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S1. Bayesian Hierarchical Modeling We applied the normal gamma
(NG) prior for our hierarchical linear regression model in both stage II and
stage III with different hierarchical levels. The subsequent sections include
the general full conditional posterior distribution of the parameters, initial
values for MCMC and hyperparameter settings.

S1.1 Full conditional posterior distribution In both the radiogenomic
model and the radiogenomic clinical model, we applied a linear regression
model with the Bayesian normal gamma shrinkage method to achieve sparse
signaling detection.

Consider the linear regression model: Y = Xβ + ε.

In the radiogenomic model, Y denotes the specific RmF or RF, and X is
the matrix of the genomic platform combinations. In the radiogenomic clin-
ical model, Y denotes the clinical outcome, and X represents the matrix of
the RmF or RF combinations modulated by different gene expression parts
explained by different genomic platforms. For our general regression model,
the full posterior distribution can be expressed as

β|rest ∼ Normal((XTX + σ2D−1τ )−1XTY, (XTX + σ2D−1τ )−1σ2)

σ2|result ∼ IG(a+ n/2, b+ (Y −Xβ)T (Y −Xβ)/2)

ψji|rest ∼ GIG(a = γ−2j , b = β2ji, p = λj −
1

2
)

λj |rest ∼ (1/λj)
ãexp{−b̃γ−2j /(2λj)− cλj} ×

pj∏
i=1

ψ
λj
ji /{(Γ(λj))

pj (2γ2j )pjλj}
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γ−2j |rest ∼ Gamma(ã+ pjλj , (b̃/λj +

pj∑
i=1

ψji)/2),

If applying to the radiogenomic clinical model, j denotes the RmF combi-
nation that are modulated by the gene expression that is explained by the
jth platform, and k represents the kth RmF; if applying to the radiogenomic
model, j is the genomic platform type index, i is the gene index.

Specifically, λj is sampled through the Metropolis-Hastings method, the
proposed family is exp(σ2λz)λj , and z comes from the standard normal dis-
tribution. The acceptance rate is controlled between 20% and 30%.

S1.2 Initial values and hyperparameter settings For the general model,
the initial values and hyperparameter settings are as follows.

• For the prior distribution of σ2, we choose to apply the uninformative
prior and set a = b = 0.001.
• The hyperparameter for λj is at c; we set c = 1 [Griffin et al. (2010)].
• For the prior distribution of γ−2j , ã = 2 and if the design matrix X is

non-singular, we set b̃ to be the mean of the least squares solution β̂2ji.

If X is singular, b̃ is set to be the average of the minimum-length least

squares (MLLS) solution β̂2ji across all subjects.
• The initial β is estimated from the frequentist elastic net algorithm.
• The initial value of σ2 is estimated by the mean squared error from

the frequentist elastic net algorithm.
• The initial values for γ−2j , λj and ψji are set to 1.

S2 Data preprocessing for GBM In this section, we mainly present
data preprocessing techniques and procedures, especially for GBM MRI
imaging data, including imaging preprocessing, feature extraction and de-
scription. Further, we illustrate our preliminary checking results for radiomic
features (RFs) and describe how radiomic-meta-features (RmFs) are gener-
ated. For the genomic platform data sets, we perform missing value impu-
tation; detailed information is described in the last subsection.

S2.1 Radiomic-feature preprocessing Our GBM MRI imaging data set
was downloaded from The Cancer Imaging Archive with two imaging modal-
ities: T1-post contrast and T2-weighted FLAIR.
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In brief, the dicom MRI images were converted to the nifti format (.nii) using
MRIConvert software (http : //lcni.uoregon.edu/ ∼ jolinda/MRIConvert/
). We then performed pre-processing steps on the MRI images by following
a certain pipeline, and further obtained the 3D tumor volumes. The pipeline
is described here.

