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1 Detailed methods

1.1 Data structure

We assume that the target population social network exists and is a simple undirected graph
G = (V,E) [2, 3]. The vertex set V corresponds to members of the population, and edges in E
represent social links across which recruitments might take place. A recruiter is a subject that
can recruit other yet-unrecruited vertices because it has at least one coupon. A susceptible
individual is not yet recruited, and has at least one recruiter neighbor in G. Each recruitment
of a susceptible vertex costs the recruiter one coupon. No subject can be recruited more than
once.

Let M be the set of “seeds” in an RDS study whose sample size is n. Since recruitments
are assumed to happen over edges in the population network G, RDS recruitments reveal
edges in G to researchers. Let GR = (VR, ER) be the recruitment subgraph, consisting of
the set VR of recruited subjects and the set ER of recruitment links. It follows that the sizes
of these sets are |VR| = n and |ER| = n − |M |. We can interpret U as the “boundary” of
the observed set VR in G. Let EU be the set of links connecting vertices in U to vertices in
VR. Let GSU = (VSU , ESU) be the augmented recruitment-induced subgraph, consisting of
VSU = VR ∪ U and ESU = ER ∪ EU . We can interpret GSU as the subgraph consisting of the
sampled vertices and the boundary of the sampled set in G. Let Xi be a vector representing
the individual traits of subject i, which typically includes gender, ethnicity, HIV status and etc.
Let Zij be a vector characterizing the attributes of the link connecting subjects i and j, which
usually includes shared drug using activities, history of living together, and etc.

Researchers also observe characteristics of recruited subjects. Let d = (d1, . . . , dn) be
the vector of recruited subjects’ reported degrees in G. For i ∈ VSU , let Xi be a p × 1
vector consisting of continuous or categorical trait values of i. Likewise for i ∈ VR and j ∈
VSU with i 6= j, let Zij be a q × 1 vector consisting of continuous or categorical trait values
corresponding to the edge {i, j} ∈ ESU . Let XR = {Xi : i ∈ VR} be the set of recruited
subjects’ trait values, and let ZR = {Zij : i ∈ VR, j ∈ VR, i 6= j} be the set of edge attributes.
Likewise, let XSU = {Xi : i ∈ VSU} be the set of trait values for subjects in VSU , and let
ZSU = {Zij : i ∈ VR, j ∈ VSU , i 6= j} be the set of edge attributes for vertices connected in
GSU . Finally, let t = (t1, . . . , tn) be the vector of the times of recruitment of each subject into
the study. Researchers typically only observe GR, d, t, XR and ZR from the RDS recruitment
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process, and do not observe any traits of unsampled subjects, non-recruitment links, or their
attributes.

To construct a rigorous definition of uniform recruitment, we require knowledge of the aug-
mented recruitment-induced subgraph GSU . Within VSU is every vertex that was connected
to a recruiter at some point during the study. Therefore subsets of VSU were eligible to be
recruited at different times, and we will define uniform recruitment with respect to the traits of
these subsets. We first define the set of vertices that can be recruited by a recruiter at each
moment in time. Let Si(t) be the set of susceptible neighbors of i just before time t. If i recruits
uniformly at random from the set Si(t) of susceptibles linked to it by an edge, then it exhibits
no “preference” for recruiting one vertex over another.

Definition 1 (Uniform recruitment). Recruitment is uniform if the probability that i recruits
k ∈ Si(t) at time t is equal to 1/|Si(t)|.

To obtain a statistical test, we need to develop a regression model whose coefficients control
deviations from uniformity. The key idea is that estimating certain regression coefficients to be
different from zero indicates non-uniform recruitment.

1.2 Survival interpretation of recruitment dynamics

The timing and order of recruitments gives information about recruiters’ propensity to recruit
some alters more readily than others. Consider a recruiter i connected to a susceptible indi-
vidual j ∈ Si(t

+
i ), where t+i is a time instantaneously after ti. Three possible outcomes can

occur along the edge connecting i to j: 1) i successfully recruits j; 2) j is recruited by another
recruiter before i can recruit j; or 3) j remains unrecruited by the time i depletes their coupons
or the end of study, whichever happens first.

