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SI Text

Models and Methods

COARSE-GRAINED CHAIN MODELS

The coarse-grained protein chain models in the present study basically follow those in

Refs. S1, S2, but with modified and additional features. In accordance with our previous

notation for explicit-chain simulation studies,S2,S3 let µ, ν = 1, 2, . . . , n be the labels for the

n IDP chains in the system, and i, j = 1, 2, . . . , N be the labels of the N residues in each

IDP chain. The total potential energy UT is a function of the residue positions, denoted

here as {Rµi}. Writing

UT = Ubond + Uel + Uaa , (S1)

where Ubond is the bond-length term for chain connectivity:

Ubond =
Kbond

2

n∑
µ=1

N−1∑
i=1

(rµi,µi+1 − l)2 (S2)

with rµi,νj ≡ |Rµi − Rνj|, l = 3.8 Å is the Cα-Cα virtual bond length [l is equivalent

to a in Eq. (3) of Ref. S2], Kbond = 10 kJ mol−1Å−2 [this value would be identical to

that used in Ref. S1 if the 10 kJ/Å2 value quoted above Eq. (1) in this reference is a

typographical error, i.e., it misses a “/mol”; by comparison, the much stiffer Kbond value

used in Eq. (3) in Ref. S2, which follows Ref. S4 with the aim of comparing with fixed-

bond-length Monte Carlo simulations, is equivalent to 23.7 MJ mol−1Å−2], and Uel is the

electrostatic interaction:

Uel =
n∑

µ,ν=1

N∑
i,j=1

(µ,i) 6=(ν,j)

σµiσνje
2

4πε0εrrµi,νj
exp
(
− κrµi,νj

)
, (S3)

wherein σµi is the charge of the ith residue in units of elementary electronic charge e, (σµi is

independent of µ), ε0 is vacuum permittivity, εr is relative permittivity (dielectric constant),

and κ is the reciprocal of the Debye screening length, which is taken to be 10.0 Å in this

study (κ = 0.1 Å−1). Following Table S1 of Ref. S1, σ values for Arg and Lys are assigned

to be +1, those of Asp and Glu are −1, and that of His is +0.5. All other residues are

taken to be neutral, i.e., with σ = 0.

The Uaa in Eq. (S1) is the sum of pairwise interaction energies among the residues, viz.,

Uaa =
n∑

µ,ν=1

N∑
i,j=1

(µ,i)6=(ν,j)

(Uaa)µi,νj , (S4)
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where (Uaa)µi,νj is the interaction between the ith residue of the µth chain with the jth

residue of the νth chain. We investigate several physically plausible Uaa functions, as follows:

The HPS model

The hydrophobicity scale (HPS) model is identical to the one introduced by Dignon et

al.S1 based on an atomic-level hydrophobicity scale devised by Kapcha and Rossky.S5 The

interaction between amino-acid pairs in this model is given by

(Uaa)µi,νj = (Uaa|HPS)µi,νj ≡

{
(ULJ)µi,νj + (1− λHPS

ij )εij , if r ≤ 21/6aij

λHPS
ij (ULJ)µi,νj otherwise

(S5)

where λHPS
ij ≡ (λi + λj)/2, aij ≡ (ai + aj)/2, with λi and ai being the hydrophobicity and

diameter, respectively, of the model amino acid residue at sequence position i, as given,

respectively, by the λ and σ values in Table S1 of Ref. S1; (ULJ)µi,νj is the Lennard-Jones

(LJ) potential,

(ULJ)µi,νj = 4εij

[(
aij
rµi,νj

)12

−
(

aij
rµi,νj

)6
]
, (S6)

where the LJ well depth εij (not to be confused with the permittivities) is set to be εij = 0.2

kcal mol−1 irrespective of i, j for the HPS model, as in Ref. S1.

