Science Advances

advances.sciencemag.org/cgi/content/full/6/47/eabc1204/DC1

Supplementary Materials for

High-throughput single-EV liquid biopsy: Rapid, simultaneous, and multiplexed detection of nucleic acids, proteins, and their combinations

Jian Zhou, Zuoren Wu, Jie Hu, Dawei Yang, Xiaoyan Chen, Qin Wang, Jie Liu, Maosen Dou, Wenjun Peng, Yuanyuan Wu, Wenhao Wang, Chenjian Xie, Ming Wang, Yuanlin Song, Hengshan Zeng*, Chunxue Bai*

*Corresponding author. Email: bai.chunxue@zs-hospital.sh.cn (C.B.); dixion9@163.com (H.Z.)

Published 20 November 2020, *Sci. Adv.* **6**, eabc1204 (2020) DOI: 10.1126/sciadv.abc1204

This PDF file includes:

Figs. S1 and S2 Tables S1 to S3

Supplemental Material

Fig. S1. Measurement of ALB and APOB protein expression on EVs. (A) Representative images of PBS only (no EVs and no antibodies), EV only (EVs without staining with any antibodies), EV ALB abs (EVs stained with ALB antibody), EV APOB abs (EVs stained with APOB antibody), EV CD9 abs (EVs stained with CD9 antibody), and EV CD63 abs (EVs stained with CD63 antibody). (B) Fluorescence signals of PBS only, EV only, EV ALB abs, EV APOB abs, EV CD9 abs, and EV CD63 abs measured by HNCIB system.

Fig. S2. Double immunofluorescence staining for membrane protein of cells. (A) A549 cells staining with DAPI, CD63 and PD-L1 antibodies, and imaging with a confocal microscopy (Ti2E microscope with Yokogawa CSU-W1 Sora confocal scanner unit, Nikon, Japan). (B) A549 cells staining with DAPI, CD63 and PD-L1 antibodies, and imaging with a TIRFM (Eclipse Ti-E, Nikon, Japan). White cycles containing areas expressed both CD63 and PD-L1 protein.

Tuble 51. 51gnut to holse futto una specificity.							
Fig. 2A	Mean value	Ratio					
	2.83E+05	64	CD63 abs/PBS				
PBS			(Signal-to-noise ratio)				
Eis 24 CD(2 slasses (EV sulst)	4.095.05	44	CD63 abs/EV only				
Fig.2A CD65 plasma (EV only)	4.08E+05		(Sensitivity)				
Eig 24 CD62 glosma (EV CD62 isotrona)	2.02E+06	9	CD63 abs/CD63 isotype				
Fig.2A CD65 plasma (EV CD65 isotype)			(Specificity)				
Fig.2A CD63 plasma (EV CD63 abs)	1.81E+07						
Fig. 2B	Mean value	Ratio					
DDC	3.19E+05	41	PD-L1 abs/PBS				
rds			(Signal-to-noise ratio)				
Eig 2P DD L 1 plasma (EV only)	3.62E+05	36	PD-L1 abs/EV only				
Fig.2B PD-L1 plasma (EV only)			(Sensitivity)				
Eig 2P DD L 1 plasma (EV DD L 1 isotupa)	1.02E+06	7	PD-L1 abs/CD63 isotype				
Fig.2B PD-L1 plasma (EV PD-L1 isotype)	1.93E+00		(Specificity)				
Fig.2B PD-L1 plasma (EV PD-L1 abs)	1.30E+07						
Fig. S1	Mean value	Ratio					
Fig. S1 EV ALB abs	1.65E+06	10	CD9 abs/ALB abs				
Fig. S1 EV APOB abs	1.52E+06	15	CD63 abs/APOB abs				
Fig. S1 EV CD9 abs	1.62 E+07	11	CD9 abs/ APOB abs				
Fig. S1 EV CD63 abs	2.22E+07	14	CD63 abs/ALB abs				

Table S1. Signal-to-noise ratio and specificity.

	Healthy Group (N)	Adenocarcinoma Group (N)	P value
Number	35	34	
Age (years)			0.067
<65	33	27	
≥65	2	7	
Gender			0.549
Male	16	18	
Female	19	16	
Smoker	9	6	0.494
Nonsmoker	26	26	
Clinical stage			
1/2		5	
3/4		29	

Table S2. Demographic characteristic of patients and healthy donors.

N, number of cases; *P* value represents the probability from a Chi-square test. *P < 0.05.

Antibody	Company	Catalog Number	Species			
CD63	Novus Biologicals	NBP2-42225AF488	Mouse IgG1, K			
Isotype control	R&D Systems	IC002G	Mouse IgG1			
PD-L1	Abcam	ab209960	Rabbit IgG			
PD-L1	Novus Biologicals	NBP1-76769	Rabbit IgG			
Isotype control	Novus Biologicals	NBP2-24891	Rabbit IgG			
Secondary Ab	Thermo Fisher Scientific	A-11011	Rabbit IgG			
CD9	Novus Biologicals	NB500-327AF488	Mouse IgG1			
ALB	Novus Biologicals	IC1455G	Mouse IgG2A			
APOB	Abcam	ab27637	Goat IgG			

Table S3. Antibodies used.

Biomarker detection by HNCIB

The nano-biochip was fabricated using a cleanroom-free process. An ultra-low auto-fluorescent glass was used as the substrate. After vigorous and thorough cleaning, the substrate was functionalized with a series of agents to achieve high surface grafting density of targeting functional moiety for nanoparticle immobilization. 96 or 384 wells were glued onto the functionalized substrate to form the final device.

A typical experiment using HNCIB was as follows. Cationic nanoparticles with molecular beacon was prepared in phosphate buffered saline (PBS, 14190144, Thermo Fisher Scientific, Waltham, MA, USA). To each well 50 μ L nanoparticle suspension was added and incubated at room temperature for 30 minutes followed by washing with ultrapure water (>18 M Ω) for 5 minutes. 50 μ L EV samples were added to each well and incubated for 60 minutes at 37 °C. Following incubation samples were washed with ultrapure water for 5 minutes. This is followed by TIRFM image acquisition. For simultaneous detection of RNA and membrane protein, the samples were then further washed with ultrapure water for 5 minutes, followed by incubation with 2% bovine albumin serum (BSA, A1933, Sigma-Aldrich, St. Louis., MO, USA) in PBS at room temperature for 30 minutes. Samples were again washed with ultrapure water for 5 minutes. Somples were again washed with ultrapure water for 5 minutes. Samples were again washed with ultrapure water for 5 minutes. Samples were again washed with ultrapure water for 5 minutes. Samples were again washed with ultrapure water for 5 minutes. Samples were again washed with ultrapure water for 5 minutes. Samples were again washed with ultrapure water for 5 minutes. After washing with ultrapure water for 5 minutes, the samples were ready for membrane protein observation by TIRFM.