a. Non-uniformity correction: We used a nonparametric intensity non-uniformity
normalization (N3) correction module in MIPAV (v 6.0) [McAuliffe et al.
(2001)] to correct the shading artifacts that resulted from partial volume
averaging errors of the MRI instrument. The N3 algorithm iteratively esti-
mates the true tissue intensity distribution, as the shading artifacts lead to
reduced signal intensities in certain image regions.

b. Registration: We used medical image processing, analysis and visualiza-
tion (MIPAV) software to register the T2-FLAIR N3 corrected images to
the respective T1-POST N3 corrected images. We used the normalized mu-
tual information criterion in the optimized automatic registration module
in MIPAV ((http://mipav.cit.nih.gov/).

c. Segmentation: Semi-automated segmentation of the tumor regions in 3D
was performed by our clinical experts using the Medical Image Interaction
Toolkit 3M3 (http://www.mint-medical.de/). This software features slice-
by-slice contour drawing, correction tools and 3D interpolation of the tumor
region, which are utilized to perform the tumor segmentation.

d. Re-slicing: Lastly, we re-sliced the original as well as the pre-processed
images to widths of 1 millimeter using the NIFIT toolbox in MATLAB
(http : //research.baycrest.org/ ∼ jimmy/NIfTI). Image Feature Com-
putation: Textural and regional image features. Computer-based texture
analysis of medical images such as MRI scans depicts some quantitative
properties like the measurement of regional intensity variations. Using these
properties in the textural analysis can further help in the prediction of sev-
eral factors such as molecular subtypes of the disease and patient survival
times.

In this study, the image-derived textural features are utilized in analyzing
the relationship between imaging data, genomic multiplatform data sets,
and clinical outcomes. For this analysis, we derived textural features from
the largest axial 2D slice of the tumor area [Zhou et al. (2014)]. These tex-
tural features were obtained from the following two-step process.
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1. Image filters: We used Laplacian of Gaussian (LoG) [Haralick (1979) and
Gaussian filters [Haralick (1992)] to filter the MR images at five different
scales, so as to obtain fine, medium and coarse transforms of the 2D tumor
region. The LoG filter, commonly used for edge detection, is a measure of
the second spatial derivative of an image. The Laplacian filter is applied to
an image that has been smoothed using a Gaussian filter; hence, reducing
the sensitivity to noise. We used five standard deviations (σ) to derive fine
features at 0.2mm and 0.4mm, medium features at 1.5mm and 2.5mm, and
coarse features at 5mm.

2. Texture features and summary measures: In terms of textural features, we
calculated Haralick features for both T2-weighted FLAIR and T1-weighted
post contrast images. The gray-level-co-occurrence matrices (GLCMs) were
derived for both the original and pre-processed images. Further, from the
GLCMs, we computed Haralick statistical features at 4 different distances
(1mm, 2mm, 4mm and 8mm). Besides the textural features, we obtained
some summary features such as the mean intensity of the images, entropy
and uniformity measures. These features are also known as TxR features
[Ganeshan et al. (2010)]. In addition to the textural features, we computed
the area and mean intensity of the largest tumor slice. These are referred to
as the regional features.

After the extraction of the features, we conducted further normalization
by calculating two different ratios: type-1 and type-2. Ratio type-1 corre-
sponds to the ratio between the features computed at different filters and
the features computed from the original images (unfiltered features). Ratio
type-2 corresponds to the ratio between features computed at the coarsest
scale and those computed at the finer scale.

