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Supplementary Figure 1. DNA Recombination in brain regions of the Aldh1lI1-NuTRAP
model.

Aldh1l1-cre* NUTRAP* and cre negative NUTRAP* mice were treated with Tam or left untreated
and after a week brains were dissected for immunohistochemistry (IHC) analyses of frozen
sections immunostained with antibodies against mCherry and GFP. Representative confocal
fluorescent microscopy images of sagittal brain sections show colocalization of EGFP (green
signal) and mCherry (red signal) in (a) cortex (CTX), (b) cerebellum (CB), and (c) hippocampus
(HC) of the Aldhll1-NuTRAP. Untreated counterparts did not display EGFP or mCherry
expression. Scale bar: 50 pm.



32
33
34
35
36
37
38
39
40
41
42
43
44

a no Tam Tam (100 mg/kg, ip, 5 days)

*=|Aldh1I1cre/ERT2POS ={Aldh111cre/ERT2NEG = Aldh111cre/ERT2P0S
_ INUTRAPPos _ INUTRAPPOS . |NuTRAPPos
T T e
] 3 S
g g g’g
g 2 8
E E E"g
.10 e

10' 10 10° 10' 10° 10

GFP LogH GFP LogH GFP LogH
GFAP/mCherry/EGFP/DAPI GFAP/mCherry/EGFP mCherry/EGFP

g

N E
= ®©
[0
w +
o3
sa
= <
=
£ =
D
<2

g 51
N =
|__

x 2
i

o 8
oa
= <
=
< - |
el Iy -
< Z2

Supplementary Figure 2. Flow cytometry and immunohistochemical assessment of Tam-
independent recombination in the Aldhl1lI1-NuTRAP brain. Aldhlll-cre* NuUTRAP* and cre
negative NUTRAP* mice were treated with Tam or left untreated and after a week brains were
dissected for flow cytometry (FC) and immunohistochemistry (IHC) analyses. a Representative
FC plots of single- cell suspensions show a distinct population of EGFP* cells (25.76%) in brain
samples of Aldh1l1-NuTRAP mice treated with Tam. Such EGFP™ cell population was negligible
(0.05-0.19%) in brains of Aldh1I1-NuTRAP mice left untreated or cre negative NUTRAP positive
mice treated with Tam (n=2/group). b-¢”’ Representative confocal fluorescent microscopy images
of sagittal brain sections captured in the dentate gyrus of the hippocampus show colocalization
of EGFP (green signal) and mCherry (red signal) to GFAP expressing cells (blue signal:
astrocytes) in the Aldh1l1-NuTRAP. Untreated counterparts did not display EGFP or mCherry
expression. In panel b’-b” and ¢’-c”, cells depicted with yellow arrows are shown in the insets (2X
digital zoom) (n=3/group). Scale bar: 50um.
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Supplementary Figure 3: Enrichment distributions. a Distributions of enrichments in gene
expression (Positive fraction/Input) for each of the ribosomal profiling methods against the cell
type marker gene lists developed from cell sorting studies (Supplementary Data 1). b
Distributions of enrichments for genes observed as markers (statistically significant, fold change
>5) in only one ribosomal profiling study (Figure 3e) or from the cell sorting studies (Figure 39).
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Supplementary Figure 4. Differential gene expressions in AldhlI1-NuTRAP positive
fraction strongly correlate with physiological functions of astrocytes in the brain.
Heatmaps show in the TRAP positive fraction of Aldhll1-NuTRAP brains is: (a) enriched in
astrocyte marker genes compared to input, in agreement with over-representation of genes that
are critical in astrocyte physiological functions such as (b) cholesterol synthesis and transport, (c)
fatty acid metabolism, (d) receptors/channels, and (f) synapse modification (formation, function,
and elimination) processes while (e) under-representation of complement/immune mediators,
