Supplementary Information

Oscillating IncRNA Platr4 regulates NLRP3 inflammasome to ameliorate

nonalcoholic steatohepatitis in mice

Figure S1. Plasma ALT/AST activities and hepatic triglyceride level in wild-type (WT) mice fed a normal or MCD diet. Data are mean \pm SD (n = 8). *p < 0.05 (t-test).

Figure S2. Hepatic mRNA expressions of inflammatory factors (*IL-1* β , *IL-6*, *Tnf* α and *IL-18*) (left panel) and pro-fibrotic genes (α -*SMA*, *Col1a1* and *Tgf-\beta1*) (right panel) in WT mice fed a normal or MCD diet. Data are mean ± SD (n = 8). *p < 0.05 (t-test).

Figure S3. KEGG analysis of MCD-induced differentially expressed genes in the livers of WT mice.

Figure S4. (**A**) Predicted coding probability of *Platr4*, *Neat1* and *Gapdh* using the CPAT tool. (**B**) Coding potential scores of *Platr4*, *Neat1* and *Gapdh* predicted by the CPC calculator. CPAT, coding potential assessment tool; CPC, coding potential calculator.

Α			
	LncRNA/gene	C/NC	Coding probability
AT	Platr4	noncoding	0.02
G	Neat1	noncoding	0.07
	Gapdh	coding	0.10
В			
	LncRNA/gene	C/NC	Coding potential score
2	Platr4	noncoding	-0.20
σ	Neat1	noncoding	-0.06
	Gapdh	coding	13.62

Figure S5. GO analysis of differentially expressed genes in *Platr4*-overexpressed versus control BMDMs after 8-h LPS (500 ng/ml) treatment.

Figure S6. (A) Schematic of CRISPR/Cas9-mediated genome engineering for *Platr4* knockout mice. **(B)** Validation of *Platr4* knockout efficiency. Data are mean \pm SD (n = 8). N.D., not detected.

Figure S7. Effects of *Platr4* knockout on expression of the neighbor gene *Jade1*. Data are mean \pm SD (*n* = 8).

Figure S8. Effects of Rxr α knock-down on NF- κ B target genes (*NIrp3, IL-1\beta, IL-6, Tnf\alpha* and *IL-18*) in LPS-stimulated BMDMs. Data are mean ± SD (n = 3). *p < 0.05 (t-test).

Figure S9. (A) Effects of Rxr α on the NF- κ B-dependent reporter activity in BMDMs. Data are mean ± SD (n = 6). *p < 0.05 (one-way ANOVA with Bonferroni post hoc test). (B) Effects of Rxr α and/or p65 on the *NIrp3* reporter activity in BMDMs. Data are mean ± SD (n = 6). *p < 0.05 (one-way ANOVA with Bonferroni post hoc test).

Figure S10. Recruitment of p65 protein to the κ B sites of *NIrp3* and *mCSF* promoter (two NF- κ B target genes) in Rxr α knocked-down BMDMs. Data are mean ± SD (*n* = 3). *p < 0.05 (two-way ANOVA and Bonferroni post hoc test).

Figure S11. Effects of *Platr4* overexpression and knockdown on $Rxr\alpha$ expression in BMDMs. Data are mean ± SD (*n* = 3).

Figure S12. Hepatic *Platr4* expression in wild-type mice on day 15 after a single injection of AAV8.TBG.*Platr4* or control vector. Data are mean \pm SD (n = 8). *p < 0.05 (t-test).

Table S1. List of candidate proteins interacting with *Platr4* from mass spectrometric analysis

Candidate proteins	Mass	Score	emPAI
Mthfd1	82503	189	0.26
Fdps	13980	88	0.24
Psmd7	36574	76	0.09
Taok3	64413	75	0.10
Sntb1	58444	57	0.06
Hsd17b2	42436	56	0.16
Rxrα	51925	50	0.13
Eif1b	11465	48	0.30
Ube2t	8184	42	0.43
Metap2	21275	38	0.34
Bard1	85683	34	0.04
llf3	18830	33	0.18
Psmd11	9907	33	0.35
Pym1	22676	32	0.15
Eif3e	52587	30	0.06
Rbm42	47298	27	0.07
Pxmp4	10473	22	0.33