In our analysis, we considered three major types of RFs: Haralick features,
histogram features and regional features. We have 13 total Haralick features,
with the names and corresponding calculation formulas listed in Supple-
mentary Table S1. Histogram features are calculated from the histogram
of the image intensity distribution, with a total of 3 typical features, includ-
ing the mean intensity, entropy and uniformity characteristics, with formula
shown in Supplementary Table S2. As mentioned in the imaging prepro-
cessing section, the two regional features that we utilized were the area and
mean intensity of the largest tumor slice.
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Table S1
Haralick features and formulas

Textural Features Formula

Energy f1 =
∑
i

∑
j{p(i, j)}2

Contrast f2 =
∑Ng−1
n=0 n2

{∑Ng

i=1

∑Ng

j=1 p(i, j)||i− j| = n
}

Correlation f3 =

∑
i

∑
j
(ij)p(i,j)−µxµy
σxσy

Sum of squares: variance f4 =
∑
i

∑
j(i− µ)2p(i, j)

Inverse difference moment (local homogeneity) f5 =
∑
i

∑
j

1
1+(i−j)2 p(i, j)

Sum average f6 =
∑2Ng

i=2 ipx+y(i)

Sum variance f7 =
∑2Ng

i=2 (i− f8)2px+y(i)
Sum entropy f8 = −

∑2Ng

i=2 px+y(i)log{px+y(i)}
Entropy f9 = −

∑
i

∑
j p(i, j)log{p(i, j)}

Difference variance f10 =variance of px−y

Difference entropy f11 = −
∑Ng−1
i=0 px−y(i)log{px−y(i)}

Cluster shade f12 =
∑Ng−1
i=0

∑Ng−1
j=0 {i+ j − µx − µy}3p(i, j)

Cluster prominence f13 =
∑Ng−1
i=0

∑Ng−1
j=0 {i+ j − µx − µy}4p(i, j)

* Ng denotes the number of distinct grey levels used; µx,µy,σx and σy are the means and standard

deviations of the partial probability density px and py; px(i) =
∑Ng

j=1 p(i, j), py(j) =
∑Ng

i=1 p(i, j);

px+y(k) =
∑Ng−1
i=0

∑Ng−1
j=0 p(i, j), i+j = k and k = 2, 3, ..., 2Ng; px−y(k) =

∑Ng−1
i=0

∑Ng−1
j=0 p(i, j), |i−

j| = k and k = 0, 1, ..., Ng − 1.

Table S2
Histogram Features and formulas

Histogram Features Formula

Mean m =
∑L−1
i=0 zip(zi)

Uniformity U =
∑L−1
i=0 p

2(zi)

Entropy e = −
∑L−1
i=0 p(zi)log

p(zi)
2

* zi denotes a random variable indicating intensity,
p(zi) is the histogram of the the intensity values
within ragion of interest (ROI), and L is the number
of possible intensity levels.

S2.2 RF and RmF description In total, we have 972 RFs that we ex-
tracted from the original imaging data. Considering that some features were
extracted from the same imaging modality, or were processed using the same
algorithm, we categorized 972 RFs into 20 groups based on their properties,
extracting procedure and imaging modalities. Table S3 illustrates the name
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of the RF groups and the corresponding brief description.

The 972 preprocessed RFs are highly correlated when checking for Pear-
son correlation. Figure S1 clearly shows that the RFs are highly correlated
with the block structure due to two imaging modalities as well as two major
normalizing approaches (ratio-1 and ratio-2) applied during feature extrac-
tion.

Fig S1: Heatmap of the Pearson correlation among radiomic features (972 features)

In our analysis, we chose to apply dimensional reduction approaches to our
RFs. The typical technique is principal component analysis (PCA), however,
the key limitation lies in that it does not lead to sparse loadings, making
it harder to interpret the results. Hence, alternatively, the sparse PCA al-
gorithm developed by [Zou, Hastie and Tibshirani (2006)] was applied with
the formulation described below.

