	0.715 (0.646 – 0.770)	Beta	[1]
Recurrent VTE			
DVT	0.605 (0.514 – 0.678)	Beta	[1]
Non-fatal symptomatic PE	0.621 (0.477 – 0.725)	Beta	[1]
Non-fatal incidental PE	0.664 (0.615 – 0.707)	Beta	[1]
Non-ICH MB	0.593 (0.461 – 0.693)	Beta	[1]
CRNMB	0.622 (0.568 – 0.669)	Beta	[1]
Utility decrements	•		
Recurrent VTE within first six months after index VTE			
DVT	0.040 (0.000 - 0.158)	Beta	[1]
Symptomatic PE	0.024 (0.000 – 0.195)	Beta	[1]
Incidental PE	0.189 (0.021 - 0.404)	Beta	[1]
ICH	0.380 (0.285 – 0.475)	Beta	[2]
Severe PTS (<6 months after diagnosis)	0.186 (0.090 - 0.280)	Beta	[1]
Severe PTS (>6 months after diagnosis)	0.070 (0.053 – 0.088)	Beta	[2]
СТЕРН			
0-1 year	0.194 (0.071 – 0.303)	Beta	[3]
1–4 years	0.109 (0.000 - 0.244)	Beta	[3]
4–5 years	0.079 (0.000 – 0.277)	Beta	[3]

Abbreviations: CI, confidence interval; CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; PTS, post-thrombotic syndrome; VTE, venous thromboembolism

References

- Lloyd AJ, Dewilde S, Noble S, Reimer E, Lee AYY. What Impact Does Venous Thromboembolism and Bleeding Have on Cancer Patients' Quality of Life? Value Heal. 2018;21(4):449–55.
- 2. Stevanović J, de Jong LA, Kappelhoff BS, Dvortsin EP, Voorhaar M, Postma MJ. Dabigatran for the Treatment and Secondary Prevention of Venous Thromboembolism; A Cost-Effectiveness Analysis for the Netherlands. PLoS One. 2016;11(10):e0163550.
- 3. Roman A, Barbera JA, Castillo MJ, Muñoz R, Escribano P. Health-related quality of life in a national cohort of patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. Arch Bronconeumol. 2013;49(5):181–8.

Supplementary data file – Figure S1

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

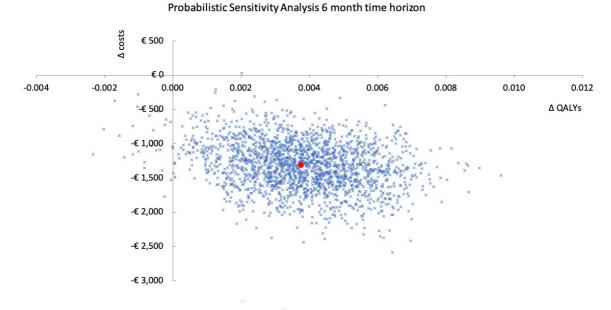
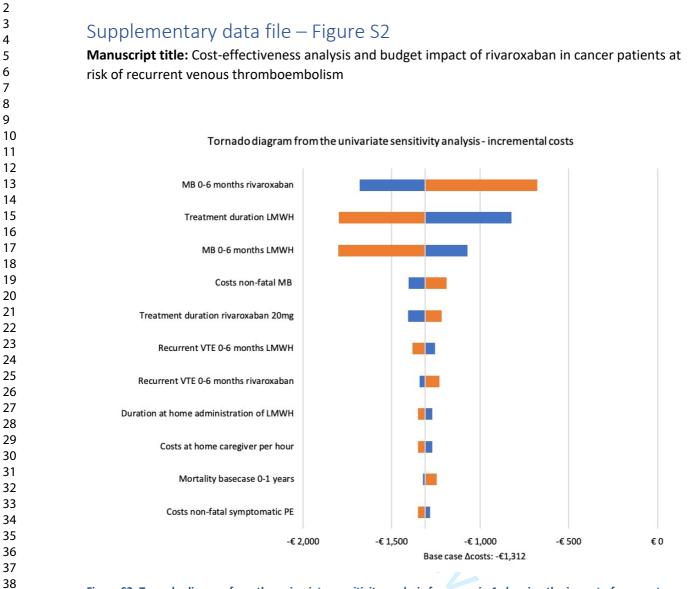



Figure S1. Probabilistic sensitivity analysis with six-month time horizon (scenario 1). The red mark represents the deterministic incremental cost-effectiveness ratio. Abbreviation: QALY, quality adjusted life-year

Figure S2. Tornado diagram from the univariate sensitivity analysis for scenario 1 showing the impact of parameters on the incremental costs. *Abbreviations: MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism*

Supplementary data file – Figure S3

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

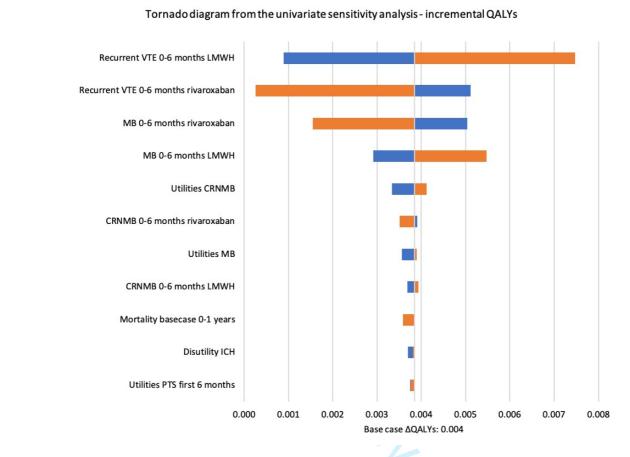


Figure S3. Tornado diagram from the univariate sensitivity analysis for scenario 1 showing the impact of parameters on the incremental QALYs. *Abbreviations: CRNMB, clinically relevant non-major bleeding; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism*

CHEERS checklist—Items to include when reporting economic evaluations of health interventions

	Item		Reported on page No/
Section/item	No	Recommendation	line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness	Page 1, line 9-1
		analysis", and describe the interventions compared.	
Abstract	2	Provide a structured summary of objectives,	Page 1, line 34-6
		perspective, setting, methods (including study design	
		and inputs), results (including base case and	
		uncertainty analyses), and conclusions.	
Introduction			
Background and	3	Provide an explicit statement of the broader context	Page 4, line 91-12
objectives		for the study.	
		Present the study question and its relevance for	Page 4, line 121-12
		health policy or practice decisions.	
Methods			
Target population and	4	Describe characteristics of the base case population	Page 5, line 149-15
subgroups		and subgroups analysed, including why they were	Page 5, line 17
		chosen.	
Setting and location	5	State relevant aspects of the system(s) in which the decision(s) need(s) to be made.	Page 4, line 130-14
Study perspective	6	Describe the perspective of the study and relate this	Page 5, line 135-13
	-	to the costs being evaluated.	
Comparators	7	Describe the interventions or strategies being	Page 4, line 130-13
		compared and state why they were chosen.	
Time horizon	8	State the time horizon(s) over which costs and	Page 5, line 152-15
		consequences are being evaluated and say why	
		appropriate.	
Discount rate	9	Report the choice of discount rate(s) used for costs	Page 8, line 24
		and outcomes and say why appropriate.	Page 9, line 26
Choice of health	10	Describe what outcomes were used as the measure(s)	Page 4, line 133-14
outcomes		of benefit in the evaluation and their relevance for	
		the type of analysis performed.	
Measurement of	11a	Single study-based estimates: Describe fully the	
effectiveness		design features of the single effectiveness study and	
		why the single study was a sufficient source of clinical	
		effectiveness data.	
	11b	Synthesis-based estimates: Describe fully the methods	Page 6, line 184-21
		used for identification of included studies and	
		synthesis of clinical effectiveness data.	·
Measurement and	12	If applicable, describe the population and methods	
valuation of preference		used to elicit preferences for outcomes.	
based outcomes	12		
Estimating resources and	13a	Single study-based economic evaluation: Describe	
costs		approaches used to estimate resource use associated	
		with the alternative interventions. Describe primary	
		or secondary research methods for valuing each	
		resource item in terms of its unit cost. Describe any	
		adjustments made to approximate to opportunity costs.	
	13b	Model-based economic evaluation: Describe	Page 8, line 213-25
	150	woder-bused economic evaluation. Describe	rage 0, 11118 213-25

	Item		Reported on page No/
Section/item	No	Recommendation	line No
		resource use associated with model health states.	
		Describe primary or secondary research methods for	
		valuing each resource item in terms of its unit cost.	
		Describe any adjustments made to approximate to	
		opportunity costs.	
Currency, price date, and	14	Report the dates of the estimated resource quantities	Page 8, line 24
conversion		and unit costs. Describe methods for adjusting	
		estimated unit costs to the year of reported costs if	
		necessary. Describe methods for converting costs into	
		a common currency base and the exchange rate.	
Choice of model	15	Describe and give reasons for the specific type of	Page 5, line 143-17
		decision-analytical model used. Providing a figure to	
		show model structure is strongly recommended.	
	16	Describe all structural or other assumptions	Page 5, line 162-16
Assumptions		underpinning the decision-analytical model.	Page 8, line 230-24
Analytical methods	17	Describe all analytical methods supporting the	Page 7, line 190-20
		evaluation. This could include methods for dealing	Page 10, line 284-30
		with skewed, missing, or censored data; extrapolation	-
		methods; methods for pooling data; approaches to	
		validate or make adjustments (such as half cycle	
		corrections) to a model; and methods for handling	
		population heterogeneity and uncertainty.	
Results		6	
Study parameters	18	Report the values, ranges, references, and, if used,	Page 6, line 201-21
		probability distributions for all parameters. Report	Page 8, line 241-25
		reasons or sources for distributions used to represent	Page 9, line 264-27
		uncertainty where appropriate. Providing a table to	Page 10, line 276-27
		show the input values is strongly recommended.	-
Incremental costs and	19	For each intervention, report mean values for the	Page 11, line 320-32
outcomes		main categories of estimated costs and outcomes of	Page 14, line 393-39
		interest, as well as mean differences between the	5 ,
		comparator groups. If applicable, report incremental	
		cost-effectiveness ratios.	
Characterising uncertainty	20a	Single study-based economic evaluation: Describe the	
		effects of sampling uncertainty for the estimated	
		incremental cost and incremental effectiveness	
		parameters, together with the impact of	
		methodological assumptions (such as discount rate,	
		study perspective).	
	20b	Model-based economic evaluation: Describe the	Page 13, line 354-38
		effects on the results of uncertainty for all input	
		parameters, and uncertainty related to the structure	
		of the model and assumptions.	
Characterising	21	If applicable, report differences in costs, outcomes, or	Page 12, line 311-33
heterogeneity		cost-effectiveness that can be explained by variations	
θ,		between subgroups of patients with different baseline	
		characteristics or other observed variability in effects	
		that are not reducible by more information.	
Discussion			
Study findings, limitations,	22	Summarise key study findings and describe how they	Page 11, line 323-35
generalisability, and		support the conclusions reached. Discuss limitations	
current knowledge		and the generalisability of the findings and how the	
C		findings fit with current knowledge.	