commonly associated with microglial function.
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Supplementary Figure 5. DNA Recombination in brain regions of the Cx3crl-NuTRAP
model. Cx3crl-cre* NUTRAP* and cre negative NUTRAP* mice were treated with Tam or left
untreated and after 4 weeks brains were dissected for immunohistochemistry (IHC) analyses of
frozen sections immunostained with antibodies against mCherry and GFP. Representative
confocal fluorescent microscopy images of sagittal brain sections show colocalization of EGFP
(green signal) and mCherry (red signal) in (a) cortex (CTX), (b) cerebellum (CB), and (c)
hippocampus (HC) of the Cx3crl-NuTRAP. Untreated counterparts did not display EGFP or
mCherry expression, but not specific background (noted especially in CTX). Scale bar: 50 um.
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Supplementary Figure 6. Flow cytometry and immunohistochemical assessment of Tam-
independent recombination in the Cx3crlcre-NuTRAP brain. Cx3crl-cre/ERT2"; NUTRAP*
and Cx3crl-cre/ERT2; NUTRAP* mice were treated with Tam or left untreated and after three
weeks brains were dissected for flow cytometry (FC) and immunohistochemistry (IHC) purposes.
a Representative FC plots of single- cell suspensions show a distinct population of EGFP* cells
(4.68%) in brain samples of Cx3crl-cre/ERT2" mice treated with Tam that almost exclusively co-
expressed CD11b (96.62%) and was undetectable (0.02 %) in brains of Cx3crl-cre/ERT2 held
to the same treatment. In Cx3crl-cre/ERT2" mice that did not receive Tam, EGFP+ were detected
at a lesser level than in treated counterparts (1.17%) (n=2/group). b-¢” Representative confocal
fluorescent microscopy images of sagittal brain sections captured in the hippocampus show
colocalization of EGFP (green signal) and mCherry (red signal) to CD11b expressing cells (blue
signal) in the Aldhlll-cre/ERT2*. Untreated counterparts had almost no EGFP or mCherry
expression. In panel b’-b” and ¢’-c”, cells depicted with yellow arrows are shown in the insets (2X
digital zoom) (n=3/group). Scale bar: 50 pm.
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Supplementary Figure 7. Differential gene expressions in Cx3cr1-NuTRAP positive fraction
correlate with enrichment of canonical targets of microglial SPI1 in the brain. Genes
enriched in the microglia transcriptome included an overrepresentation of genes regulated by
PU.1 (also known as Spil), a transcription factor that shapes the homeostatic functions of
microglia.
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Supplementary Figure 8. Enrichment distributions. a Distributions of enrichments in gene
expression (Positive fraction/Input) for each of the ribosomal profiling methods against the cell
type marker gene lists developed from cell sorting studies (Supplementary Data 2). b
Distributions of enrichments for genes observed as markers (statistically significant, fold change
>5) in only one ribosomal profiling study (Figure 6e) or from the cell sorting studies (Figure 7g).
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90 Supplementary Figure 9. Transcriptomic comparison of astrocytes and microglia.
91 Positive fractions from Aldh1ll1-NuTRAP and Cx3crl-NuTRAP were compared. b Regulator
92  analysis comparison. ¢ Pathway analysis comparison.
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Supplementary Figure 10. Conversion efficiency of CEGX spike-in controls. Exogenous