Suppose Zi is the ith principal component derived from ordinary PCA of
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Table S3
RF groups and description

RF group name Description

F Region
Regional features including tumor area, maximum intensity,
minimum intensity, mean intensity of T2-weighted FLAIR image

F LoG Tex R1
Ratio1(filter/unfiltered) Haralick texture features derived from
LoG filtered T2-weighted FLAIR image

F Unft Hist Histogram features derived from unfiltered T2-weighted FLAIR image

F LoG Hist R1
Ratio1(filter/unfiltered) histogram features derived from LoG filtered
T2-weighted FLAIR image

T1 Region
region features including tumor area, maximum intensity,
minimum intensity, mean intensity of T1-post contrast image

T1 LoG Tex R1
Ratio1(filter/unfiltered) Haralick texture features derived from
LoG filtered T1-post contrast image

T1 Unft Hist Histogram features of unfiltered T1-post contrast image

T1 LoG Hist R1
Ratio1(filter/unfiltered) histogram features of LoG filtered T1-post
contrast image

F LoG Tex Fine
Haralick features derived from LoG filtered FLAIR image with
fine scale

F LoG Tex R2
Ratio2(coarse/fine) haralick features derived from LoG
filtered T2-weighted FLAIR image

F LoG Hist Fine Histogram features of fine LoG filtered T2-weighted FLAIR image

F LoG Hist R2
Ratio2(coarse/fine) histogram features of LoG filtered
T2-weighted FLAIR image

F Gauss Hist Fine
Histogram features of Gaussian filtered FLAIR image
with fine scale

F Gauss Hist R2
Ratio2(coarse/fine) histogram features derived from Gaussian
filtered T2-weighted FLAIR image

T1 LoG Tex Fine
Haralick features derived from LoG filtered T1-post contrast
image with fine scale

T1 LoG Tex R2
Ratio2(coarse/fine) haralick texture features derived from
Gaussian filtered T2-weighted FLAIR image

T1 LoG Hist Fine
Histogram features of LoG filtered T1-post contrast
image with fine scale

T1 LoG Hist R2
Ratio2(coarse/fine) histogram features derived from
LoG filtered T1-post contrast image

T1 Gauss Hist Fine
Histogram features of Gaussian filtered T1-post
contrast image with fine scale

T1 Gauss Hist R2
Ratio2(coarse/fine) histogram features derived from Gaussian
filtered T1-post contrast image
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matrix X with n samples and p predictors, where the loading matrix is de-
noted as Vi. By regressing PC on X with penalization, sparse loading can
be achieved.

β̂ = argβmin||Zi −Xβ||2 + λ||β||2 + λ1||β||1

, where ||β||1 =
∑p
j=1 |βj |. The updated sparse loading can be expressed as

V̂i = β̂

||β̂||
, and XV̂i is the ith approximated principal component. For a more

detailed theorem and proof, see the appendix for the publication by Zou and
Hastie (2006).

The loadings as well as the leading principal components were derived from
both ordinary PCA and sparse PCA, based on RF-prespecified groups, the
squared loading proportion of the principal analysis is calculated respec-
tively. This information is shown in Figure S2 below and in Figure 2 in the
main text. When comparing these two heatmaps, we can explicitly see a
great difference in the sparsity level. We utilized 22 leading principal com-
ponents derived from sparse PCA as our imaging features in modeling stage
II and stage III. We call them “radiomic-meta features” (RmFs) in the anal-
ysis.

S2.3 Dataset Sample Size Figure S3 shows the diagram of the sample
size description of genomic data of different platform, radiomic data sample
size and the clinical data sample size as well as their intersection sample sizes.

mRNA: continuous data
CN: log transformed continuous data
microRNA: continuous data
Radiomic data: continuous
Clinical: continuous data (we took the survival in month with log2 transfor-
mation as the outcomes)

S2.4 Missing value imputation for genomic platform data We have miss-
ing values in the copy number data set, with 4.3% of the data missing.
To impute the missing values, we chose to use the following steps. First,
we impute each NA with the average values of the other patients (mean
imputation). Second, using the complete matrix with mean imputation to
calculate the correlation matrix between markers, for each target marker
with missing elements, we select 3 markers that are the most highly posi-
tively correlated with this marker. Third, we regress the target marker on
the 3 selected markers and obtain the predicted values. Lastly, we replace
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Fig S2: PCA Squared loadings proportion for each RF group. For each of
the 23 PC scores, the sum of the squared loadings of each group is calculated after
dividing by the total sum of the squared loadings that equals exactly 1. The heatmap
shows this values in grey level, interpreted the RF group importance for each PC
component. The grey level ranging from white to black matches the proportional
values ranging from 0 to 1.
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mRNA		
(N=558)	

microRNA	
(N=575)	