	Item		Reported on page No/
Section/item	No	Recommendation	line No
Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non- monetary sources of support.	Page 3, line
Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	Page 3, line 81-
For consistency, the CH	EERS state	ment checklist format is based on the format of the CON	SORT statement checklist

BMJ Open

BMJ Open

Cost-effectiveness analysis and budget impact of rivaroxaban compared with dalteparin in cancer patients at risk of recurrent venous thromboembolism

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039057.R2
Article Type:	Original research
Date Submitted by the Author:	13-Oct-2020
Complete List of Authors:	de Jong, Lisa; University of Groningen, Unit of Pharmacotherapy, - Epidemiology and -Economics van der Velden, Annette; Martini Hospital, Department of Internal Medicine Hulst, Marinus; Martini Hospital, Department of Clinical Pharmacy and Toxicology; University Medical Centre Groningen, Department of Health Sciences Postma, Maarten; University Medical Centre Groningen, Department of Health Sciences; University of Groningen, Department of Economics, Econometrics & Finance
Primary Subject Heading :	Health economics
Secondary Subject Heading:	Cardiovascular medicine, Health economics
Keywords:	Anticoagulation < HAEMATOLOGY, ONCOLOGY, Thromboembolism < CARDIOLOGY, HEALTH ECONOMICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3	1	Cost-effectiveness analysis and budget impact of rivaroxaban compared with dalteparin in cancer
4	2	patients at risk of recurrent venous thromboembolism
5 6	3	
7	4	Short title: Economic evaluation of rivaroxaban in cancer patients
8	5	Shore the Leonomie evaluation of fiveroxaban in earlier patients
9		Authors
10	6	Authors:
11	7	Lisa A. de Jong ¹ , Annette W.G. van der Velden ² , Marinus van Hulst ^{3,4*} , Maarten J. Postma ^{4,5*}
12 13	8	
13 14	9	
15	10	Affiliations:
16	11	¹ Unit of PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen
17	12	Research Institute of Pharmacy (GRIP), Antonius Deusinglaan 1, Groningen, the Netherlands
18	13	² Department of Internal Medicine, Martini Hospital, Van Swietenplein 1, Groningen, The Netherlands
19 20	14	³ Department of Clinical Pharmacy and Toxicology, Martini Hospital, Van Swietenplein 1, Groningen,
20		The Netherlands
22	15	
23	16	⁴ Department of Health Sciences, University of Groningen, University Medical Center Groningen,
24	17	Hanzeplein 1, Groningen, The Netherlands
25	18	⁵ Department of Economics, Econometrics & Finance, University of Groningen, Faculty of Economics &
26 27	19	Business, Nettelbosje 2, Groningen, The Netherlands
27	20	
29	21	
30	22	*Shared last author
31	23	
32		Corresponding author: Lisa A de Jong E-mail: <u>l.a.de.jong@rug.nl</u> Phone: +31630048956 ORCID ID: 0000-0001-8814-0670
33	24	Corresponding author:
34 35	25	Lisa A de Jong
36	26	E-mail: <u>l.a.de.jong@rug.nl</u>
37	27	Phone: +31630048956
38	28	ORCID ID: 0000-0001-8814-0670
39	29	
40	30	
41 42	31	Author contributions:
43	32	LA de Jong contributed to the design, interpretation of the data, modelling, drafting the manuscript
44	33	and revisions. M van Hulst, MJ Postma and AWG van der Velden contributed to the design,
45		
46	34	interpretation of the data, validation of the model and drafting the manuscript.
47		
48 49		
49 50		
51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

2		
3	35	Abstract
4 5	36	Objectives: In the SELECT-D trial, rivaroxaban showed relatively low venous thromboembolism
6	37	(VTE) recurrence but higher bleeding compared with dalteparin in cancer patients. We aim to calculate
7	38	the cost-effectiveness and budget impact of rivaroxaban compared with dalteparin in cancer patients
8	39	at risk of recurrent VTE.
9 10	39 40	Setting : We built a Markov model to calculate the cost-effectiveness from a societal
11	40 41	perspective over a five-year time horizon for the Dutch healthcare setting.
12	41	Participants : A hypothetical cohort of 1,000 cancer patients with VTE entered the model with
13	42 43	baseline characteristics based on the SELECT-D trial.
14 15		
16	44 45	Intervention : Six months treatment with rivaroxaban (15 mg twice daily for first three weeks
17	45 46	followed by 20 mg once daily) was compared with six months treatment with dalteparin (200 IU/kg
18 19	46	daily during month one followed by 150 IU/kg daily).
20	47	Primary and secondary outcome measures: The primary outcome of the cost-effectiveness
21	48 40	analysis was the incremental cost-effectiveness ratio (ICER). The robustness of the model was
22	49 50	evaluated in probabilistic and univariate sensitivity analyses. A budget impact analysis was performed
23 24	50	to calculate the total annual financial consequences for a societal perspective in the Netherlands.
25	51	Results: In the base case and all scenarios, rivaroxaban were cost-saving while also slightly
26	52	improving the patient's health, resulting in economically dominant ICERs. In the probabilistic sensitivity
27 28	53	analysis, 77.8% and 98.7% of the simulations showed rivaroxaban to be cost-saving and more effective
20	54	for a five-year and six-month time horizon, respectively. Rivaroxaban can save up to €11,326,763
30	55	(confidence interval: €5,164,254–€17,363,231) in approximately 8,000 cancer patients with VTE per
31	56	year compared with dalteparin based on a one-year time horizon.
32 33	57	Conclusions: Treatment with rivaroxaban is economically dominant over dalteparin in cancer
34	58	patients at risk for recurrent VTE in the Netherlands. The use of rivaroxaban instead of dalteparin can
35	59	save over ten million euros per year, primarily driven by the difference in drug costs.
36	60	
37 38	61	Strengths and limitations of this study
39	62	• This analysis used sophisticated pharmacoeconomic modelling methods to conduct cost-
40	63	effectiveness and budget impact analyses, presenting the economic impact on a patient as well
41 42	64	as on a population level.
43	65	• Our model is based on timely, robust data from the important SELECT-D trial.
44	66	• Various additional scenarios were used to analyse the effect of different assumptions and
45	67	clinical situations.
46 47	68	• We assumed a six-month treatment duration for all patients, while in clinical practice the
48	69	treatment duration may vary between patients.
49	70	• Due to lack of data, the productivity losses were not taken into account.
50 51	71	
52	72	Funding statement: This work was supported by Bayer Pharma Netherlands. The sponsor was involved
53	73	with the start of the project, but they were not involved in the identification of data, design, conduct,
54	74	and reporting of the analysis. Award/grant number: not applicable.
55 56	75	
57	76	Competing interests: LA De Jong, M van Hulst and AWG van der Velden declare that they have no
58	77	competing interest with relation to subject. Postma MJ has received research grants from various
59 60	78	pharmaceutical companies, including but not limiting to Bayer, Pfizer, Bristol-Myers Squibb, GSK,
00	79	Roche and Novartis.

80 Introduction

81 Venous thromboembolism (VTE), comprising both pulmonary embolism (PE) and deep vein 82 thrombosis (DVT), is a major challenge in patients with cancer [1]. In addition to the characteristics of 83 the cancer itself, cancer therapy (chemotherapy and cancer surgery) has effects on the patient's 84 coagulation system and therefore increases the risk of VTE and bleeding [2,3]. VTE in cancer patients 85 can cause unnecessary hospitalizations, interruption or postponement of cancer treatment, and 86 increased mortality, leading to decreased quality of life and increased costs.

VTE is treated with anticoagulation therapy, and this is continued as prophylaxis for recurrence over a longer period because of the high risk of recurrence during the first months after the initial VTE [4]. Vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs) are indicated for the treatment and prevention of VTE in the general population [5]. DOACs, are a relatively new class of anticoagulants. Apixaban, dabigatran, edoxaban and rivaroxaban are the four DOACs that are currently registered for the prevention of recurrent VTE in Europe. DOACs have a more beneficial efficacy/safety ratio, do not require routine measurements of the INR, and show fewer food-drug and drug-drug interactions compared with VKAs [6,7].

The guidelines recommend against the use of VKAs in cancer patients because of potential drug interactions, liver dysfunction, and malnutrition, all of which lead to fluctuations of the international normalized ratio (INR) and could result in negative patient outcomes [8–11]. Moreover, trials in cancer patients with VTE have shown that LMWH is more effective in the prevention of recurrent VTE compared with VKA, without increasing bleeding risk [12–14]. Therefore, the guidelines recommend at least 6 months of therapeutic treatment with a daily subcutaneous injection of low molecular weight heparin (LMWH, e.g., dalteparin) in cancer patients [8-11]. However, recently, DOACs rivaroxaban and edoxaban were also added as treatment options for the prevention of recurrent VTE in cancer patients. This recommendation was based on the results from the SELECT-D and HOKUSAI VTE Cancer trials [15,16].

The SELECT-D is a multicenter, randomized, clinical pilot trial in the UK; it is a head-to-head comparison of rivaroxaban and dalteparin in 406 patients with active cancer who had experienced a symptomatic PE, incidental PE, or symptomatic DVT [15]. Incidental PEs are non-symptomatic PEs that are incidentally found during tumour imaging. The trial researchers found that rivaroxaban reduces the recurrence of VTE (six month cumulative VTE recurrence rate: 4% versus 11%) at the cost of an increased risk of bleeding (six month cumulative major bleeding [MB] rate: 6% versus 4%; six month cumulative clinically relevant non-major bleeding [CRNMB] rate: 13% versus 4%) compared with dalteparin. These results were comparable to those of a large retrospective study by Streiff et al. [17].

Based on the results of these studies and the fact that DOACs can be orally administered (unlike the subcutaneously injected LMWHs), a greater utilisation of DOACs for VTE in cancer patients might be expected. Since the introduction of DOACs there has been an ongoing discussion about the economic impact of these drugs. To help guide this discussion and inform decision making in this area, we designed and developed an economic model based on the SELECT-D trial to evaluate the cost-effectiveness and budget impact of rivaroxaban compared with dalteparin in cancer patients at risk of recurrent VTE in the Netherlands.

Methods

The economic model comparing rivaroxaban with dalteparin was designed based on the SELECT-D trial [15], since this study presented the most comprehensive results reflecting recurrent VTE and bleeding complications per event type (symptomatic PE, incidental PE, and DVT) or severity (MB and CRNMB). The primary outcome of the cost-effectiveness analysis is the incremental cost-effectiveness ratio (ICER); this is calculated by dividing the incremental costs by the incremental health effects, expressed in quality adjusted life-years (QALYs). In accordance with Dutch costing guidelines for economic evaluations in healthcare, the ICER was calculated from a societal perspective, which incorporates direct as well as indirect costs both inside and outside the healthcare sector[18]. We performed sensitivity and scenario analyses to test the robustness of the model. Additionally, we conducted a budget impact analysis to reflect the annual financial consequences of the use of rivaroxaban in cancer patients at risk of recurrent VTE in the Netherlands. The analysis was carried out early 2019. The analyses were conducted based on publicly available information which is presented and referenced in the article and Supporting Information files, and did therefore not require any patient consent forms or approval from an ethical review board.

Model outline

We developed a decision-tree-based Markov model using Microsoft Excel 2016 to calculate the ICER. Figure 1 shows a schematic representation of the model, with the disease course being represented by separate health states. A hypothetical cohort of 1,000 cancer patients with VTE entered the model with incidental PE, symptomatic PE, or DVT, represented by the 'index VTE' health state. According to the guidelines, patients with incidental PE should be treated identically to those with symptomatic PE [8,10]. Patient characteristics were based on the SELECT-D trial protocol (Table 1) [15]. The SELECT-D population is representative for the Dutch cancer population, based on age, tumour type, and gender distribution [19]. Patients move through various health states in the model during the follow-up time of five years. Five years was used because overall survival was assumed to be low after five years since the majority (58%) of the SELECT-D trial population had metastatic cancer [15]. We included the following health states in our model (see legend of Figure 1 for abbreviations): 'recurrent incidental PE', 'recurrent symptomatic PE', 'fatal recurrent VTE', 'recurrent DVT', 'ICH', 'non-ICH MB', 'fatal MB', 'CRNMB', 'death by any cause', and 'no event'. Patients were assumed to remain in these states for one cycle, after which they moved back to the 'index VTE' state or the chronic, debilitating 'post-ICH' state, in which they remained until death without being at risk for any further complications. The cycle length was one month. Markov tunnel states (one-month post-VTE, two months post-VTE, ..., 60 months post VTE) were used to implement time-dependency. These temporary states can only be visited once, which allows time-dependent future transitions, costs, and health-related quality of life dependent on how long the patient has gone without a recurrent VTE event [20]. The chronic complications post-thrombotic syndrome (PTS) and chronic thromboembolic pulmonary hypertension (CTEPH) were modelled in the background. This means that PTS or CTEPH could occur at any time in the model, regardless of the health state the patient is in. Costs and health effects of these events were taken into account. However, only the severe cases of PTS were modelled, since the costs of minor PTS are considered negligible. For these chronic complications we also used tunnel states since the risks of PTS and CTEPH were also time-dependent.