control sequences (CEGX, Cambridge, UK) with methylation and hydroxymethylation at specific
bases were spiked in to each sheared DNA sample (0.04% w/w) prior to oxidation and/or bisulfite
conversion. After sequencing, raw fastq files were run through CEGXQC v0.2, a custom FASTQC
program, to generate summary documents and QC reports based on the conversion performance
of the spike-in sequencing controls. a-b Conversion percentages for different cytosine
modifications (C, mC, and hmC) are plotted for bisulfite-converted and oxidative bisulfite-
converted libraries. Bisulfite-converted libraries show high conversion of unmodified cytosines
and low conversion of methylated and hydroxymethylated cytosines. While oxidative bisulfite-
converted libraries show high conversion of unmodified cytosines and hydroxymethylated
cytosines, and low conversion of methylated cytosines. The bisulfite-converted libraries are used
to determine the total percent modified cytosines (mC+hmC), while the oxidative bisulfite-
converted libraries are used to determine the percent methylated cytosines (mC).
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Supplementary Figure 11. CpG island, shore and shelf methylation and
hydroxymethylation in the Aldhl1ll1l- NuTRAP and Cx3crl- NuTRAP mouse brains by
WGoxBS. After Tam treatment, half brain hemispheres were harvested from Aldh1l1-NuTRAP
and Cx3cr1-NuTRAP mice and subjected to nuclei isolation and subsequent INTACT protocol for
genomic DNA extraction for epigenome analyses. Analysis of methylation and
hydroxymethylation levels covering CpG islands, shores, and shelves revealed that the shores
and shelves of Cx3crl-NuTRAP INTACT positive fractions cells had significantly higher mCG
levels (a-b) and significantly lower hmCG levels (c-d) compared to the other groups. (n=8/input
group, n=4/positive fraction group; 2-way ANOVA with Tukey’s multiple comparison test, *p<0.05,
**p<0.01).
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Supplementary Figure 12. Comparison of whole genome, repeat, and non-repeat levels of
methylation and hydroxymethylation between input and positive fractions of INTACT-
isolated DNA from Aldh1I1-NuTRAP and Cx3cr1-NuTRAP mouse brains. a Overall repetitive
elements have higher levels of CG methylation and non-repetitive elements have lower levels of
CG methylation than whole genome levels. While there are no differences in total mCG between
the input DNA, Aldhl1l1+ DNA, and Cx3crl+ DNA in the whole genome or repeat elements, there
is a small, but significant, difference in mCG between Aldh1l1* DNA and Cx3crl* DNA in non-
repeat elements of the genome. b There is less hmCG of Cx3crl+ DNA than both input DNA and
Aldh1l1+ DNA at the whole genome level and in repetitive and non-repetitive elements. ¢ There
is less mCH of Cx3crl1+ DNA than both input DNA and Aldh1l1+ DNA at the whole genome level
and in repetitive and non-repetitive elements. d LINEs contain less mCG in Cx3crl+ DNA than in
input DNA or Aldh1l1+ DNA. e LINEs, SINEs, and LTRs have lower hmCG levels in Cx3crl+ DNA
than in input DNA or Aldh1l1+ DNA. f SINEs and LTRs have lower mCH levels in Cx3crl+ DNA
than input DNA. Simple repeats have lower mCH levels in Cx3crl+ DNA than in input DNA and
Aldh1l1+ DNA. Aldhll1+ DNA has lower mCH levels in simple repeats than input DNA. (n=8/input
group, n=4/positive fraction group; 2-way ANOVA with Tukey’s multiple comparison’s test,
*p<0.05, **p<0.01, ***p<0.001).