Name	Sequences (5'-3')	
Negative control (ASO-NC)	TGGGACGCCTGGGTACAC	
ASO	CAAGTAAGATGGCTCAGTGC	
Negative control (si-NC)	UUCUCCGAACGUGUCACGUTT	
siRev-erb α	CUUCGUUGUUCAACGUGAATT	
siBmal1	GCUCUUUCUUCUGUAGAAUTT	
siRxrα	CCAUCGACACCUUCCUCAUdTdT	

 Table S2. Sequences of antisense oligonucleotide (ASO) and siRNA

Name	Forward (5'-3' sequence)	Reverse (5'-3' sequence)		
Platr4	ATGGAGGAGGAAGTGAAA	TACCCAAGAAGCCTGTTA		
Neat1	TTGGGACAGTGGACGTGTGG	TCAAGTGCCAGCAGACAGCA		
β-actin	TTGAACATGGCATTGTTACCAA	TGGCATAGAGGTCTTTACGGA		
Hmbs	CCGAGCCAAGGACCAGGATA	CTCCTTCCAGGTGCCTCAGA		
Bmal1	CTCCAGGAGGCAAGAAGATTC	ATAGTCCAGTGGAAGGAATG		
Rev-erb $lpha$	TTTTTCGCCGGAGCATCCAA	ATCTCGGCAAGCATCCGTTG		
IL-1β	AATGCCACCTTTTGACAGTGATG	AGCTTCTCCACAGCCACAAT		
NIrp3	ATTACCCGCCCGAGAAAGG	TCGCAGCAAAGATCCACACAG		
Asc	GACAGTACCAGGCAGTTCGT	GAGTCCTTGCAGGTCAGGTT		
IL-6	ATCCAGTTGCCTTCTTGGGACTGA	TAAGCCTCCGACTTGTGAAGTGGT		
Tnfα	AGGGTCTGGGCCATAGAACT	CCACCACGCTCTTCTGTCTAC		
IL-18	TCAAAGTGCCAGTGAACCCC	GGTCACAGCCAGTCCTCTTAC		
Rxra	CTGTGCTATCTGTGGGGACC	AGGCAGTCCTTGTTGTCTCG		
p65	ACTGCCGGGATGGCTACTAT	TCTGGATTCGCTGGCTAATGG		
α-SMA	TGTGCTGGACTCTGGAGATG	GAAGGAATAGCCACGCTCAG		
Col1a1	GCTCCTCTTAGGGGCCACT	CCACGTCTCACCATTGGGG		
Tgf-β1	CTCCCGTGGCTTCTAGTGC	GCCTTAGTTTGGACAGGATCTG		
Jade1	GCGTTAGGCTACGTCGATATCC	ACGCAGCATCCATATCATTGAG		
For PCR genotyping				
Platr4	TCAAGAGCGGACTGCACCGAAG			
Platr4-He/Wt	TGCATTTGGTTTCTGTGTTCTTTAATCTC	TETEGECTETTETEETTEGACATE		

 Table S3 Sequences of primers for qPCR and PCR analyses

Name	Forward (5'-3' sequence)	Reverse (5'-3' sequence)
<i>Asc_</i> κB site	CAGCCTAGCCAAAAAGCCAA	GCCCGCCAAGACCAGG
Asc_NB	CTCCTGCCTCTGTCTCTCGTA	CCAATACCCAGCATAGGGCTT
<i>Nlrp3</i> _кВ site	GAGCCCTGAGGTTTCACTTTTC	AGCTTGCATCACTGTCAAAGACG
Bmal1_REV	GATTGGTCGGAAAGTAGGTTAGT	GTCGCACCACTAACCTACTTTCC
Platr4_REV1	ACTCACAACTTCCACTACTTCGT	CTTTGAGCCCATGAAAATACACA
Platr4_REV2	GAGCGGACTGCACCGAAG	GGAAGGGGATTCTGGGTAGTG
Platr4_NB	ACATAGTCTTTAGTCTTTTGAGGC	AGCAGTGGAGTCTGAAGGAT
<i>Platr4_</i> кВ site1	TTCCCTTTCCTCATTTCC	GGAGTAGGTGGGTTGGTG
<i>Platr4_</i> кВ site2	GTGTAGTCCCGGAAATCC	CCTTGCTAGACGGTGGTG
<i>mCSF</i> _κB site	GGGCCTCTGGGGTGTAGTAT	CCGAGGCAAACTTTCACTTT

Table S4. Sequences of primers for ChIP assays