165	
166	
167	
168	Figure 1. Model outline. All patients enter the model in the 'Index VTE' state and move to other states upon the occurrence
169	of one of the following events: recurrent incidental PE, recurrent symptomatic PE, fatal recurrent VTE, recurrent DVT, ICH,
170	non-ICH MB, fatal MB, CRNMB, or death by any cause. The triangles represent the health state a patient will enter after an
171	event. The blue squares are permanent states, in which a patient will remain until death while not being at risk for other
172	events. The red squares represent a transient state: the patient will re-enter the model in the 'Index VTE' state.
173	Abbreviations: CRNMB, clinically relevant non-major bleeding; DVT, deep vein thrombosis; ICH, intracranial haemorrhage;

173 Abbreviations: CRIWINB, Clinically relevant holi-major breading, DVT, deep vent thrombosis, ICH, intractalian had
 174 MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

Table 1. Patient characteristics of the hypothetical cohort of 1,000 cancer patients at risk of recurrent VTE

Unit	Value	Reference
Age (years)	67	[15]
Proportion male	53%	[15]
BMI (kg/m ²)	25.6	[15]
Type of cancer		
Early or locally advanced cancer	39%	[15]
Metastatic cancer	58%	[15]
Haematologic malignancy	2%	[15]
Distribution of PE and DVT		
% index VTE that is symptomatic PE	20%	[15]
% index VTE that is incidental PE	53%	[15]
% index VTE that is DVT	27%	[15]

Abbreviations: BMI, body mass index; DVT, deep vein thrombosis; PE, pulmonary embolism; VTE, venous thromboembolism

181 Transition probabilities

182 Transition probabilities were used to calculate the number of patients in each health state per one-183 month cycle. Table S1 summarizes all event rates presented in six-month risks. The event rates were 184 translated into monthly transition probabilities with the following formula:

$$P = 1 - \exp\left\{-rt\right\}$$

187 Where P is the transition probability, r is the event rate, and t is the cycle length (one month) [20].

Event rates of recurrent VTE, MB, and CRNMB in the first six months of treatment were based on the SELECT-D trial [15]. If patients did not experience a recurrent event during this period, anticoagulation treatment was discontinued. Recurrent VTE rates after treatment discontinuation were based on a retrospective study in active-cancer patients experiencing a VTE [4]. Upon the occurrence of a non-fatal recurrent VTE, patients were assigned to another six months treatment, with corresponding event rates. Bleeding risks after treatment discontinuation were based on the outcomes of the cancer population of the HOKUSAI VTE Cancer trial (which followed patients after edoxaban discontinuation for an additional six months) because these data are not reported for the SELECT-D trial [16]. The HOKUSAI VTE Cancer trial was also used to determine the distribution of ICH, non-ICH, and fatal bleeding. The distributions among the different types of VTE (incidental PE, symptomatic PE, DVT, and fatal PE) and MB (ICH, non-ICH, fatal MB) were calculated based on the total number of events in both arms (rivaroxaban and dalteparin) together and assumed it to be treatment-independent, since the Page 7 of 32

BMJ Open

total number of events in the trials was low. The distributions of the types of VTE event were based on the number of recurrent VTE events observed in the SELECT-D trial in the lower extremities and pulmonary embolisms— other locations of VTE events (brachial, subclavian, jugular, renal plus inferior vena cava, or the extrahepatic vein) were excluded [15]. Mortality rates (death by any cause) were based on Dutch cancer mortality data from the Netherlands Cancer Registry [21]. In the sensitivity analysis, all transition probabilities were varied over beta distributions. For percentages of the type of recurrent VTE and MB, a Dirichlet distribution was used in the sensitivity analysis. As recommended by the Dutch guidelines for economic evaluation of healthcare, the distributions were based on Briggs et al., who described the use of distributions around model input parameters (e.g., distributions limited to positive values (costs) or even confined between 0-1 (probabilities)) [18,20].

213 Costs

All cost parameters are standardised to 2019 Euros, and summarised in Table S2. Event-related healthcare costs were based on a previous Dutch cost-effectiveness study for rivaroxaban in the general VTE population [22]. Costs of fatal recurrent VTE were assumed to be similar to those of non-fatal symptomatic PE. We assumed no event-related healthcare costs for patients with incidental PE, because these embolisms were found incidentally and did therefore not require physician visits. However, since patients with incidental PE should be treated identically to those with symptomatic PE, we did take medication costs into account. Costs for ICH and CTEPH consisted of acute care costs during the first month after diagnosis, followed by long-term care costs until the patient moved to the 'death' state. Costs of a fatal MB were assumed to be equal to those of non-fatal non-ICH MB.

Drug costs were retrieved from the national medication costs database [23]. For rivaroxaban these costs were based on 15 mg twice daily for three weeks followed by 20 mg once daily. Drug costs of dalteparin were based on 200 IU/kg daily during month one followed by 150 IU/kg daily in months two to six [15,24]. Based on an average body mass index of 25.6 from the SELECT-D trial and an average height of 1.72 m for the Dutch population, we calculated that the average weight was between 69 and 82 kg, which corresponds with a dose of 15,000 IU daily during month one followed by 12,500 IU daily in months two to six [15,25]. Rivaroxaban users were assumed to require an annual check-up of their renal function [6]. We included one-time costs for an injection instruction by a home-caregiver. Administration costs were only accounted to patients with early or locally advanced cancer (39%), since patients with metastatic cancer or haematologic malignancies often already have home care or an informal caregiver who can administer the dalteparin injection. Similarly, informal care costs were only taken into account for this same subgroup.

Based on a previously published report on informal care in the Netherlands, we made a distinction between intensive (26 hours per week) and non-intensive (8 hours per week) informal care [26]. This was multiplied by the average duration and tariff for informal care, obtained from the Dutch cost manual [27]. To prevent double counting, we did not include informal care costs for the chronic complications. Travel costs were taken into account for renal monitoring visits and upon the occurrence of a DVT or CRNMB. Costs related to forgone leisure activity were not taken into account since there are no data available on the impact of a VTE or bleeding on leisure losses in cancer patients. Moreover, the starting age of the population in the model was 67 years (which is the Dutch retirement age) based on the average age of the SELECT-D trial and the fact that the majority (58%) of the patients in the SELECT-D trial had metastatic cancer may indicate a low employment rate.

Costs were discounted at an annual rate of 4% [18]. In the sensitivity analysis, the costs were varied with gamma distributions corresponding to the 95% confidence interval (CI) [18,20], as indicated in Table S2.

Utilities

Utility scores, used to calculate the QALYs, were derived from a sub-analysis from the CATCH study assessing the EQ-5D scores associated with VTE and recurrent VTE in cancer patients (Table S3) [28]. The CATCH study assessed the effectiveness of six months of treatment with tinzaparin versus warfarin for the treatment of acute venous thromboembolism in patients with active cancer. It was chosen because it aligns well with our population and events of interest. Utility decrements for CTEPH were based on a study assessing EQ-5D VAS scores in CTEPH patients up to 5 years after their initial diagnosis [29]. Utility decrements for ICH and long-term PTS (>6 months after diagnosis) were obtained from a previous cost-effectiveness study [30]. QALYs related to fatal events, such as death due to any cause, fatal PE and fatal MB, were assumed to be 0. QALYs were discounted at 1.5% per annum according to Dutch guidelines [18]. In the sensitivity analyses, utility scores were varied over their 95% CI with a beta distribution [18,20].

Sensitivity analysis

Sensitivity analyses were conducted to check the robustness of the model results to uncertainty and known variations in key input parameters. In the probabilistic sensitivity analysis, all input parameters were varied simultaneously over their 95% CI. If the 95% CI was unavailable and calculating the 95% CI based on the number of events was not possible, the 95% CI was calculated based on a 25% standard error. The ICER was calculated with 2,000 iterations and plotted in a cost-effectiveness plane. A univariate sensitivity analysis was conducted to show the influence of an individual parameter on the ICER. The 10 most influencing parameters were presented in a tornado diagram.

Scenario analysis

We conducted several scenario analyses to show the effect on the outcomes of different (clinical) situations (Table 2).

Scenario	Description	Details
Base	5-year time horizon from	-
case	societal perspective	
1	6-month time horizon from	The follow-up period of the SELECT-D trial was six months; therefore, outcomes
	societal perspective	beyond six months had to be extrapolated based on other publications.
2	Base case analysis from healthcare payer's perspective	In the Netherlands, guidelines advise to calculate the ICER from a societal perspective, while in countries such as the UK or Belgium, the healthcare payer's perspective is preferred. To make results comparable to other countries we also calculated the base case ICER from a healthcare payer's perspective, by excluding the indirect costs.

Table 2. Overview of the scenario analyses.

1
2
3
4
5
6
7
8
9
) 10
11
12
13
14
15
16
17
18
19
20
20
21 22 23
22
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40 41
42
43
44
45
46
47
48
49
50
51
51

280

281 282

3	Base case analysis with	The costs of dalteparin vary with the patient's weight. For the base case
5		
	dalteparin dose of 12,500 IU	analysis, we assumed an average weight between 69 and 82 kg. In scenarios 3
		and 4 we calculated the base case ICER with the costs of dalteparin based on
4	Base case analysis with	weight categories of 57–68 kg (12,500 IE daily during month one followed by
	dalteparin dose of 18,000 IU	10,000 IE daily in month two to six) and 83–98 kg (18,000 IE daily during month
		one followed by 15,000 IE daily in month two to six), respectively.
5	Scenario 1 with treatment	This scenario was similar to scenario 1, except for the treatment period which
	duration based on Streiff et	was based on a study of Streiff et al., who-comparable to SELECT-D-
	al. [17]	compared rivaroxaban to LMWH for the prevention of recurrent VTE in cancer
		patients [17]. They found an average treatment duration of one month and
		three months for LMWH and rivaroxaban, respectively.
6	Base case analysis using	Due to low numbers of VTE and MB events observed in the SELECT-D trial [15]
	drug-specific distributions	and HOKUSAI VTE Cancer [16] trials, respectively, we calculated the distribution
	for the types of VTE and MB	of the types of VTE and MB in the base case analysis based on the total number
		of events and assumed it to be equal for both drugs. In this scenario we assess
		the effect of this assumption on the cost-effectiveness results by using the
		drug-specific distributions of the types of VTE and MB based on the results of
		the SELECT-D and HOKUSAI VTE Cancer trials [15,16].

Abbreviations: IU, international units; MB, major bleeding; VTE, venous thromboembolism.

283 Budget impact

A budget impact analysis was conducted to estimate the total annual financial consequences of the 284 285 implementation of rivaroxaban for the treatment and prevention of VTE in cancer patients within the 286 Dutch healthcare setting. The budget impact was calculated from a societal perspective using the costs 287 calculations from the cost-effectiveness model with a one-year time horizon. We extracted from the model the costs (event-related, treatment, and indirect costs) per patient with a cut-off point of one 288 289 year for rivaroxaban and dalteparin. The difference in cost per patient was multiplied by the annual 290 number of cancer patients with VTE in the Netherlands. The incidence of VTE in cancer patients and 291 the total number of Dutch cancer patients were used to calculate the yearly number of cancer patients with VTE. The Netherlands Cancer Registry estimated a total of 579,781 cancer patients in 2017 [31]. 292 293 The incidence of VTE in cancer patients was 13.9 per 1,000 person-years, based on a cohort study of 294 linked UK databases [32]. Based on these numbers we calculated a total of approximately 8,000 cancer 295 patients with VTE per year in the Netherlands. The outcome of the budget impact analysis was 296 presented as the total budget impact per year, including a subdivision of the costs per type (event-297 related costs, treatment costs and indirect costs) and corresponding 95% Cls derived from PSA.

