SUPPLEMENT TO RANDOM-EFFECTS META-ANALYSIS OF COMBINED OUTCOMES BASED ON RECONSTRUCTIONS OF INDIVIDUAL PATIENT DATA

BY YUE SONG, FENG SUN, SUSAN REDLINE, AND RUI WANG

1 Simulation scenarios

IPD and AD ($\kappa = 0.5$)					AD only $(\kappa = 0)$		
Scenario	S	$(\tau^U_i)^2, (\tau^V_i)^2$	n_{IPD}		Scenario	S	$(\tau^U_i)^2, (\tau^V_i)^2$
1	7	0.05	20		5	13	0.01
2	7	0.5	20		6	13	0.05
3	30	0.05	20		7	50	0.01
4	30	0.5	20		8	50	0.05
9	15	0.05	20		17	30	0.01
10	15	0.5	20		18	30	0.05
11	7	0.05	200		19	13	0.1
12	7	0.5	200		20	50	0.1
13	15	0.05	200				
14	15	0.5	200				
15	30	0.05	200				
16	30	0.5	200				

 Table 1: Simulation scenarios

Scenario 1: Outcome Y1 Scenario 1: Outcome Y2 Scenario 1: Outcome Y3 Scenario 1: Outcome Y4 1.00 • 1.00 3.0 -0.75 0.75 θ_{10} 0.50 · ළි 0.50 · θ_{40} 2.5 2 -0.25 -0.25 -2.0 -0.00 -0.00 0.8 0.2 0.5 0.8 0.2 0.5 0.2 0.5 0.8 0.2 0.5 0.8 0 0 ρ - Complete IPD - $\hat{\rho} = \rho - \hat{\rho} = \hat{\rho}_{IPD} + \hat{\rho} = 0$ Scenario 3: Outcome Y1 Scenario 3: Outcome Y2 Scenario 3: Outcome Y3 Scenario 3: Outcome Y4 1.00 -1.00 -3.0 0.75 0.75 θ_{10} 0.50 -ළ^ස 0.50 - θ_{40} 2.5 2 0.25 -0.25 2.0 -0.00 · 0.00 0.8 0.5 0.5 0.2 0.5 0.8 ò 0.2 0.2 0.8 0.2 0.5 0.8 ρ ρ 0 ρ - Complete IPD - $\hat{\rho} = \rho - \hat{\rho} = \hat{\rho}_{IPD} + \hat{\rho} = 0$ Scenario 4: Outcome Y1 Scenario 4: Outcome Y2 Scenario 4: Outcome Y3 Scenario 4: Outcome Y4 1.00 -1.00 -3.0 -0.75 0.75 θ 2.5· 0.50 e 0.50 - θ_{40} 2 0.25 -0.25 2.0 -0.00 -0.00 0.5 0.8 0.8 0.2 0.8 0.5 0.2 0.5 0.8 0.2 0.5 - Complete IPD $\rightarrow \hat{\rho} = \rho = \hat{\rho} = \hat{\rho}_{IPD} + \hat{\rho} = 0$ Scenario 9: Outcome Y3 Scenario 9: Outcome Y1 Scenario 9: Outcome Y2 Scenario 9: Outcome Y4 1.00 -1.00 -3.0 0.75 0.75 0.50 -ළ^ස 0.50 - θ_{10} θ_{40} 2.5 -0.25 -0.25 -2.0 **-**0.00 0.00

0

0.2

ρ

0.5

0.8

0.2

0.5

8.0

- Complete IPD - $\hat{\rho} = \rho - \hat{\rho} = \hat{\rho}_{IPD} + \hat{\rho} = 0$

ò

2 Additional Simulation Results: Average treatment effect estimates based on various $\hat{\rho}$ and complete IPD (scenarios 1,3,4,9-20)

0.2

ρ

0.5

0.8

0.2

ρ

0.5

0.8

- Complete IPD - $\hat{\rho} = \rho - \hat{\rho} = \hat{\rho}_{MM} + \hat{\rho} = \hat{\rho}_{ML} - \hat{\rho} = 0$

← Complete IPD ← $\hat{\rho} = \rho - \hat{\rho} = \hat{\rho}_{MM} + \hat{\rho} = \hat{\rho}_{ML} - \hat{\rho} = 0$

3 Additional Simulation Results: Standard errors (scenario 9-20)

Comparisons of standard error estimates of treatment effect estimates on combined outcomes for various $\hat{\rho}$. One study provides IPD and the rest provide AD. EMP refers to the empirical standard errors, NAV refers to the average standard error estimates obtained by a naive application of the Rubin's rule; BOOT refers to the average bootstrap standard error estimates.

Comparisons of standard error estimates of treatment effect estimates on combined outcomes for various $\hat{\rho}$. One study provides IPD and the rest provide AD. EMP refers to the empirical standard errors, NAV refers to the average standard error estimates obtained by a naive application of the Rubin's rule; BOOT refers to the average bootstrap standard error estimates.

Comparisons of standard error estimates of treatment effect estimates on combined outcomes for various $\hat{\rho}$. All studies provide AD only. EMP refers to the empirical standard errors, NAV refers to the average standard error estimates obtained by a naive application of the Rubin's rule; BOOT refers to the average bootstrap standard error estimates.