Let successful recruitment be the event of interest, and let Tij be the random time to this
event, starting from the time ti that i enters the study. In case 1 above, successful recruitment
of j by i allows researchers to observe Tij = tj − ti exactly. In cases 2 and 3, the recruitment
is intervened, thus we only observe Tij > t∗ − ti, where t∗ is the time of the intervening event
(recruitment by other subjects, depletion of coupons or end of study). In cases 2 and 3, Tij is
“censored” by an intervening event at time min{tj − ti, t∗i − ti, tf − ti}, where t∗i is the time at
which i depletes its coupons and tf is the end of the study. When Tij is censored, researchers
only observe that Tij > min{tj, t∗i , tf} − ti. Let tij = min{tj, t∗i , tf} − ti. Thus researchers
observe Tij = tij when i recruits j, and Tij > tij otherwise. This characterization of the
recruitment process as a sequence of fully observed and censored waiting times suggests
viewing the time dynamics of recruitment in a “survival analysis” framework. Figure 1 illustrates
this argument for an example network, showing the recruitment graph GR overlaid on G, and
the waiting (survival) times Tij along edges connecting recruiters i with susceptible vertices
j. Suppose the random edge-wise recruitment waiting time Tij has density function fij(t)
and cumulative distribution function Fij(t). We define the distribution of Tij by specifying the
recruitment hazard function, which is the probability of recruitment in an infinitesimal time
interval: λij(t) = limh→0 P (t ≤ Tij < t+ h|Tij ≥ t)/h. We stipulate that Tij , and hence λij(t)
are only defined when i and j are linked by an edge in G. Furthermore, λij(t) is nonzero only
if i is a recruiter at time t.
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Figure 1. Survival interpretation of per-edge recruitment waiting times. A) Recruitment graph
overlaid on the population graph, where a → b means a recruited b, and vertices are labeled
in the order of their recruitment; B) per-edge waiting times to recruitment, where open circles
indicate censored waiting times, and arrow tips indicate fully observed recruitment times; C)
waiting times shifted to begin at time 0; D) edge-wise recruitment survival curve (black) with
upper and lower confidence curves (gray).
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When the subgraph of all recruiter-susceptible pairs GSU is known, the observed data in
an RDS study can be used to learn about the hazard of recruitment for different pairs i and
j. Recruitment bias corresponds to an increase or decrease in the edge-wise waiting time to
recruitment Tij . By parameterizing the hazard function λij(t) of Tij in terms of characteristics
of i, j, and the edge connecting them, standard regression models can reveal recruitment
bias, and perform statistical tests of uniform recruitment.

1.3 Regression models and testing for uniform recruitment

We include three different types of effects, based on 1) characteristics Xi of the recruiter i
and Xj of the susceptible vertex j; 2) similarity of trait values |Xi −Xj|, where | · | indicates
element-wise absolute value with respect to its vector argument; and 3) attributes Zij of the
edge connecting i and j. We specify the edge-wise recruitment hazard of i recruiting j ∈ Si(t)
at time t > ti as

λij(t− ti) = λ0(t− ti) exp
[
β′|Xi −Xj|+ θ′1Xi + θ′2Xj + κ

′
Zij

]
, (1)

where λ0(·) is a non-negative propensity to recruit (baseline hazard) shared by all recruiters.
The regression coefficients β, θ1, and θ2 have dimension p × 1, and the coefficient κ has
dimension q × 1. The following two results make explicit connection between equation 1 and
Definition 1 Before developing regression models to estimate the coefficients in equation 1, we
state a result that makes explicit the connection between equation 1 and Definition 1.

Proposition 1. Given that i recruits a susceptible vertex at time t > ti, the probability that
j ∈ Si(t) is the recruited vertex is

λij(t− ti)∑
k∈Si(t)

λik(t− ti)
. (2)

Proof of Proposition 1. Let J ∈ Si(t) be the next recruited vertex. The joint density of the
recruitment time t and the recruited vertex J is

gi(t, J = j) = fij(t− ti)
∏

k∈Si(t)
k 6=j

(1− Fik(t− ti))

= λij(t− ti) exp [−Λij(t− ti)]
∏

k∈Si(t)
k 6=j

exp [−Λik(t− ti)]

= λij(t− ti) exp

− ∑
k∈Si(t)