CN	
	(N=308)	

		308	 		529	

			304	

304	

Genomics	
(N=304)	

Clinical	
(N=596)	

Radiomics	
(N=82)	

		78	
		304	

		82	

		78	

Fig S3: Diagram of sample size, there are 304 samples having all mRNA, CN and
microRNA information, and 78 samples have clinical and Radiomic information.
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the predicted values for the missing elements of the target marker in the
original matrix.

S3 Nonlinearity Checking for Genomic Model We applied gener-
alized additive model (GAM) in Genomic Model for each gene given that
GAM, compared with General Linear Model (GLM), can achieve higher
flexibility in modeling the genomic mechanisms. To check the existence of
nonlinearity, we show the comparison of GLM and GAM in terms of ANOVA
p-values for model comparison across all 49 genes. Moreover, we also show
the fitted smooth curves and the corresponding confidence interval lines for
several genes and the platforms in below.

Fig S4: Histogram of ANOVA p-value when doing model comparison (GLM vs.
GAM and GLM is nested into GAM), small p-value indicates the two models have
significant difference and GAM is preferred over GLM.



12

Fig S5: Fitted smoothing curve for the 1st leading PC score of copy number
alteration of gene AKT1, the figure shows the existence of nonlinearity

Fig S6: Fitted smoothing curve for the 2st leading PC score of copy number
alteration of gene AKT1, the figure shows the existence of nonlinearity
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Fig S7: Fitted smoothing curve for the 1st leading PC score of microRNA mapped
with gene MET, the figure shows the existence of nonlinearity

S4 Additional Results

S4.1 Magnitude in Stage II In the radiogenomic model, we dig into the
relationship between the multiplatform genomic data and RmFs; the mag-
nitudes (posterior mean of the coefficients) are shown in Figure S3.

S4.2 Convergence Checking We applied Bayesian Normal Gamma shrink-
age model taking account of the multi-scale datasets in both stage II and
stage III, thus, we check the converence here for the parameters and hyper-
parameters in stage II and stage III.

In stage III, we have totally 185 parameters including βji, ψji and j =
1, 2, 3, 4; i = 1, 2, 3, ..., 22 σ2, λj (j = 1, 2, 3, 4) and 1/γ2j (j = 1, 2, 3, 4).
We ran MCMC for 30000 iterations and summarize the results using 20000
samples with the burn-in samples removed. We evaluate the convergence by
checking traceplots of 3 main parameter vectors: βs, ψs and σ2, as well as
the ratio of λj/(1/γ

2
j ) which identifiably leads to the estimation of ψs. We

show the corresponding traceplots for all the parameters in stage III and
stage II in separate supplementary file “Traceplot stage2 stage3.pdf”.

In addition, we check the convergence of the parameters in Stage III us-
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Fig S8: Posterior mean of magnitude from stage II (radiogenomic model).
For each RmF, the posterior mean of βjg is the magnitude of the gth’s mRNA part
explained by the jth genomic platform. After filtering, 92 gene-platform combina-
tions are sorted and grouped by gene, and the positive and negative effects are
respectively illustrated in red and purple.

ing Geweke test Geweke et al. (1991) where we test for the mean difference
between first 10% proportion and the last 50% of the samples for all the
parameters. P values are illustrated via histogram plots as in the following
figures. The histogram is not skewed to the right which indicates proper
mixing for MCMC iterations.

In all, our result summary is based on the chains which are long enough
to guarantee the convergence.