Aldh111 Fabp7 —— Input
0 ) —— Cx3cr1-Pos
#
o0, — Aldh1l1-Pos

20+ :
# #
Ly 1
. PSS SUURIS S | S S
150 -600 -500 -400 -300 -200
Position Relative to TSS Position Relative to TSS
c d
Gfap Kenj10
15+

1
-400

-500 -400 -300 -200
Position Relative to TSS Pasition Relative to TSS
e f
Cx3crt Gprgé4
5 4
4 :
3_
g3 g
T I 2+
5} (5]
E 24 5
1

14

0 T T T 0 T T T T T 1

-600 -500 -400 -300 -750 -700 -650 -600 -550 -500 -450

Position Relative to TSS Position Relative to TSS
Aif1 Ciqa
8 20+ )
#

6 154
T 4+ T 10
o Q
E £

2| 5

0 T T T T 1 0 = - z N

2700 2750 2800 2850 2900 2950 -1000 -900 -800 -700 -600 -500

Position Relative to TSS Position Relative to TSS

133  Supplementary Figure 13. Non-CpG methylation (mCH) in specific gene promoters and
134  intragenic regions in Cx3crl-NuTRAP and Aldh1ll1-NuTRAP mouse brains by targeted
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BSAS. DNA from input, Cx3crl-NuTRAP positive fraction (Cx3crl-Pos), and Aldhll1-NuTRAP
positive fraction (Aldhll1-Pos) was assayed for region-specific mCH in astrocytic (Aldhll1, Fabp7,
Gfap, Kcnj10) and microglial (Cx3crl, Clga, Aifl, Gpr84) cell marker genes by targeted BSAS
for the same regions as in Figure 10. Average CH methylation (% mCH) at each CH site within
the displayed amplicon is plotted. Sites with greater than 1% differences in mCH between at least
two groups were analyzed for differential methylation (n=6/group; Two-way ANOVA with Tukey’s
post-hoc; *p<0.05 Input v. Cx3crl-Pos, #p<0.05 Input v. Aldh1l1, *p<0.05 Cx3crl-Pos v. Aldh1l1-
Pos). a-d For each astrocytic marker gene region assessed (Aldhl1ll, Fabp7, Gfap, Kcnj10) there
was at least one CH site that was differentially methylated between input, Aldh1l1-Pos, and/or
Cx3crl-Pos fractions. e There were no site-specific differences in mCH within the region of Cx3crl
between input, Cx3crl-Pos, and Aldhll1l-Pos fractions. f-h For each microglial marker gene
region assessed (Clga, Aifl, Gpr84) there was at least one CH site that was differentially
methylated between input, Aldh1l1-Pos, and/or Cx3crl-Pos fractions.
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148  Supplementary Figure 14. Correlation between gene promoter methylation and expression
149  in Cx3crl-NuTRAP and Aldh1ll1-NuTRAP brains. a-k DNA and RNA were isolated from
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Cx3cr1-NuTRAP brains (input, negative, and positive fractions) for paired targeted BSAS and
gPCR. Correlation of average CG methylation (% mCG) with gene expression (normalized RQ)
shows strong negative correlations (Pearson’s r; Bonferonni correction for multiple comparisons;
*p<0.0045) within microglial-specific marker genes (Cx3crl, Clga, Gpr84, Aifl). I-v DNA and
RNA were isolated from Aldh1l1-NuTRAP brains (input, negative, and positive fractions) for paired
targeted BSAS and gPCR. Correlation of average CG methylation (% mCG) with gene expression
(normalized RQ) shows strong negative correlations (Pearson’s r; Bonferonni correction for
multiple comparisons; *p<0.0045) within astrocyte-specific marker genes (Aldhl1l1, Kcnj10,
Fabp7, Gfap).
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Supplementary Figure 15. LPS systemic treatment as experimental demonstration of the
Cx3crl-cre/ERT2 model. a Schematic of the experimental design for epigenetic and
transcriptomic analyses of brain microglia upon LPS challenge. 3-4 weeks after Tam treatment,
Cx3crl-cre/ERT2*; NUTRAP* mice were subjected to a single ip injection with LPS or PBS as
control and 24 h later their brains dissected for protein and IHC purposes. b Validation of systemic
LPS treatment. Blood samples were collected at 4 and 24h after LPS injection before euthanasia
and brain harvest. Plasma samples and brain tissue homogenates were used to measure
concentration of inflammatory cytokines IL-6, TNFa, and IFNy by suspension array. Values are
expressed as average pg analyte/ml + SEM in plasma (4h and 24h time points) and average pg
analyte/mg +SEM in tissue (24h time point). c-f Representative confocal fluorescent microscopy
images of sagittal brain sections captured in the hippocampus show EGFP expression (green
signal) was found in cells that co-expressed mCherry (red signal) and CD11b (blue signal). ¢’’-
f’ 2X digital zoom on cells depicted with yellow arrows in (¢’-d’) and (f’) show co-localization of
EGFP and mCherry with CD11b but not with GFAP or NeuN. * p<0.05 between PBS and LPS
treated groups for each analyte by unpaired T test (n=4/PBS group and 5/LPS group). Scale bar:
100 pm.
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Supplementary Figure 16. gPCR validation of TRAP-RNA in the Cx3crl-cre/ERT2 model
following LPS treatment. 3-4 weeks after Tam treatment, Cx3crl-cre/ERT2"; NUTRAP* mice
were subjected to a single ip injection with LPS or PBS as control and 24 h later their brains
harvested and one hemisected half used for TRAP isolation of RNA and downstream analyses.
gPCR analysis of microglial genes (Clga and Itgam) and candidate genes related to LPS-induced
inflammation (Tir4, Myd88, Il1a, 1113, and Tnfa) demonstrate both enrichment and higher
magnitude changes in the positive fraction as compared to the input. Bar graphs represent
average RQ + SEM for each gene expression measured. *, *** p<0.05 and p<0.001 respectively
by two-way ANOVA followed by the Sidak’s multiple comparison test (n=4 for PBS group and n=5
for LPS group).
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185 Supplementary Figure 17. Targeted bisulfite amplicon sequencing (BSAS) to assess