Λik(t− ti)

 ,
(3)

where Fik(·) is the cumulative density function of the waiting time Tik for k to be recruited by i.
Since t is study time, thus we have subtracted it by ti to make it edge-wise waiting time in the
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above equations. Let T, rj denote the random variables for recruitment time and recruiter of j
respectively . Applying Bayes’ Theorem, we find the conditional probability is

Pr(J = j|T = t, rj = i) =
gi(t, J = j)∑

k∈Si(t)
gi(t, J = k)

=
λij(t− ti) exp

[
−
∑

k∈Si(t)
Λik(t− ti)

]
∑

l∈Si(t)
λil(t− ti) exp

[
−
∑

k∈Si(t)
Λik(t− ti)

]
=

λij(t− ti)∑
l∈Si(t)

λil(t− ti)

(4)

as claimed.

We can now formalize a sufficient condition for uniform recruitment.

Corollary 1. Suppose β,θ2,κ in (1) are equal to zero. Then uniform recruitment holds under
Definition 1.

Proof of Corollary 1 follows by substituting zero for each coefficient in (1), and substituting
the hazards into equation 2, so that conditional recruitment probability for every j ∈ Si(t) is
1/|Si(t)|. We call equation 2 the conditional probability of recruitment in what follows. Below
we develop regression models for estimating these unknown coefficients, and statistical tests
that β,θ2,κ are equal to zero follow directly. Rejection of the test constitutes evidence against
uniform recruitment.

1.4 Discrete-time regression model

One way to test uniform recruitment under Definition 1 is to condition on the times of recruit-
ment events and the identity of the recruiter at each time, while treating the identity of the
recruited subject as random. The likelihood Ld(β,θ2,κ) of the discrete-time recruitment pro-
cess is given by the product of the conditional recruitment probabilities, for each recruitment
event. The likelihood is

Ld(β,θ2,κ) =
∏
j /∈M

λrjj(tj)∑
k∈Srj (tj)

λrjk(tj)

=
∏
j /∈M

exp[β
′|Xrj −Xj|+ θ

′

2Xj + κ
′
Zrjj]∑

k∈Srj (tj)
exp[β

′ |Xrj −Xk|+ θ
′

2Xk + κ′Zrjk]

(5)

where rj is the recruiter of j. The above expression follows because the terms λ0(t− ti) and
exp(θ′1Xi) cancel in each conditional recruitment probability. Fitting this model by maximum
likelihood is straightforward using a Newton-Raphson algorithm. To determine whether uniform
recruitment holds, a simultaneous test over all coefficients can be conducted using a likelihood
ratio test.
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The null hypothesis of uniform recruitment under Definition 1 is that every element of β,
θ2, and κ is zero. Suppose we estimate γ̂ = (β̂, θ̂, κ̂) by maximum likelihood. The ele-
ments of these estimated coefficient vectors are asymptotically normally distributed with es-
timated variance-covariance matrix V̂. To simultaneously test this hypothesis for every co-
efficient, we perform an “omnibus” F-test that all elements of γ are zero. The test statistic
F0 = γ̂ ′V̂ −1γ̂/(2p + q) has F distribution with 2p + q and n − (2p + q) degrees of freedom.
Rejecting the null hypothsesis provides evidence of non-uniform recruitment.

1.5 Continuous-time regression model

The discrete-time regression model equation 5 captures the propensity of a recruiter i to recruit
j ∈ Si(t), given that i recruits some susceptible vertex at time t. However, equation 5 does not
capture the relationship of the time of recruitment to these propensities, and instead conditions
on the time of recruitment and treats the identity of the recruiter as random. By taking a
continuous-time view of recruitment, we develop a regression model that makes use of all the
timing information contained in the data. The set Si(t) of vertices susceptible to recruitment by
i may not be constant in time t. Consider a potential recruiter i and its susceptible neighbors
Si(t) at some time t > ti. Two types of events can change the value of Si(t). First, j ∈ Si(t)
may be recruited by i at time tj > t. If i has remaining coupons, then |Si(t+j )| = |Si(tj)| − 1,
otherwise coupons are depleted and |Si(t+j )| = 0. Second, j ∈ Si(tj) may be recruited by
another recruiter at time tj > t, and |Si(t+j )| = |Si(tj)| − 1. The likelihood for the continuous-
time process is