300 Results

298 299

0 301 Cost-effectiveness analysis

51 302 Table 3 represents the deterministic results of the base case and scenario analyses. In each scenario, 52 rivaroxaban was economically dominant-meaning that it simultaneously confers better clinical and 303 53 54 304 quality-of-life outcomes at less cost-compared with dalteparin. As such, a numerical ICER is not 55 305 presented because it has no meaning. Despite the fact that every scenario shows an improvement in 56 306 the patient's health, the difference in QALYs was very low (incremental QALYs of 0.012 over 5 years' 57 307 time horizon, which equals 4.4 quality-adjusted life days, in the base case analysis). In the base case 58 59 308 analysis, rivaroxaban saved €1,376 per patient compared with dalteparin. The scenario calculating the 60

cost-effectiveness over a six-month time horizon resulted in cost-savings of €1,312 per patient (scenario 1). There was increased cost-savings compared with the societal perspective when calculated from a healthcare payer's perspective (scenario 2). In scenarios 3 and 4 we assessed the effect of variations in the patient's weight (and thus dalteparin dosing) on the ICER. Compared with the base case analysis, there was decreased cost-savings with a lower dalteparin dose and increased cost-savings with a higher dalteparin dose, both still resulting in dominant ICERs. When comparing three months of rivaroxaban treatment to one month of dalteparin treatment, we found incremental QALYs of 0.016 and cost-savings of €702 per patient (scenario 5). We assessed the effect of using drug-specific distributions of the types of VTE and MB, resulting in cost-savings of €1,815 and incremental QALYs of 0.037 (scenario 6).

The number of events and the corresponding average costs per patient in the base case analysis and scenario 4 (base case analysis with a time horizon of 6 months) are presented in Table 4. Rivaroxaban is associated with a lower number of recurrent VTE events, preventing on average €131 and €108 in costs per patient over five years and over six months, respectively. On the other hand, rivaroxaban causes more bleeding events, especially in the treatment period. ICH and non-ICH MB have the highest incremental event costs per patient. Treatment costs are higher for dalteparin compared with rivaroxaban, with incremental costs of €1,721 and €1,468 in the five-year and the six-month time horizon, respectively. The differences in indirect costs for rivaroxaban compared with dalteparin were €19 and -€2 for the five-year and the six-month time horizon, respectively.

> Table 3. Deterministic results per patient of the base case and scenario analyses in a cohort of 1,000 cancer patients (2019 Euros)

	Costs	QALYs	∆ Costs	Δ QALYs	ICER			
Base case analysis - 5-year time horizon from societal perspective								
Rivaroxaban	€3,139	2.459	61.470	0.012	Rivaroxaba			
Dalteparin	€4,615	2.448	-€1,476	0.012	dominant			
Scenario 1 – 6-month time hori	zon from societal pers	pective						
Rivaroxaban	€1,361	0.304	-€1,312	0.004	Rivaroxaba			
Dalteparin	€2,673	0.300	-€1,312	0.004	dominant			
Scenario 2 – base case analysis from healthcare payer's perspective								
Rivaroxaban	€2,942	2.459	€1,496	0.012	Rivaroxaba			
Dalteparin	€4,438	2.448	-€1,490	0.012	dominant			
Scenario 3 – base case analysis	with dalteparin dose o	f 12,500 IU						
Rivaroxaban	€3,139	2.459		0.012	Rivaroxaba			
Dalteparin	€4,218	2.448	-€1,079	0.012	dominant			
Scenario 4 – base case analysis with dalteparin dose of 18,000 IU								
Rivaroxaban	€3,139	2.459	-€1,898	0.012	Rivaroxaba			
Dalteparin	€5,037	2.448	-€1,050	0.012	dominant			
Scenario 5 – scenario 1 with treatment duration based on Streiff et al. [17]								
Rivaroxaban	€1,299	0.289	-€702	0.016	Rivaroxaba			
Dalteparin	€2,001	0.273	-6702	0.010	dominant			
Scenario 6 – base case analysis using drug-specific distributions for the types of VTE and MB								
Rivaroxaban	€3,065	2.463	-€1,815	0.037	Rivaroxaba			
Dalteparin	€4,880	2.425	-€1,815	0.037	dominant			

life-years; VTE, venous thromboembolism.

	Base cas	e (5-year time	e horizon)			
Rivaroxaban Dalteparin				parin	Incren	nental
	Number of	Costs per	Number of	Costs per	Number of	Costs per
	events	patient	events	patient	events	patient
Event costs						
Recurrent VTE	191	€311.85	275	€442.92	-84	-€13
Non-fatal symptomatic recurrent PE	33	€168.36	48	€239.13	-15	-€7
Non-fatal incidental	58		84	_	-26	
recurrent PE	50				20	
Non-fatal recurrent DVT	83	€59.31	120	€84.23	-37	-€2
Fatal recurrent VTE	17	€84.18	24	€119.56	-7	-€3
ІСН	11	€550.70	9	€438.40	2	€11
Non-ICH MB	98	€1,106.87	79	€902.47	19	€20
Fatal MB	5	€51.48	4	€41.98	1	€1
CRNMB	197	€56.28	92	€26.93	105	€2
PTS	61	€92.72	61	€92.37	0	€
СТЕРН	20	€223.79	20	€222.83	0	€
Total event costs	Þ	€2,705.54		€2,610.83		€S
Treatment costs		€548.83		€2,270.33		-€1,72
Indirect costs		€196.31		€177.08		€1
	Scenario 1	L (6-month tin	ne horizon)			
	Rivaroxaban Dalteparin					
	Number of	Costs per	Number of	Costs per	Number of	Costs pe
	overte	patient	events	patient	events	patient
	events	patient				
Event costs	events			•		
Event costs Recurrent VTE	38	€58.95	109	€166.96	-70	-€10
Recurrent VTE Non-fatal symptomatic		4		€166.96 €90.14		•
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental	38	€58.95	109		-70	-€10
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE	38 7 12	€58.95 €31.82	109 19 33	€90.14	-70 -12 -21	-€1(-€5
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT	38 7 12 17	€58.95 €31.82 - €11.21	109 19	€90.14 - €31.75	-70 -12 -21 -31	-€1(-€5
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE	38 7 12 17 3	€58.95 €31.82 €11.21 €15.91	109 19 33 47 9	€90.14 - €31.75 €45.07	-70 -12 -21 -31 -6	-€1(-€5 -€2 -€2
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT	38 7 12 17 3 6	€58.95 €31.82 €11.21 €15.91 €142.82	109 19 33 • 47	€90.14 - €31.75 €45.07 €94.25	-70 -12 -21 -31	-€1(-€2 -€2 -€2 €4
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB	38 7 12 17 3 6 50	€58.95 €31.82 €11.21 €15.91 €142.82 €539.38	109 19 33 47 9 4 33	€90.14 - €31.75 €45.07 €94.25 €355.95	-70 -12 -21 -31 -6 2 17	-€10 -€5 -€5 -€2 -€2 -€2 -€2 -€2
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB Fatal MB	38 7 12 17 3 6 50 2	€58.95 €31.82 €11.21 €15.91 €142.82 €539.38 €25.09	109 19 33 47 9 4 33 2	€90.14 - €31.75 €45.07 €94.25 €355.95 €16.56	-70 -12 -21 -31 -6 2 17 1	-€10 -€5 -€5 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2 -€2
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB Fatal MB CRNMB	38 7 12 17 3 6 50 2 130	€58.95 €31.82 €11.21 €15.91 €142.82 €539.38 €25.09 €35.99	109 19 33 47 9 4 33 2 38	€90.14 - €31.75 €45.07 €94.25 €355.95 €16.56 €10.62	-70 -12 -21 -31 -6 2 17 1 91	-€1 -€1 -€5 -€5 -€2 -€1 €1 €1
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB Fatal MB CRNMB PTS	38 7 12 17 3 6 50 2 130 14	€58.95 €31.82 €11.21 €15.91 €142.82 €539.38 €25.09 €35.99 €20.59	109 19 33 47 9 4 33 2 38 38 14	€90.14 - €31.75 €45.07 €94.25 €355.95 €16.56 €10.62 €20.56	-70 -12 -21 -31 -6 2 17 1 91 0	-€1 -€ -€ -€ -€ -€ -€ -€
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB Fatal MB CRNMB PTS CTEPH	38 7 12 17 3 6 50 2 130	€58.95 €31.82 €11.21 €15.91 €142.82 €539.38 €25.09 €35.99 €20.59 €21.96	109 19 33 47 9 4 33 2 38	€90.14 - €31.75 €45.07 €94.25 €355.95 €16.56 €10.62 €20.56 €20.56 €21.93	-70 -12 -21 -31 -6 2 17 1 91	-€1 -€! -€! -€! -€! -€! -€! -€! -€! -€! -€!
Recurrent VTE Non-fatal symptomatic recurrent PE Non-fatal incidental recurrent PE Non-fatal recurrent DVT Fatal recurrent VTE ICH Non-ICH MB Fatal MB CRNMB PTS	38 7 12 17 3 6 50 2 130 14	€58.95 €31.82 €11.21 €15.91 €142.82 €539.38 €25.09 €35.99 €20.59	109 19 33 47 9 4 33 2 38 38 14	€90.14 - €31.75 €45.07 €94.25 €355.95 €16.56 €10.62 €20.56	-70 -12 -21 -31 -6 2 17 1 91 0	-€10 -€1 -€1 -€2 -€2 -€2 -€18 -€18 -€18 -€18 -€18 -€18 -€18 -€19 -€19 -€19 -€19 -€19 -€19 -€19 -€19

DVT, deep vein thrombosis; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; PTS, post thrombotic syndrome; VTE, venous thromboembolism

In the probabilistic sensitivity analysis, we assessed the robustness of the model over a five-year time horizon (base case) and a six-month time horizon (scenario 1). The results are presented in cost-effectiveness planes in Figure 2 and Figure S1. In the base case analysis, rivaroxaban was in the majority (77.8%) of the 2,000 iterations cost-saving and more effective compared with dalteparin. In 22.2% of the iterations rivaroxaban was cost-saving but less effective compared with dalteparin. In scenario 1, rivaroxaban was in almost all (98.7%) the iterations cost-saving and more effective compared with dalteparin.

The influence of the individual input parameters on the base case incremental costs and QALYs are analysed in the univariate sensitivity analysis. The tornado diagrams (Figure 3 and Figure 4) present

the 10 input parameters with the highest impact in the base case analysis. The risk of MB for both rivaroxaban and dalteparin, treatment duration of dalteparin, and recurrent VTE risks during the first six months after a VTE had the highest influence on the incremental costs. Similarly, the risk of MB and recurrent VTE in the first six months for rivaroxaban and dalteparin showed the highest influence on the incremental QALYs. Similar results were found in the univariate sensitivity analysis of scenario 1 (Figure S2 and Figure S3).

Figure 2. Probabilistic sensitivity analysis of the base case with five-year time horizon (base case analysis). *The red mark represents the deterministic incremental cost-effectiveness ratio. Abbreviation: QALY, quality adjusted life-year*

Figure 3. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental costs. *Abbreviations: ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism*

Figure 4. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental QALYs. *Abbreviations: CRNMB, clinically relevant non-major bleeding; ICH, intracranial haemorrhage; MB, major bleeding; VTE, venous thromboembolism*

376 Budget impact

The results of the budget impact analysis are presented in Table 5. The replacement of LMWHs (including dalteparin) with rivaroxaban can lead to cost-savings of a maximum of \pounds 11,326,763 (\pounds 5,164,254- \pounds 17,363,231) over approximately 8,000 cancer patients with VTE based on a one-year time horizon. A reduction in treatment costs can lead to savings of up to \pounds 12.6 million. Event-related costs and indirect costs slightly increase by \pounds 1,234,467 (\pounds -2,103,366- \pounds 5,231,955) and \pounds 2,101 (\pounds -173,830- \pounds 184,677), respectively, when LMWHs are replaced by rivaroxaban.

Budget impact	€-11,326,763 (€-17,363,231–€-5,164,254)		
Indirect costs	€-2,101 (€-173,830—€184,677)		
Treatment costs	€-12,559,130 (€-17,327,405—€-8,149,498)		
Event-related costs	€1,234,467 (€-2,103,366—€5,231,955)		
Table 5. Budget impact	t (95% CI) over one-year time horizon in the No	etherlands.	