186 methylation (NCG) of microglial DNA in cell-specific marker gene promoters 24 hours after
187 LPS challengein Cx3cr1-NuTRAP mouse brain. Gpr84, a microglial marker gene, has (a) lower
188 CG promoter methylation, by BSAS, and (b) higher gene expression, by RNA-Seq, in the
189 INTACT-isolated positive fraction than the input, regardless of LPS treatment. Aifl, a microglial
190 marker gene, has (c) lower CG promoter methylation, by BSAS, and (d) higher gene expression, by
191 RNA-Seq, in the INTACT-isolated positive fraction than the input, regardless of LPS treatment.
192 Fabp7, an astrocyte marker gene, has (e) no difference in promoter CG methylation between
193 input and INTACT-isolated positive fraction, by BSAS, and (f) higher gene expression, by RNA-
194 Seq, in the INTACT-isolated positive fraction than the input, regardless of LPS treatment. (g,h)
195 Eno2, a neuronal marker gene, has higher CG promoter methylation by BSAS (g), and no
196 difference in gene expression by RNA-Seq (h), in the INTACT-isolated positive fraction than the
197 input, regardless of LPS treatment. (2-way ANOVA or mixed effects analysis with Holm-Sidak

198 correction for multiple comparisons, main effect *p<0.05, **p<0.01, and ***p<0.001).
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Supplementary Figure 18. Stable isotope labeling study in the Cx3crl1-NuTRAP mouse
brain. Microglial proliferation was measured as incorporation of deuterium into purine
deoxyribose. Mice were given an intraperitoneal injection of 99.9% D,O and subsequently
provided drinking water enriched with 8% DO for 30 days. Following INTACT-DNA isolation, DNA
was hydrolyzed for analysis of the pentafluorobenzyl-N,N-di(pentafluorobenzyl) derivative of
deoxyribose by GC-MS. Fraction of new DNA was calculated based on the product/precursor
relationship in samples from input and positive INTACT fractions. Bar graphs represent average
DNA fraction new + SEM, ** p<0.01 by two-tailed unpaired T test comparison (n=3/input and
n=4/positive fraction).
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Supplementary Figure 19. Gating strategy for flow cytometry analysis of tamoxifen induced
cre recombination in the Aldhll1-NuTRAP model. Representative density plots from flow
cytometry results illustrate steps followed for gating on EGFPTACSA2* cells (astrocytes) from
single-cell suspension of Aldhlll-cre/ERT2*NuUTRAP* brains analyzed. The gating process
described under Methods section is applied to (a) unstained, (b) isotype control-PE-Vio770, and
(c) ACSA-2-PE-Vio770 stained cells from the same brain cell suspension. 1) Cells are gated in
the scatter range and for (2) subsequent selection of single cells (singlets). 3) Using a combination
of filters, singlets are further gated for positive selection of EGFP* cells that are subsequently
selected as ACSA2* (4: astrocytes). Same gating strategy applied to cre negative counterparts is
represented in (d-e-f). Note: Samples in ¢ and f are the same used to show representative data
in Figure 2.
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Supplementary Figure 20. Gating strategy for flow cytometry analysis of microglia in the
Cx3cr1-NuTRAP model. Representative density plots from the flow cytometry results illustrate
steps followed for gating on EGFP*CD11b* cells (microglia) from single-cell suspension of
Cx3crl-NuTRAP brains analyzed. The gating process described under Methods section is applied
to (a) unstained, (b) isotype control-APC, and (c) CD11b-APC stained cells from the same brain
cell suspension. 1) Cells are gated in the scatter range for (2) subsequent selection of single cells
(singlets). 3) Using a combination of filters, singlets are further gated for positive selection of
EGFP™ cells that are subsequently selected as CD11b* (4: microglia). Same gating strategy
applied to cre negative sample (Aldhlllcre/ERT2; NUTRAP?) is represented in (d-e-f). Note:

samples in C and F are the same used to show representative data in Figure 5.
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Supplementary Figure 21 Gating strategy for flow cytometry analysis of EGFP expression
on ACSA-2 positive single cells in the Aldh1I1-NuTRAP model. Representative density plots
from the flow cytometry results illustrate steps followed for gating EGFP* cells from ACSA-2*
single cells from single-cell suspension of Aldh1ll1-NuTRAP brains analyzed. Gating strategy is
shown for (a) unstained, (b) isotype control-APC, and (c) ACSA-2-APC stained cells from the
same brain cell suspension. 1) Cells are gated in the scatter range for (2) subsequent selection
of single cells (singlets). 3) Using a combination of filters, singlets are further gated for ACSA-2*