S4.3 Results of Different Thresholds Checking Here in this section, we
check the results when setting different thresholds for both stage II and stage
III, respectively δ1 and δ2. For δ1 we check 2 more results when δ1 = 0.05
and δ1 = 0.1 and compare the result with our result in the main text with
δ1 = 0.075. Similary, we check the results for stage III when δ2 = 0.02 and
δ2 = 0.08 and compare the result with δ2 = 0.05. These are all shown in
figures from Fig S18 to Fig S30.

The resutls show that for both stage II and stage III, the number of the
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Fig S9: Geweke test for all parameters, 7.7% have p value smaller than 0.05.

signals that are flagged changes with the threshold settings. However, the
order of the posterior probabilities are similar and specifically, for stage III,
the results do not change much as the threshold decreases or increases within
proper range. Thus, we choose the specific threshold based on how it can
balance the sparsity and biological interpretation.

S5 Stage III Result Using Bayessian Lasso In our paper, we ap-
plied Normal Gamma prior in both stage II and stage III. The reason we
chose to apply normal gamma prior here is mainly considering about the
flexibility of the shrinkage where Normal Gamma contains two parameters
of the prior settings in coefficients. We also applied Bayesian Lasso Park and
Casella (2008) in stage III, we also allow different hyperparameters for dif-
ferent Radiomic groups (Radiomic components driven by different genomic
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factors). The prior settings are:

For the radiogenomic clinical model,

Y = Iα+ ε

Y ∼ Normal(Iα, σ2INGIC)

α ∼ Normal(0, Dψ)

Dψ = diag(ψ1,1, ψ1,2, ..., ψ1,K , ψ2,1, ψ2,2, ..., ψ2,K , ..., ψJ,1, ψJ,2, ..., ψJ,K),

where J denotes the total number of different RF combination types (j =
1, 2, 3, ..., J , our J = 4), k denotes the RF index (k = 1, 2, 3, ...,K). Further,
we assign our prior and hyper-prior distributions as ψj,k ∼ Gamma(1, 1/(2γ2j )),

σ2 ∼ InverseGamma(u1, u2) and 1/(2γ2j ) ∼ Gamma(ẽ, f̃/(2λj)). Finally,
RF combination selection is based on the posterior probability of the MCMC
samples.

The result shows that Bayesian Lasso, compared with Normal Gamma prior,
leads to less shrinkage. The result is illustrated in Fig S10. However, since
Bayesian Lasso has one hyperparameter, which lacks enough flexibility, Nor-
mal Gamma is more preferred as the prior distribution in our analysis.

S6 Result Using Different Regularization Parameter in sPCA
In our paper, the regularization parameter in implementing Sparse PCA
Zou, Hastie and Tibshirani (2006) that we choose is λ = 2.5, which gave
us proper balance between the variance that the leading PCs can explain,
the sparsity of the loadings which leads to better interpretation, and the
number of the leading RmF. However, we explored large range of the λs
(λ = 0.5, 1, 1.5, ..., 5) and the corresponding loadings and the loadings are
shown in below. As we can see from the loadings of the neighboring λ, λ = 2
and λ = 3, the main Radiomic features that contribute to the RmFs are
similar. We also plot the results of stage III for λ = 2 and λ = 3 and we
can see that, for example, RmF 7 driven by CN component is selected to
be important when λ = 2, and when checking the loadings, we noticed that
F LoG Tex R1 and F LoG Tex R2 count for the main part of the RmF 7,
which is similar with our results. We chose λ = 2.5 with the total cumulative
variance equal to 0.807. Thus, Sparse PCA is stable with the choice of the
regularization parameters within a specific range, and the interpretation is
similar as well.
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(a) positively significant RmF combina-
tions