Abbreviation: CI, confidence interval

388 Discussion

389Thrombosis treatment is a challenge in cancer patients. According to the guidelines, LMWHs390and DOACs edoxaban and rivaroxaban are the preferred treatment for the prevention of recurrent VTE391in cancer patients [8–11]. We have assessed the cost-effectiveness and budget impact of rivaroxaban392in cancer patients at risk of recurrent VTE based on the SELECT-D trial [15]. We conclude that, in the393Netherlands, rivaroxaban is a cost-saving treatment option with a small health benefit per patient over

five years compared with dalteparin. Comprehensive sensitivity analyses confirm that results generated by our model are robust.

The cost-savings associated with rivaroxaban were mainly driven by the difference in treatment costs. It should be noted that this is specifically the case for the Netherlands, and may differ in other countries. The VTE recurrence and MB risks also showed to have a high influence on the incremental costs and QALYs in the univariate sensitivity analysis. The SELECT-D trial showed a relatively low VTE recurrence but higher bleeding (especially CRNMB) compared with dalteparin. This cost-effectiveness model allowed to address the question if the reduction in VTE recurrence outweighs the increase in bleeding events.

A total of 84 VTE-related events were prevented over five years, leading to an average cost-saving of €131 per patient. This is line with findings from a recent study that assessed the VTE-related healthcare costs in cancer patients, which found that rivaroxaban treated patients had a significantly lower total VTE-related costs relative to patients treated with LMWH [33]. Although the cost difference between the rivaroxaban and dalteparin cohorts was even greater with \$12,004 per patient per year.

On the other hand, MB events were more frequent with rivaroxaban compared with dalteparin (11 ICH and 98 non-ICH versus 9 ICH and 79 non-ICH, respectively). MB events are very burdensome and frequently severely disabling, leading to high acute and long-term direct and indirect costs. In line with the findings from the SELECT-D trial, CRNMB events were much more frequent with rivaroxaban compared with dalteparin (197 and 92, respectively). Although the difference between rivaroxaban and dalteparin in CRNMB (105 events over 5-year time horizon) is greater than for MB (20 events over 5-year time horizon), the influence on the incremental costs and QALYs were lower because CRNMB is relatively less burdensome.

The indirect costs were higher for rivaroxaban than for dalteparin in the base case scenario. This can be explained by the increased number of MB events with rivaroxaban compared with dalteparin. Moreover, there were no data available on leisure activity losses caused by the occurrence of a VTE event in patients who are already burdened with cancer. Therefore, the indirect costs might have been underestimated, possibly leading to lower cost-savings. The indirect costs account for €196 to €177 per rivaroxaban and dalteparin patient, respectively, over five years—approximately 4-6% of the total cost—however, they do not have a major influence on the differences between the two drugs (\leq 19 and - \leq 2 for the five-year and 6-month time horizon, respectively). This suggests that, although the indirect costs might have been underestimated, rivaroxaban is still likely to be cost-saving compared with dalteparin.

As mentioned, the main driver of the cost-savings is the difference in treatment costs. In the cost-effectiveness analysis, we estimated that more than €1,700 per patient over a five-year period can be saved on treatment costs, compared with dalteparin. Moreover, in the scenario analysis we varied the price of dalteparin based on weight. Although the lowest dose (12,500 IU daily during month one followed by 10,000 IU in months two to six based on weight class 57-68 kg) had a lower price, €8.06 versus €9.93, the ICER remained cost-saving. Rivaroxaban users were assumed to require an annual check-up of their renal function. However, cancer patients (especially those with metastatic cancer) are at higher risk for renal impairment and may be tested much more frequently [34]. This may have caused an overestimation of the costs of rivaroxaban, and therefore reduced the cost-savings estimate of rivaroxaban compared with dalteparin.

In the budget impact analysis, we calculated that rivaroxaban replacing LMWH (including dalteparin) leads to cost-savings of €11,326,763 within one year over a total of 8,000 cancer patients. This is the absolute maximum, since it is not possible to treat each patient with rivaroxaban from a

clinical perspective. In practice, the market share of rivaroxaban will be lower—despite the fact that there are three other DOACs that could be prescribed—because there are some clinical considerations that should be taken into account. Firstly, although DOACs have far fewer drug interactions than VKAs, it should be noted that rivaroxaban is metabolized by CYP3A4 enzymes [1]. Cancer patients, especially those with haematological cancer, are at high risk for opportunistic and fungal infections, for which they are often treated with CYP3A4 inhibitors or inducers [35]. For this reason, prescription of rivaroxaban for the prevention of recurrent VTE in cancer patients must be done carefully [1]. This interaction does not play a role in LWMH treatment.

Secondly, the balance between the risk of thrombosis and the risk of bleeding should always be a consideration in the prescription of anticoagulants. For example, DOACs are not advised in patients with GI tumours, due to a higher risk of GI bleeding [8–11]. Some prediction scores for primary prevention have been developed to predict thrombosis risk in cancer patients, since thrombosis prophylaxis is most effective in patients with an increased VTE risk. Unfortunately, for cancer these scores have still not been shown to reliably identify patients with the highest risk [36]. Predictive scores for bleeding, such as the HAS-BLED score used for atrial fibrillation patients, are also needed.

A third consideration is the oral administration of rivaroxaban. Although it is less burdensome than the LMWH injections, oral administration can be problematic in patients with anorexia and vomiting, which is often seen as a side effect in cancer therapy [15]. Moreover, low food intake might influence the metabolism of rivaroxaban resulting in lower bioavailability [37]. Lastly, adherence is always a point of discussion, but since adherence to current guidelines is often low [36], we feel that adherence to rivaroxaban might be relatively high than LMWHs due to the more patient-friendly administration.

Our analysis is not without limitations. It should also be noted that 58% of the patients included in the SELECT-D trial had metastatic cancer, and thus results and conclusions pertain mostly to severely ill patients. Also, the majority (53%) of the initial VTE events were incidental PE, related to computed tomography imaging for tumour status [15]. Additionally, as with all cost-effectiveness models some assumptions were required due to lack of data.

We assumed that patients were treated with anticoagulation over six months, which is in line with the guidelines [8–11]. Previous studies have shown that adherence to these guidelines is poor [36]. As seen in the study by Streiff et al [17], in practice, treatment with LMWH is often not six months, presumably due to the fact that LMWH injections are burdensome, there are concerns about the bleeding risk, and the complexity of the treatment of cancer patients [36]. However, this recommended treatment period was also not achieved in many patients treated with rivaroxaban, which resulted in an average duration of three months. We conducted a scenario analysis (scenario 5) to assess this difference in treatment duration (one month of LMWH versus three months of rivaroxaban). These results favoured rivaroxaban, because the incremental QALYs increased while still being cost-saving. On the other hand, there are also some clinical situations in which the treatment period might be longer than six months: for example, in patients with a recurrent VTE event, patients with an active malignancy, or patients receiving cancer treatment for their malignancy beyond six months. Moreover, in the Netherlands anticoagulation is often continued after six months of initial treatment in case the cancer is still active. Unfortunately, we were unable to assess the effect of continued anticoagulation treatment due to lack of data. However, since rivaroxaban is associated with cost-saving results during the first six months, it is to be expected that during a longer treatment period the cost-savings and health gains will accrue even more compared with dalteparin.

In the univariate sensitivity analysis, we have shown that the risk of MB and VTE for both rivaroxaban and dalteparin have a high influence on the incremental costs and QALYs. In the SELECT-D trial [15], the incidence of symptomatic and fatal PE events was relatively higher in patients treated with rivaroxaban. However, due to low numbers of VTE observed in the SELECT-D trial [15], we calculated the distribution of the type of VTE based on the total number of events and assumed it to be equal for both drugs. This may have led to an overestimation of the effect of rivaroxaban compared with dalteparin, since symptomatic and fatal PE events have a higher impact on the costs and the patient's health compared to DVT and incidental PE. On the other hand, we used this same approach to calculate the distributions of the types of MB from the HOKUSAI VTE Cancer trial [16], in which the patients treated with dalteparin had relatively more severe MB events compared with the NOAC edoxaban (ICH: 17.6% versus 6.1%, respectively). This results in an underestimation of the number of MBs in dalteparin-treated patients. We assessed the effect of using drug-specific distributions of the type of VTE and MB in scenario six, showing an increase in incremental cost-savings and QALYs compared to the base case analysis. Therefore, we conclude that our approach of using equal distributions of the types of VTE and MB for rivaroxaban and dalteparin is conservative.

This study focuses on the secondary prevention of VTE, based on the results of the SELECT-D and, partially, the HOKUSAI VTE Cancer trials. However, recently, apixaban was also assessed in cancer patients at risk of recurrent VTE and found to be non-inferior compared to dalteparin [38,39]. Moreover, the AVERT and CASSINI trials have shown that apixaban and rivaroxaban are also effective as a primary prophylaxis of VTE in cancer patients compared with a placebo [40-42]. Based on these two studies, clinicians may consider DOAC prophylaxis in some of their cancer patients [42]. Therefore, future research is needed to assess if DOACs are also cost-effective for the primary prevention of VTE.

Conclusion

Treatment with rivaroxaban is dominant (cost-saving while slightly improving the patient's health and quality of life) over dalteparin in cancer patients at risk for recurrent VTE in the Netherlands. The use of rivaroxaban instead of LMWH (including dalteparin) can save more than eleven million euros per year, which is primarily driven by the difference in treatment costs. Since treatment with rivaroxaban is economically dominant compared with dalteparin and its oral administration is more convenient than daily subcutaneous injection, it is logical that certain cancer patients can benefit from DOAC treatment and provide savings to the healthcare system.

4.4

References

1. Gerotziafas GT, Mahé I, Elalamy I. Therapeutics and Clinical Risk Management Dovepress New orally active anticoagulant agents for the prevention and treatment of venous thromboembolism in cancer patients. Ther Clin Risk Manag. 2014;10:423–36. 2. Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: Biological and clinical aspects. J Thromb Haemost. 2013;11(2):223-33. 3. Lechner D, Weltermann A. Chemotherapy-induced thrombosis: a role for microparticles and tissue factor? Semin Thromb Hemost. 2008;34(2):199–203. 4. Cohen AT, Katholing A, Rietbrock S, Bamber L, Martinez C. Epidemiology of first and recurrent venous thromboembolism in patients with active cancer. Thromb Haemost. 2017;117(01):57-