Lc(β,θ1,θ2,κ) =
n∏
i=1

∏
j∈Si(t

+
i )

λij(tij)
1{rj=i} exp [−Λij(tij)] (6)

where again we have suppressed conditioning on the observed data, GSU , XSU , and ZSU for
notational clarity. where rj is the recruiter of j and Λij(·) is the cumulative hazard function.
The continuous-time likelihood (6) corresponds to a standard survival model for edge-wise
recruitment time with censoring. Furthermore, in the continuous-time likelihood the baseline
hazard and recruiter-specific coefficients θ1 do not cancel. Allowing λ0(t) to be unspecified
suggests use of the semi-parametric Cox proportional hazards model [1]. Alternatively, letting
the baseline recruitment hazard take the parametric form λ0(t) = ρtρ−1, the edge-wise waiting
time Tij to recruitment of j by i has Weibull distribution. As before, if coefficients β,θ2,κ in
the regression model are zero, then recruitment is uniform. The likelihood ratio test introduced
above also applies here, and we use standard software for maximization of the likelihood [4].

2 Likelihood ratio test for the discrete-time model

The null hypothesis of uniform recruitment under Definition 1 is that every element of β, θ2,
and κ is zero. For simplicity, we denote γ = (β,θ2,κ) as a vector where β,θ2 and κ have
length p, p and q respectively. The coefficients estimation under null hypothesis is zero vector
γ0 = 0. And let γ̂ = (β̂, θ̂2, κ̂) be the maximum likelihood estimation calculated from the

6



Newton Raphson algorithm mentioned above. Then the statistic

χ2 = 2 log
Ld(γ̂)

Ld(γ0)
(7)

asymptotically follows a χ2 distribution with degrees of freedom 2p + q. Rejecting this null
hypothesis provides evidence of non-uniform recruitment.

3 Frailty regression model

In survival analysis, frailty models are a common way of allowing for variation between units
or clusters, and in RDS studies, recruiters are a natural unit of clustering for edge-wise waiting
times. We again estimate parameters under the Weibull regression framework as in Section
3.2, but with a random recruiter-specific intercept (σφi) added to each log-hazard, essentially
allowing recruiters to have different individual propensities to recruit. The hazard function for
frailty model takes the following form:

λij(t) = exp(α + σφi + β
′ |Xi −Xj|+ θ

′

1Xi + θ
′

2Xj + κ
′
Zij)ρt

ρ−1,

where φi’s are assumed to be i.i.d samples from N(0, 1).

4 Newton Raphson algorithm for the discrete model

For notation simplicity, we denote γ = (β,θ2,κ) and ηrji = (|Xrj −Xi|, Xi,Zrji), where rj is
the recruiter of subject j. Then maximizing equation (5) is the same as maximizing:

l(γ) = logLd(γ)

=
∑
j /∈M

{η′rjjγ − log
[ ∑
k∈Srj (tj)

exp(η′rjkγ)
]
}

The Newton Raphson algorithm requires calculation of first and second order derivatives of
target function. The first order derivative (gradient) is

l′(γ) =
∑
j /∈M

[
ηrjj −

∑
i∈Srj (tj)

ηrji exp(η′rjiγ)∑
k∈Srj (tj)

exp(η′rjkγ)

]
and the second order derivative (Hessian matrix) is

l′′(γ) =
∑
j /∈M

[
∑

i∈Srj (tj)
ηrji exp(η′rjiγ)][

∑
k∈Srj (tj)

η′rjk exp(η′rjkγ)]

[
∑

k∈Srj (tj)
exp(η′rjkγ)]2

−
∑
j /∈M

[
∑

i∈Srj (tj)
ηrjiη

′
rji

exp(η′rjiγ)][
∑

k∈Srj (tj)
exp(η′rjkγ)]

[
∑

k∈Srj (tj)
exp(η′rjkγ)]2

.
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Then we can implement a Newton-Raphson algorithm following the steps below:

Step 1 Assign γold as an initial value of γ

Step 2 Update γnew = γold − α l′′(γold)
−1 � l′(γold), where l′′(γold)

−1 � l′(γold) is the direc-
tion that causes the most increase in target function and α is a user-specified step-size
parameter. In our practice, we set α = 0.5.