and EGFP* expression. Same gating strategy applied to cre negative samples (Aldhlllcre/ERT2
; NUTRAP™) is represented in (d-e-f).
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Supplementary Figure 22. Gating strategy for flow cytometry analysis of EGFP expression
on CD11b positive single cells in the Cx3cr1-NuTRAP model. Representative density plots
from the flow cytometry results illustrate steps followed for gating EGFP* cells from CD11b* single
cells from single-cell suspension of Cx3crl-NuTRAP brains analyzed. Gating strategy is shown
for (a) unstained, (b) isotype control-APC, and (c) CD11b-APC stained cells from the same brain
cell suspension. 1) Cells are gated in the scatter range for (2) subsequent selection of single cells
(singlets). 3) Using a combination of filters, singlets are further gated for CD11b* and EGFP*
expression. Same gating strategy applied to cre negative samples (Aldhlllcre/ERT2; NUTRAP*)
is represented in (d-e-f).
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Supplementary Figure 23. a Percentage of ACSA-2 positive single cells that are EGFP+
following the gating strategy in Supplemental Figure 23. Data is expressed as mean
percentage/brain sample £SEM (n=3-4/group). b Percentage of CD11b positive single cells that
are EGFP+ following the gating strategy in Supplementary Figure 22. Data is expressed as mean
percentage/brain sample +SEM (n=3/group). *p<0.001 by unpaired T test comparison. Note:
samples are the same ones used for analysis shown in Figures 2 and 5.
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gene/gene ID Description Tagman Gene Expression assay ID
Aldh1l1 aldehyde dehydrogenase 1 family, member L1 Mm03048957 _m1
Fabp7 fatty acid binding protein 7, brain Mm00445225 m1
Gfap glial Fibrillary Acidic Protein Mm01253033_m1
Elovi2 elongation of very long chain fatty acids-like 2 Mm00517086_m1
Aqgp4 aquaporin 4 Mm00802131_m1
Kcenj10 potassium inwardly-rectifying channel, subfamily J, member 10 Mm00445028 m1
Cx3crt C-X3-C Motif Chemokine Receptor 1 Mm00438354 m1
Clga complement C1g A Chain Mm00432142_m1
Gpr84 G protein-coupled receptor 84 Mm00518921_m1
Aif1 allograft Inflammatory Factor 1 Mm00479862_g1
ltgam Integrin Subunit Alpha M MmO00434455_m1
Eno2 enolase 2 Mm00469062_m1
Kcnb2 potassium voltage gated channel, Shab-related subfamily, member 2 Mm03057813_m1
Syt2 synaptotagmin Il Mm00436864_m1
Syt4 synaptotagmin IV MmO01157571_m1
Npas4 Neuronal PAS Domain Protein 4 Mm01227866_g1
Mog myelin oligodendrocyte glycoprotein Mm01279062_m1
Neud sialidase 4 Mm00620597_m1
Opalin oligodendrocytic myelin paranodal and inner loop protein MmO00463365_m1
1a interleukin 1 Alpha Mm00439620_m1
H1b interleukin 1 Beta Mm00434228_m1
Tir2 toll- like receptor 2 Mm00442346_m1
Tir4 toll- like receptor 4 MmO00445274 m1
Myd88 myeloid differentiation primary response gene 88 MmO01351743_g1
Tnf tumor necrosis factor Mm00443260_g1
Gapdh Glyceraldehyde-3-Phosphate Dehydrogenase 4352661
Hprt hypoxanthine guanine phosphoribosyl transferase MmO01324427 m1

Supplementary Table 1. Tagman gene expression assays used in qPCR analyses of the
study. gPCR was performed with gene-specific primer probe fluorogenic exonuclease assays
(TagMan, Life Technologies, Waltham, MA) and the QuantStudio™ 12K Flex Real-Time PCR
System (Applied Biosystems). Hprt or Gapdh were used as an endogenous control.