1			
2			
3	527		65.
4	528	5.	Minister of Health W and S. Letter to the parlement - reimbursement rivaroxaban VTE
5	529	0.	(Herbeoordeling uitbreiding nadere voorwaarden rivaroxaban (Xarelto [®]) bij VTE. 2015;
6	530	6.	Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, et al. The 2018 European
7	531	0.	Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral
8 9	532		anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;
9 10	533	7.	Mandala M, Falanga A, Roila F, ESMO Guidelines Working Group. Management of venous
11	534	<i>.</i>	thromboembolism (VTE) in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol.
12	535		2011;22(Supplement 6):vi85–92.
13	536	8.	Key NS, Khorana AA, Kuderer NM, Bohlke K, Lee AYY, Arcelus JI, et al. Venous
14	537	0.	thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice
15	538		guideline update. J Clin Oncol. 2020;38(5):496–520.
16	539	9.	Farge D, Frere C, Connors JM, Ay C, Khorana AA, Munoz A, et al. 2019 International Clinical
17 18	540	5.	Practice Guidelines for the Treatment and Prophylaxis of Venous Thromboembolism in
19	541		Patients With Cancer. Lancet Oncol. 2019;20(10):e566–81.
20	542	10.	Konstantinides S V., Meyer G, Bueno H, Galié N, Gibbs JSR, Ageno W, et al. 2019 ESC
21	543		Guidelines for the diagnosis and management of acute pulmonary embolism developed in
22	544		collaboration with the European respiratory society (ERS). Eur Heart J. 2020;41(4):543–603.
23	545	11.	Streiff MB, Holmstrom B, Angelini D, Ashrani A, Bockenstedt PL, Chesney C, et al. NCCN
24	546		Guidelines [®] insights cancer-associated venous thromboembolic disease, version 2.2018
25	547		featured updates to the NCCN guidelines. JNCCN J Natl Compr Cancer Netw.
26 27	548		2018;16(11):1289–303.
27	549	12.	Hull RD, Pineo GF, Brant RF, Mah AF, Burke N, Dear R, et al. Long-term low-molecular-weight
29	550		heparin versus usual care in proximal-vein thrombosis patients with cancer. Am J Med. 2006
30	551		Dec;119(12):1062–72.
31	552	13.	Lee AYY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Low-Molecular-Weight
32	553		Heparin versus a Coumarin for the Prevention of Recurrent Venous Thromboembolism in
33	554		Patients with Cancer. N Engl J Med. 2003;349(2):146–53.
34 35	555	14.	Meyer G, Marjanovic Z, Valcke J, Lorcerie B, Gruel Y, Solal-Celigny P, et al. Comparison of low-
36	556		molecular-weight heparin and warfarin for the secondary prevention of venous
37	557		thromboembolism in patients with cancer: a randomized controlled study. Arch Intern Med.
38	558		162(15):1729–35.
39	559	15.	Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an Oral
40	560		Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous
41	561		Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017–
42	562		23.
43 44	563	16.	Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the
45	564		Treatment of Cancer-Associated Venous Thromboembolism. N Engl J Med. 2018;378(7):615–
46	565		24.
47	566	17.	Streiff MB, Milentijevic D, McCrae K, Yannicelli D, Fortier J, Nelson WW, et al. Effectiveness
48	567		and safety of anticoagulants for the treatment of venous thromboembolism in patients with
49	568		cancer. Am J Hematol. 2018;93(5):664–71.
50 51	569	18.	Dutch Institute National Health Care (Zorginstituut Nederland). Richtlijn voor het uitvoeren
52	570		van economische evaluaties in de gezondheidzorg (Protocol for the execution of economic
53	571		evaluation in healthcare). 29-02-2016. 2016;(november):120.
54	572	19.	National Institute of Public Health and the Environment (RIVM). Cancer numbers and context:
55	573	• -	current situation [Internet]. volksgezondheidenzorg.info. 2017. p. 1.
56	574	20.	Briggs A, Claxton K, Sculpher M. Decision modelling for Health Economic Evaluation. 3rd ed.
57	575	~ 4	New York: Oxford University Press; 2011. 57–58 p.
58 59	576	21.	The Netherlands Cancer Registry. Survival statistics - all tumours 1961-2015 [Internet].
59 60	577	22.	Heisen M, Treur MJ, Heemstra HE, Giesen EBW, Postma MJ. Cost-effectiveness analysis of
	578		rivaroxaban for treatment and secondary prevention of venous thromboembolism in the

2			
3	579		Netherlands. J Med Econ. 2017 Aug 3;20(8):813–24.
4	580	23.	Medicijnkosten.nl. The National Health Care Institute (ZIN) [Internet].
5	581	24.	Summary of Product Characteristics Fragmin. 2015;
6	582	25.	Dutch Statistics. Length and weight of Dutch population [Internet]. 2017.
7 8	583	26.	de Klerk M, de Boer A, Plaisier I, Schyns P, Kooiker S. Informele hulp: wie doet er wat? -
o 9	584		Rapport - SCP [Internet]. 2015-35. 2015.
10	585	27.	Hakkaart-van Roijen L, van der Linden N, Bouwmans C, Kanters T, Swan Tan S.
11	586		Kostenhandleiding: Methodologie van kostenonderzoek en referentieprijzen voor
12	587		economische evaluaties in de gezondheidszorg. Zorginstituut Ned. 2016;1–120.
13	588	28.	Lloyd AJ, Dewilde S, Noble S, Reimer E, Lee AYY. What Impact Does Venous
14	589		Thromboembolism and Bleeding Have on Cancer Patients' Quality of Life? Value Heal.
15	590		2018;21(4):449–55.
16	591	29.	Roman A, Barbera JA, Castillo MJ, Muñoz R, Escribano P. Health-related quality of life in a
17 18	592	_01	national cohort of patients with pulmonary arterial hypertension or chronic thromboembolic
18 19	593		pulmonary hypertension. Arch Bronconeumol. 2013;49(5):181–8.
20	594	30.	Stevanović J, de Jong LA, Kappelhoff BS, Dvortsin EP, Voorhaar M, Postma MJ. Dabigatran for
21	595	50.	the Treatment and Secondary Prevention of Venous Thromboembolism; A Cost-Effectiveness
22	596		Analysis for the Netherlands. PLoS One. 2016;11(10):e0163550.
23	597	31.	The Netherlands Cancer Registry. Prevalence statistics - all tumours [Internet].
24	598	32.	Walker AJ, Card TR, West J, Crooks C, Grainge MJ. Incidence of venous thromboembolism in
25	599	52.	patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer.
26	600		2013 Apr;49(6):1404–13.
27	601	33.	Streiff M, Milentijevic D, McCrae KR, Laliberté F, Lejeune D, Lefebvre P, et al. Healthcare
28 29	602	55.	resource utilization and costs associated with venous thromboembolism in cancer patients
29 30	603		treated with anticoagulants. J Med Econ. 2019;22(11):1134–40.
31	604	34.	Aapro M, Launay-Vacher V. Importance of monitoring renal function in patients with cancer.
32	605	54.	Cancer Treat Rev. 2012;38(3):235–40.
33	606	35.	Vedham V, Divi RL, Starks VL, Verma M. Multiple Infections and Cancer: Implications in
34	607	55.	Epidemiology. Technol Cancer Res Treat. 2014;13(2):177–94.
35	608	36.	Mahé I, Chidiac J, Helfer H, Noble S. Factors influencing adherence to clinical guidelines in the
36	609	50.	management of cancer-associated thrombosis. J Thromb Haemost. 2016;14(11):2107–13.
37	610	37.	Committee for Medicinal Products for Human Use (CHMP). Summary of product
38 39	611	57.	characteristics - rivaroxaban 20 mg [Internet].
40	612	38.	Agnelli G, Becattini C, Meyer G, Muñoz A, Huisman M V., Connors JM, et al. Apixaban for the
41	613	50.	treatment of venous thromboembolism associated with cancer. N Engl J Med.
42	614		2020;382(17):1599–607.
43	615	39.	McBane RD, Wysokinski WE, Le-Rademacher JG, Zemla T, Ashrani A, Tafur A, et al. Apixaban
44		59.	
45	616		and dalteparin in active malignancy-associated venous thromboembolism: The ADAM VTE
46	617 618	40.	trial. J Thromb Haemost. 2020;18(2):411–21. Khorana AA, Soff GA, Kakkar AK, Vadhan-Raj S, Riess H, Wun T, et al. Rivaroxaban for
47	618 619	40.	
48 49			Thromboprophylaxis in High-Risk Ambulatory Patients with Cancer. N Engl J Med. 2019
49 50	620	41	Feb;380(8):720–8.
51	621	41.	Carrier M, Abou-Nassar K, Mallick R, Tagalakis V, Shivakumar S, Schattner A, et al. Apixaban to
52	622	40	Prevent Venous Thromboembolism in Patients with Cancer. N Engl J Med. 2019;380(8):711–9.
53	623	42.	Agnelli G. Direct Oral Anticoagulants for Thromboprophylaxis in Ambulatory Patients with
54	624		Cancer. N Engl J Med. 2019;380(8):781–3.
55	625 626		
56	626		
57 58	627		or contributions
58 59	628	Lisa A	A. de Jong built the economic model, performed the analyses, and contributed to the design of
60	629	the w	ork, interpretation of the results, writing of the manuscript.

Annette W.G. van der Velden contributed to the interpretation of the results, writing of the manuscript, and critical revision for important intellectual content. Marinus van Hulst contributed to the design of the work, interpretation of the results, writing of the manuscript, and critical revision for important intellectual content. Maarten J. Postma contributed to the design of the work, interpretation of the results, writing of the manuscript, and critical revision for important intellectual content. All authors approved of the version to be published. Checklist for the appropriate reporting statement: This manuscript was written in accordance with the CHEERS checklist for reporting economic evaluations of health interventions. Data sharing statement: All relevant data are included in the manuscript. The analyses were conducted based on publicly available information which is presented and referenced in the manuscript. Word count: 5,061 (excluding table and figure descriptions and references) Patient consent and ethical approval: The analyses were conducted based on publicly available information which is presented and referenced in the article and Supporting Information files, and did therefore not require any patient consent forms or approval from an ethical review board. Patient and public involvement statement: It was not appropriate to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research, because this health economic analysis was based on publicly available data and solely concentrated on the analysis of the economics consequence of treating cancer patients with rivaroxaban instead of the current standard of care.

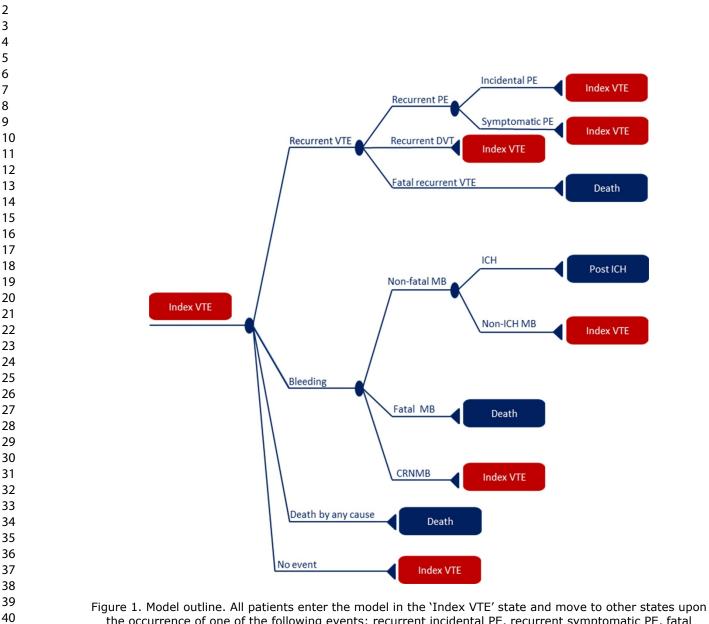
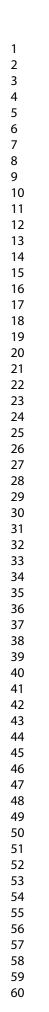



Figure 1. Model outline. All patients enter the model in the 'Index VTE' state and move to other states upon the occurrence of one of the following events: recurrent incidental PE, recurrent symptomatic PE, fatal recurrent VTE, recurrent DVT, ICH, non-ICH MB, fatal MB, CRNMB, or death by any cause. The triangles represent the health state a patient will enter after an event. The blue squares are permanent states, in which a patient will remain until death while not being at risk for other events. The red squares represent a transient state: the patient will re-enter the model in the 'Index VTE' state.
Abbreviations: CRNMB, clinically relevant non-major bleeding; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

74x75mm (600 x 600 DPI)

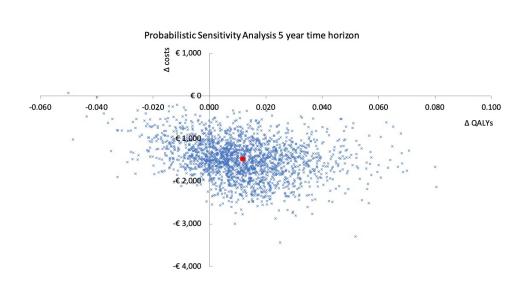


Figure 2. Probabilistic sensitivity analysis of the base case with five-year time horizon (base case analysis). The red mark represents the deterministic incremental cost-effectiveness ratio. Abbreviation: QALY, quality adjusted life-year

206x112mm (144 x 144 DPI)

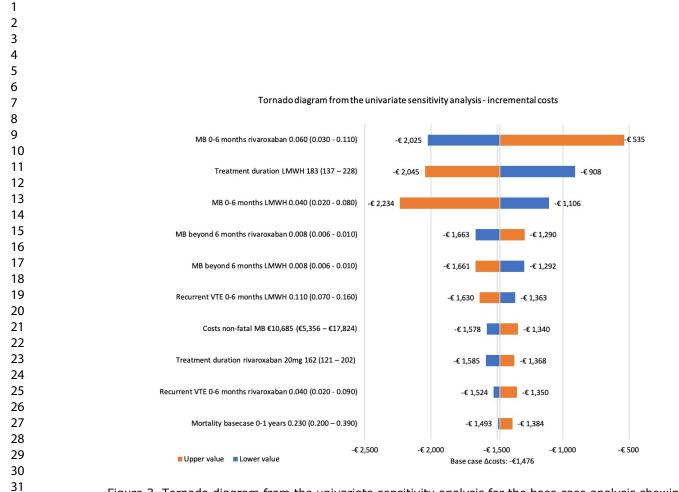


Figure 3. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental costs. Abbreviations: ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