(b) negatively significant RmF combina-
tions

Fig S10: Results of stage III (radiogenomic clinical model): Detecting postively and
negatively significant RmF combinations. Each RmF is segmented into 4 parts, of
which 3 parts are modulated by different genomic platform combinations denoted as
ICN ,ImiR, and IO. The 4th part is modulated by unknown/unmeasured factors
represented as Iḡ (“ng” in the legend). The barplot shows the posterior probabil-
ities that the coefficient for each part αjk > δ∗+, where αjk denotes the kth RmF
modulated by the jth genomic platform. For each RmF, the probabilities of these
4 components, CN, miRNA, others, and ng, are respectively shown in red, green,
purple and blue. Each probability in Figure (a) shows that 1 unit increment in the
RmF component leads to at least 5% increase in survival time. Each probability in
Figure (b) shows that 1 unit increment in the RmF component leads to at least 5%
decrease in survival time. We consider the markers to be significant if this posterior
probability is larger than 0.5.
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(a) positively significant RmF combina-
tions

(b) negatively significant RmF combina-
tions

Fig S11: Results of Stage III when λ = 2

S7 Sensitivity Analysis Based on the prior settings described in the
paper, for stage III, I = {ICN ,ImiR,IO,Iḡ}, and the effect parameter
α = {α1,α2,α3,α4}, then the model and prior construction can be ex-
pressed as

Y = Iα+ ε

Y ∼ Normal(Iα, σ2INGIC)

α ∼ Normal(0, Dψ)

Dψ = diag(ψ1,1, ψ1,2, ..., ψ1,K , ψ2,1, ψ2,2, ..., ψ2,K , ..., ψJ,1, ψJ,2, ..., ψJ,K),

where J denotes the total number of different RF combination types (j =
1, 2, 3, ..., J , our J = 4), k denotes the RF index (k = 1, 2, 3, ...,K). Further,
we assign our prior and hyper-prior distributions as ψj,k ∼ Gamma(λj , 1/(2γ

2
j )),

σ2 ∼ InverseGamma(u1, u2), λj ∼ exp(d), and 1/(2γ2j ) ∼ Gamma(ẽ, f̃/(2λj)).

We have hyperparameters d, ẽ and f̃ . For hyperparameter f̃ , it is suggested
that f̃ comes from minimum-length least squares (MLLS) of the coefficients.
Thus, we do the sensitivity analysis by adjusting d, ẽ. In our analysis, we
set up d = 1 and ẽ = 2, in the sensitivity analysis, we set up d = 0.5, 2 and
ẽ = 1, 4 respectively.
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(a) positively significant RmF combina-
tions

(b) negatively significant RmF combina-
tions

Fig S12: Results of Stage III when λ = 3

Results in below show that the selected RmF components are almost the
same across different hyperparameter settings. Even for some of the features
which are not selected given lower value of d, they are close to the margin.
Thus, our model is consistent with the hyperparameter settings. Since we
applied the same prior for stage II, similar results will be drawn.

S8 Computing Time Checking We check the scale of the computing
time for multiple numbers of genes that we analyze and the numbers of the
RmFs. Following figures show that our computing time increases linearly
with the number of the RmF, and with nonlinear trend with the number
of genes. All the computing is implemented using computing machine with
two 8-core Xeon E5-2690 (2.90GHz) processors and with 128G of memory.
In stage II, we apply parallel computing with multiple cores.
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(a) positively significant RmF combina-
tions

(b) negatively significant RmF combina-
tions

Fig S13: Results of Stage III when d = 0.5

(a) positively significant RmF combina-
tions

(b) negatively significant RmF combina-
tions

Fig S14: Results of Stage III when d = 2
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(a) positively significant RmF combina-
tions

(b) negatively significant RmF combina-
tions

Fig S15: Results of Stage III when ẽ = 1

(a) positively significant RmF combina-
tions

(b) negatively significant RmF combina-
tions

Fig S16: Results of Stage III when ẽ = 4
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Fig S17: The computing time (in minutes) changes with the number of the genes
and RmFs
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