Step 3 If max |γold − γnew| > 10−5, let γold = γnew and return to Step 2. Otherwise, output
γ̂ = γnew as solution.

After γ̂ is calculated, the estimated variance-covariance matrix Σ̂ is calculated as

Σ̂ = [−l′′(γ̂)]−1.

Diagonal elements of Σ̂ are the asymptotic variances of γ̂.
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5 Supplemetary Tables

5.1 Results for Cox proportional hazards regression model

Covariate γ exp(γ) 95% CI of exp(γ)
drug using -0.64 0.53 0.325 , 0.860
drug injection -0.11 0.90 0.550 , 1.463
needle using -0.03 0.97 0.553 , 1.699
sharing activity 0.52 1.68 1.074 , 2.629
sex 0.69 2.00 1.224 , 3.259
hiv positive -0.07 0.93 0.583 , 1.498
recruiter’s gender 0.39 1.47 1.045 , 2.075
recruiter’s crack using -0.09 0.92 0.698 , 1.205
recruiter’s homelessness 0.09 1.09 0.821 , 1.451
recruiter’s age -0.01 0.99 0.973 , 1.005
alter’s gender 0.03 1.03 0.734 , 1.437
alter’s crack using -0.28 0.76 0.582 , 0.988
alter’s homelessness 0.23 1.26 0.961 , 1.647
alter’s age 0.03 1.03 1.013 , 1.040
recruiter black -0.66 0.51 0.212 , 1.248
recruiter white -0.15 0.86 0.354 , 2.112
alter black 0.30 1.35 0.608 , 2.992
alter white 0.36 1.43 0.651 , 3.140
gender difference 0.10 1.11 0.792 , 1.545
crack using difference 0.19 1.20 0.929 , 1.560
homelessness difference -0.47 0.62 0.477 , 0.814
age difference -0.0021 1.00 0.981 , 1.015
black difference 0.67 1.96 0.800 , 4.769
white difference -0.15 0.86 0.353 , 2.117
hispanic difference -0.22 0.80 0.348 , 1.844

Table 1. Estimated regression coefficients for the Cox Proportional Hazards Model of edge-
wise recruitment times. The global test of the proportional hazard assumption gives a Chi-
square statistic χ2 = 32.98 and p-value 0.132.
* CI: confidence interval

9



5.2 Results for Weibull frailty regression model

Covariate γ exp(γ) 95% CI of exp(γ)
Intercept -6.66 0.001 0.000 , 0.006
drug using -0.78 0.46 0.249 , 0.841
drug injection -0.33 0.72 0.389 , 1.338
needle using -0.20 0.82 0.405 , 1.649
sharing activity 0.99 2.70 1.514 , 4.821
sex 0.92 2.50 1.347 , 4.639
hiv positive 0.23 1.26 0.715 , 2.218
recruiter’s gender 0.74 2.09 1.206 , 3.634
recruiter’s crack using -0.05 0.95 0.603 , 1.502
recruiter’s homelessness 0.13 1.14 0.712 , 1.835
recruiter’s age -0.02 0.98 0.957 , 1.008
alter’s gender 0.03 1.03 0.697 , 1.528
alter’s crack using -0.37 0.69 0.505 , 0.952
alter’s homelessness 0.33 1.39 1.012 , 1.899
alter’s age 0.04 1.04 1.022 , 1.055
recruiter black -0.71 0.49 0.163 , 1.492
recruiter white -0.13 0.88 0.284 , 2.711
alter black 0.40 1.49 0.595 , 3.744
alter white 0.48 1.61 0.647 , 4.013
gender difference 0.14 1.15 0.771 , 1.716
crack using difference 0.27 1.31 0.959 , 1.785
homelessness difference -0.60 0.55 0.400 , 0.750
age difference -0.01 0.99 0.973 , 1.015
black difference 0.93 2.53 0.906 , 7.075
white difference 0.01 1.01 0.352 , 2.891
hispanic difference -0.21 0.81 0.307 , 2.131

Table 2. Estimated coefficients for the Weibull Frailty Model of edge-wise recruitment times.
* CI: confidence interval
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