195x149mm (144 x 144 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

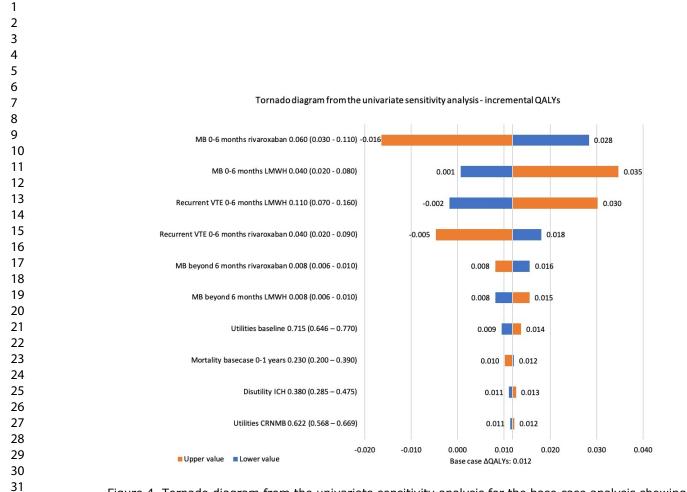


Figure 4. Tornado diagram from the univariate sensitivity analysis for the base case analysis showing the impact of parameters on the incremental QALYs. Abbreviations: CRNMB, clinically relevant non-major bleeding; ICH, intracranial haemorrhage; MB, major bleeding; VTE, venous thromboembolism

195x149mm (144 x 144 DPI)

Supplementary data file – Table S1

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Table S1. Transition probabilities used in the cost-effectiveness model

	Rivaroxaban (95% CI)	LMWH (95% CI)	Distribution	Reference
Recurrent VTE				
0–6 months	0.040 (0.020 - 0.090)	0.110 (0.070 - 0.160)	Beta	[1]
6–12 months	0.040 (0.0	031 – 0.050)	Beta	[2]
1–2 years	0.034 (0.0	027 – 0.042)	Beta	[2]
2–3 years	0.021 (0.0	Beta	[2]	
3–4 years	0.016 (0.0	Beta	[2]	
4–5 months	0.013 (0.0	Beta	[2]	
Type of recurrent VTE			•	
Symptomatic PE	17.4% (α	= 4, β = 19)	Dirichlet	[1]
Incidental PE	30.4% (α	= 7, β = 16)	Dirichlet	[1]
DVT	43.5% (α	= 10, β = 13)	Dirichlet	[1]
Fatal PE	8.7% (α	= 2, β = 21)	Dirichlet	[1]
МВ		· · ·		
0–6 months	0.060 (0.030 - 0.110)	0.040 (0.020 - 0.080)	Beta	[1]
Beyond 6 months		· · ·	Beta	[3]
treatment	0.008 (0.0	006 – 0.010)		
Type of MB				
ICH	10% (α =	= 5, β = 45)	Dirichlet	[3]
Non-ICH MB	86% (α =	= 43, β = 7)	Dirichlet	[3]
Fatal MB	4% (α =	$2, \beta = 48)$	Dirichlet	[3]
CRNMB				
0–6 months	0.130 (0.090 - 0.190)	0.040 (0.020 - 0.090)	Beta	[1]
Beyond 6 months			Beta	[3]
treatment	0.008 (0.0	006 – 0.010)		
PTS			1	
0–6 months	0.015 (0.0	011 – 0.019)	Beta	[4]
6–12 months	0.012 (0.0	009 – 0.015)	Beta	[4]
12–18 months	0.008 (0.0	006 – 0.010)	Beta	[4]
18–24 months	0.025 (0.0	023 – 0.019)	Beta	[4]
24–30 months	0.011 (0.0	008 - 0.014)	Beta	[4]
30–36 months		005 – 0.008)	Beta	[4]
3–4 years	0.001 (0.00	008 – 0.0013)	Beta	[4]
4–5 years		008 – 0.0013)	Beta	[4]
CTEPH (annual risk)		0002 - 0.012)	Beta	[5]
Mortality (annual risk)	`	·		1
0–1 years	0.230 (0.2	200 – 0.390)	Beta	[6]
1–2 years		088 – 0.180)	Beta	[6]
2–3 years		055 – 0.120)	Beta	[6]
3–4 years	,	043 – 0.068)	Beta	[6]
4–5 years)30 – 0.073)	Beta	[6]
Relative risk of recurrent VTE, N	· ·	•		
Recurrent VTE (any)		.170	Fixed	[7]
MB		.242	Fixed	[7]
CRNMB		.000	Fixed	[7]

Drug-specific distribution of the type of VTE, used in scenario 6				
Symptomatic PE	28.6% (α = 2, β = 5) 12.5% (α = 2, β = 14) Dirich			[1]
Incidental PE	14.3% (α = 1, β = 6)	37.5% (α = 6, β = 10)	Dirichlet	[1]
DVT	42.9% (α = 3, β = 4)	43.8% (α = 7, β = 9)	Dirichlet	[1]
Fatal PE	14.3% (α = 1, β = 6)	6.3% (α = 1, β = 15)	Dirichlet	[1]
Drug-specific distribution of the t	ype of MB, used in scenario 6			
ICH	6.1% (α = 2, β = 31)	17.6% (α = 3, β = 14)	Dirichlet	[3]
Non-ICH MB	93.9% (α = 31, β = 2)	70.6% (α = 12, β = 5)	Dirichlet	[3]
Fatal MB	0% (α = 0, β = 33)	11.8% (α = 2, β = 15)	Dirichlet	[3]

Abbreviations: CI, confidence interval; CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; LMWH, low-molecular weight heparin; MB, major bleeding; PE, pulmonary embolism; PTS, post-thrombotic syndrome; SE, standard error; VTE, venous thromboembolism

References

- 1. Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017– 23.
- Cohen AT, Katholing A, Rietbrock S, Bamber L, Martinez C. Epidemiology of first and recurrent venous thromboembolism in patients with active cancer. Thromb Haemost. 2017;117(01):57–65.
- Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N Engl J Med. 2018;378(7):615– 24.
- 4. Prandoni P, Villalta S, Bagatella P, Rossi L, Marchiori A, Piccioli A, et al. The clinical course of deep-vein thrombosis. Prospective long-term follow-up of 528 symptomatic patients. Haematologica. 1997;82(4):423–8.
- 5. Klok FA, van Kralingen KW, van Dijk APJ, Heyning FH, Vliegen HW, Huisman M V. Prospective cardiopulmonary screening program to detect chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Haematologica. 2010;95(6):970–5.
- 6. The Netherlands Cancer Registry. Survival statistics all tumours 1961-2015 [Internet].
- 7. Napolitano M, Saccullo G, Malato A, Sprini D, Ageno W, Imberti D, et al. Optimal duration of low molecular weight heparin for the treatment of cancer-related deep vein thrombosis: the Cancer-DACUS Study. J Clin Oncol. 2014;32(32):3607–12.

Supplementary data file – Table S2

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Table S2. Costs included in the cost-effectiveness model (Euros, 2019)

	Value (95% CI)	Distribution	Reference
Event costs		•	
Recurrent VTE			
Symptomatic PE	€4,717 (€2,364 – €7,868)	Gamma	[1]
Incidental PE	€0	Fixed	Assumption
DVT	€663 (€464 – €862)	Gamma	[1]
Fatal recurrent VTE a	€4,717 (€2,364 – €7,868)	Gamma	[1]
ICH acute care costs	€22,769 (€11,644 – €31,175)	Gamma	[2]
ICH long-term costs (monthly)	€637 (€319 - €1,063)	Gamma	[1]
Non-ICH MB	€10,685 (€5,356 – €17,824)	Gamma	[1]
Fatal MB	€10,685 (€5,356 - €17,824)	Gamma	[1]
CRNMB	€274 (€137 – €457)	Gamma	[1]
PTS	€1,431 (€717 – €2,387)	Gamma	[1]
CTEPH acute care costs	€7,843 (€3,931 – €16,433)	Gamma	[1]
CTEPH long-term costs (monthly)	€89 (€45 – €149)	Gamma	[1]
Treatment costs	1		
Drug cost (daily)			
LMWH b	€9.93	Fixed	[3]
Rivaroxaban 15 mg	€4.58	Fixed	[3]
Rivaroxaban 20 mg	€2.29	Fixed	[3]
Treatment duration (days)			
LMWH	183 (137 – 228)	Gamma	[4]
Rivaroxaban 15 mg	21 (16 – 26)	Gamma	[4]
Rivaroxaban 20 mg	162 (121 – 202)	Gamma	[4]
LMWH administration costs			
Costs for home caregiver (per hour)	€59.34 (€44.51 - €74.18)	Gamma	[5]
Duration of at home administration (hour)	0.25 (0.19 - 0.31)	Gamma	Assumption
Hospitalisation duration PE (days) ^c	6.6 (5.0 - 8.3)	Gamma	[6]
Renal monitoring c	€1.64 (€1.23 - €2.05)	Gamma	[7]
Indirect costs			
Travel costs			
Cost per km	€0.20 (€0.15 – €0.25)	Gamma	[8]
Distance to hospital (km)	7	Fixed	[8]
Distance to GP (km)	1.1	Fixed	[8]
Informal care costs			
PE	€1,515 (€1,136 – €1,894)	Gamma	[5,9]
DVT	€233 (€175 – €291)	Gamma	[5,9]
ICH (acute informal care costs)	€1,515 (€1,136 – €1,894)	Gamma	[5,9]
ICH (long-term informal care costs,	€626 (€470 – €783)	Gamma	[10]
monthly)			
Non-ICH MB	€758 (€568 – €947)	Gamma	[5,9]
CRNMB	€117 (€87 – €146)	Gamma	[5,9]

Abbreviations: CI, confidence interval; CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; GP, general practitioner; ICH, intracranial haemorrhage; LMWH, low-molecular weight heparin; MB, major bleeding; PE, pulmonary embolism; PTS, post-thrombotic syndrome; VTE, venous thromboembolism

^a Assumed to be equal to the costs of non-fatal PE

^b Based on an average weight between 69 and 82 kg.

_c Based on DRG code 070419 and only taken into account for rivaroxaban treated patients

References

- 1. Heisen M, Treur MJ, Heemstra HE, Giesen EBW, Postma MJ. Cost-effectiveness analysis of rivaroxaban for treatment and secondary prevention of venous thromboembolism in the Netherlands. J Med Econ. 2017 Aug 3;20(8):813–24.
- 2. Baeten S a, van Exel NJ a, Dirks M, Koopmanschap M a, Dippel DW, Niessen LW. Lifetime health effects and medical costs of integrated stroke services a non-randomized controlled cluster-trial based life table approach. Cost Eff Resour Alloc. 2010;8(1):21.
- 3. Medicijnkosten.nl. The National Health Care Institute (ZIN) [Internet].
- Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, et al. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018;36(20):2017– 23.
- 5. Hakkaart-van Roijen L, van der Linden N, Bouwmans C, Kanters T, Swan Tan S. Kostenhandleiding: Methodologie van kostenonderzoek en referentieprijzen voor economische evaluaties in de gezondheidszorg. Zorginstituut Ned. 2016;1–120.
- 6. van Bellen B, Bamber L, Correa de Carvalho F, Prins M, Wang M, Lensing AWA. Reduction in the length of stay with rivaroxaban as a single-drug regimen for the treatment of deep vein thrombosis and pulmonary embolism. Curr Med Res Opin. 2014;30(5):829–37.
- Dutch Health Authorities. NZa zorgproductapplicatie. Declaration code: 070419. [Internet].
 2018.
- 8. Roijen LH, Linden N van der, Bouwmans C, Kanters T, Tan SS. Dutch manual for costing studies in health care. Diemen; 2015.
- 9. de Klerk M, de Boer A, Plaisier I, Schyns P, Kooiker S. Informele hulp: wie doet er wat? -Rapport - SCP [Internet]. 2015-35. 2015.
- 10. van den Berg B, Brouwer W, van Exel J, Koopmanschap M, van den Bos GAM, Rutten F. Economic valuation of informal care: lessons from the application of the opportunity costs and proxy good methods. Soc Sci Med. 2006;62(4):835–45.

Supplementary data file – Table S3

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Table S3. Utility values included in the cost-effectiveness model

	Value (95% CI)	Distribution	Reference
Utilities			•
Index VTE			
0–1 month	0.565 (0.501 – 0.620)	Beta	[1]
1–2 months	0.655 (0.585 – 0.713)	Beta	[1]
2–3 months	0.674 (0.606 – 0.729)	Beta	[1]
3–4 months	0.698 (0.635 – 0.750)	Beta	[1]
4–5 months	0.707 (0.645 – 0.758)	Beta	[1]
Baseline utility 6 months after index VTE	0.715 (0.646 – 0.770)	Beta	[1]
Recurrent VTE			
DVT	0.605 (0.514 – 0.678)	Beta	[1]
Non-fatal symptomatic PE	0.621 (0.477 – 0.725)	Beta	[1]
Non-fatal incidental PE	0.664 (0.615 – 0.707)	Beta	[1]
Non-ICH MB	0.593 (0.461 – 0.693)	Beta	[1]
CRNMB	0.622 (0.568 – 0.669)	Beta	[1]
Utility decrements	•		
Recurrent VTE within first six months after index VTE			
DVT	0.040 (0.000 - 0.158)	Beta	[1]
Symptomatic PE	0.024 (0.000 – 0.195)	Beta	[1]
Incidental PE	0.189 (0.021 - 0.404)	Beta	[1]
ICH	0.380 (0.285 – 0.475)	Beta	[2]
Severe PTS (<6 months after diagnosis)	0.186 (0.090 - 0.280)	Beta	[1]
Severe PTS (>6 months after diagnosis)	0.070 (0.053 – 0.088)	Beta	[2]
СТЕРН			
0-1 year	0.194 (0.071 – 0.303)	Beta	[3]
1–4 years	0.109 (0.000 - 0.244)	Beta	[3]
4–5 years	0.079 (0.000 – 0.277)	Beta	[3]

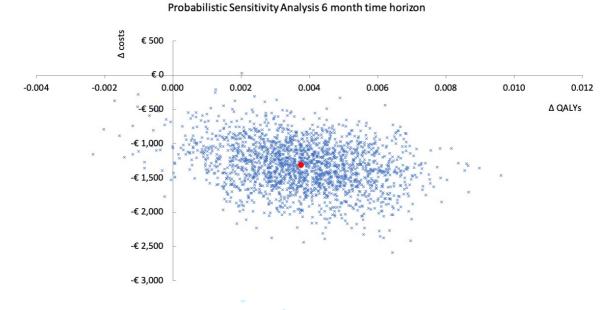
Abbreviations: CI, confidence interval; CRNMB, clinically relevant non-major bleeding; CTEPH, chronic thromboembolic pulmonary hypertension; DVT, deep vein thrombosis; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; PTS, post-thrombotic syndrome; VTE, venous thromboembolism

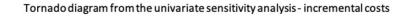
References

- Lloyd AJ, Dewilde S, Noble S, Reimer E, Lee AYY. What Impact Does Venous Thromboembolism and Bleeding Have on Cancer Patients' Quality of Life? Value Heal. 2018;21(4):449–55.
- 2. Stevanović J, de Jong LA, Kappelhoff BS, Dvortsin EP, Voorhaar M, Postma MJ. Dabigatran for the Treatment and Secondary Prevention of Venous Thromboembolism; A Cost-Effectiveness Analysis for the Netherlands. PLoS One. 2016;11(10):e0163550.
- 3. Roman A, Barbera JA, Castillo MJ, Muñoz R, Escribano P. Health-related quality of life in a national cohort of patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. Arch Bronconeumol. 2013;49(5):181–8.

Supplementary data file – Figure S1

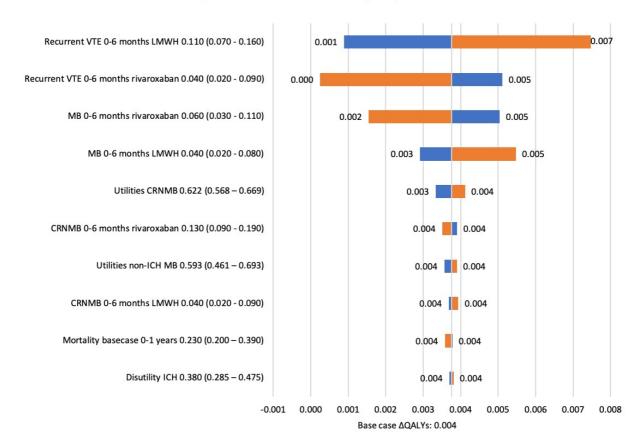
Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism




Figure S1. Probabilistic sensitivity analysis with six-month time horizon (scenario 1). The red mark represents the deterministic incremental cost-effectiveness ratio. Abbreviation: QALY, quality adjusted life-year

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism



-€2,000-€1,800-€1,600-€1,400-€1,200-€1,000 -€800 -€600 -€400 -€200 €0 Base case Δcosts: -€1,312

Figure S2. Tornado diagram from the univariate sensitivity analysis for scenario 1 showing the impact of parameters on the incremental costs. *Abbreviations: MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism*

Manuscript title: Cost-effectiveness analysis and budget impact of rivaroxaban in cancer patients at risk of recurrent venous thromboembolism

Tornado diagram from the univariate sensitivity analysis - incremental QALYs

Figure S3. Tornado diagram from the univariate sensitivity analysis for scenario 1 showing the impact of parameters on the incremental QALYs. Abbreviations: CRNMB, clinically relevant non-major bleeding; ICH, intracranial haemorrhage; MB, major bleeding; PE, pulmonary embolism; VTE, venous thromboembolism

CHEERS checklist—Items to include when reporting economic evaluations of health interventions

	Item		Reported on page No/
Section/item	No	Recommendation	line No
Title and abstract			
Title	1	Identify the study as an economic evaluation or use more specific terms such as "cost-effectiveness	Page 1, line 9-10
		analysis", and describe the interventions compared.	
Abstract	2	Provide a structured summary of objectives,	Page 1, line 34-6
	-	perspective, setting, methods (including study design	
		and inputs), results (including base case and	
		uncertainty analyses), and conclusions.	
Introduction			
Background and	3	Provide an explicit statement of the broader context	Page 4, line 91-12
objectives		for the study.	
- · , - · · · ·		Present the study question and its relevance for	Page 4, line 121-120
		health policy or practice decisions.	
Methods			
Target population and	4	Describe characteristics of the base case population	Page 5, line 149-15
subgroups	•	and subgroups analysed, including why they were	Page 5, line 179
2008.0002		chosen.	
Setting and location	5	State relevant aspects of the system(s) in which the	Page 4, line 130-14
	5	decision(s) need(s) to be made.	
Study perspective	6	Describe the perspective of the study and relate this	Page 5, line 135-137
orady perspective	Ũ	to the costs being evaluated.	
Comparators	7	Describe the interventions or strategies being	Page 4, line 130-132
comparators		compared and state why they were chosen.	
Time horizon	8	State the time horizon(s) over which costs and	Page 5, line 152-154
	0	consequences are being evaluated and say why	1 age 5, mie 152 15
		appropriate.	
Discount rate	9	Report the choice of discount rate(s) used for costs	Page 8, line 242
Discount rate	5	and outcomes and say why appropriate.	Page 9, line 264
Choice of health	10	Describe what outcomes were used as the measure(s)	Page 4, line 133-140
outcomes	10	of benefit in the evaluation and their relevance for	
outcomes		the type of analysis performed.	
Measurement of	11a	Single study-based estimates: Describe fully the	
effectiveness	110	design features of the single effectiveness study and	
enectiveness		why the single study was a sufficient source of clinical	
		effectiveness data.	
	11b	Synthesis-based estimates: Describe fully the methods	
	110	used for identification of included studies and	Page 6, line 184-210
		synthesis of clinical effectiveness data.	
Measurement and	12	If applicable, describe the population and methods	· · · · · · · · · · · · · · · · · · ·
valuation of preference	12	used to elicit preferences for outcomes.	
based outcomes			
Estimating resources and	13a	Single study-based economic evaluation: Describe	
costs	100	approaches used to estimate resource use associated	
		with the alternative interventions. Describe primary	
		or secondary research methods for valuing each	
		resource item in terms of its unit cost. Describe any	
		adjustments made to approximate to opportunity	
		costs.	
	13b	Model-based economic evaluation: Describe	Page 8, line 213-253
	100	approaches and data sources used to estimate	1 0 ₀ c 0, mic 210 200

	Item		Reported on page No/
Section/item	No	Recommendation	line No
		resource use associated with model health states.	
		Describe primary or secondary research methods for	
		valuing each resource item in terms of its unit cost.	
		Describe any adjustments made to approximate to	
		opportunity costs.	
Currency, price date, and	14	Report the dates of the estimated resource quantities	Page 8, line 24
conversion		and unit costs. Describe methods for adjusting	
		estimated unit costs to the year of reported costs if	
		necessary. Describe methods for converting costs into	
		a common currency base and the exchange rate.	
Choice of model	15	Describe and give reasons for the specific type of	Page 5, line 143-17
		decision-analytical model used. Providing a figure to	
		show model structure is strongly recommended.	
	16	Describe all structural or other assumptions	Page 5, line 162-16
Assumptions		underpinning the decision-analytical model.	Page 8, line 230-24
Analytical methods	17	Describe all analytical methods supporting the	Page 7, line 190-20
		evaluation. This could include methods for dealing	Page 10, line 284-30
		with skewed, missing, or censored data; extrapolation	
		methods; methods for pooling data; approaches to	
		validate or make adjustments (such as half cycle	
		corrections) to a model; and methods for handling	
		population heterogeneity and uncertainty.	
Results		6	
Study parameters	18	Report the values, ranges, references, and, if used,	Page 6, line 201-21
		probability distributions for all parameters. Report	Page 8, line 241-25
		reasons or sources for distributions used to represent	Page 9, line 264-27
		uncertainty where appropriate. Providing a table to	Page 10, line 276-27
		show the input values is strongly recommended.	-
Incremental costs and	19	For each intervention, report mean values for the	Page 11, line 320-32
outcomes		main categories of estimated costs and outcomes of	Page 14, line 393-39
		interest, as well as mean differences between the	5 ,
		comparator groups. If applicable, report incremental	
		cost-effectiveness ratios.	
Characterising uncertainty	20a	Single study-based economic evaluation: Describe the	
Ç ,		effects of sampling uncertainty for the estimated	
		incremental cost and incremental effectiveness	
		parameters, together with the impact of	
		methodological assumptions (such as discount rate,	
		study perspective).	
	20b	Model-based economic evaluation: Describe the	Page 13, line 354-38
		effects on the results of uncertainty for all input	2 .
		parameters, and uncertainty related to the structure	
		of the model and assumptions.	
Characterising	21	If applicable, report differences in costs, outcomes, or	Page 12, line 311-33
heterogeneity		cost-effectiveness that can be explained by variations	
		between subgroups of patients with different baseline	
		characteristics or other observed variability in effects	
		that are not reducible by more information.	
Discussion			
Study findings, limitations,	22	Summarise key study findings and describe how they	Page 11, line 323-35
generalisability, and		support the conclusions reached. Discuss limitations	
current knowledge		and the generalisability of the findings and how the	
C		findings fit with current knowledge.	

	Item		Reported on page No/
Section/item	No	Recommendation	line No
Source of funding	23	Describe how the study was funded and the role of the funder in the identification, design, conduct, and reporting of the analysis. Describe other non- monetary sources of support.	Page 3, line
Conflicts of interest	24	Describe any potential for conflict of interest of study contributors in accordance with journal policy. In the absence of a journal policy, we recommend authors comply with International Committee of Medical Journal Editors recommendations.	Page 3, line 81-
For consistency, the CH	EERS state	ment checklist format is based on the format of the CON	SORT statement checklist