The HPS+cation-π models

In view of the importance of cation-π interactions in protein structure (see discussion in

the main text), we consider also a class of model potentials, Uaa|HPS+cπs, that augment the

HPS potential with cation-π terms for Arg-Phe, Arg-Trp, Arg-Tyr, Lys-Phe, Lys-Trp, and

Lys-Tyr residue pairs. In these interaction schemes,

(Uaa)µi,νj = (Uaa|HPS+cπ)µi,νj ≡ (Uaa|HPS)µi,νj + (Uaa|cπ)µi,νj , (S7)

where

(Uaa|cπ)µi,νj = (εcπ)ij

[(
aij
rµi,νj

)12

−
(

aij
rµi,νj

)6
]
, (S8)

and (εcπ)ij is the cation-π interaction strength, (εcπ)ij > 0 only if residue pair µi, νj is one

of the aforementioned six cation-π pairs, otherwise (εcπ)ij = 0. This simple form is adopted

from the cation-π term in Eq. (S1) of Ref. S6.

Two sets of (εcπ)ij values are analyzed in the present study:

(i) (εcπ)ij = 3.0 kcal mol−1 for all six cation-π pairs. The rationale for using a single

(εcπ)ij value is the suggestion by statistical and other inferences that the variations of
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interaction strengths among the six cation-π amino acid residue pairs could be relatively

small,S6,S7 though subsequently we will also explore scenarios in which significant varia-

tions in cation-π interaction strengths exist among the pairs. When combined with the

(Uaa|HPS)µi,νj contribution in Eq. (S7), (εcπ)ij = 3.0 kcal mol−1 leads to well depths for

(Uaa)µi,νj = (Uaa|HPS+cπ)µi,νj of ≈ 0.85 kcal mol−1 for Arg-Phe, Arg-Trp, Arg-Tyr, and

corresponding well depths of ≈ 0.90 kcal mol−1 for Lys-Phe, Lys-Trp, and Lys-Tyr (see

Fig. 2a of the main text). It should be noted here that we have chosen an (εcπ)ij value

significantly smaller than those used in Ref. S6 in order for the model cation-π interactions

to be more compatiable with the shallow well depths of the (Uaa|HPS)µi,νj potentials in

the HPS model, which has a maximum well depth of 0.2 kcal mol−1. Nonetheless, the

(εcπ)ij = 3.0 kcal mol−1 value still entails a cation-π interaction strength which is about

double that of electrostatic interaction when εr in Eq. (S3) corresponds to that of bulk

water (εr ≈ 80). This ratio between the strengths of cation-π and electrostatic interactions

in an aqueous environment conforms to a similar ratio deduced computationally.S8

(ii) Different (εcπ)ij values for cation-π pairs involving Arg and pairs involving Lys, with

(εcπ)ij = 1.85 kcal mol−1 for Arg-Phe, Arg-Trp, Arg-Tyr and (εcπ)ij = 0.65 kcal mol−1

for Lys-Phe, Lys-Trp, and Lys-Tyr. This alternate model cation-π interaction scheme is

motivated by observed trends of statistical potentials derived from PDB protein structures

such as the Miyazawa-Jernigan energiesS9,S10 used in the KH/MJ modelS1 (described

below) and the new analysis presented in the main text as well as recent experimental

evidence,S11,S12 all of which suggest that cation-π interactions involving Arg is more

favorable than those involving Lys. The (εcπ)ij values in this scheme are chosen such that

the combined well depth of (Uaa|HPS+cπ)µi,νj for cation-aromatic pairs are comparable to the

deepest well depth of ≈ 0.5 kcal mol−1 in the KH/MJ model. In particular, (εcπ)ij = 1.85

kcal mol−1 leads to a combined well depth of ≈ 0.55 kcal mol−1 for terms in (Uaa|HPS+cπ)µi,νj
involving Arg-aromatic pairs, whereas (εcπ)ij = 0.65 kcal mol−1 leads to a corresponding

combined well depth of ≈ 0.3 kcal mol−1 for Lys-aromatic pairs (Fig. 2b of the main text).

The KH (KH/MJ) model

The Kim-Hummer/Miyazawa-Jernigan (KH/MJ) model corresponds to the KH-D model

used by Dignon et al.,S1 and is based on the statistical potentials of Miyazawa and Jernigan

(MJ).S10 Following Ref. S1, we refer to this model as KH in the main text and hereafter. The

basic functional form of the KH potential, Uaa|KH, is similar to that for the HPS potential

in Eq. (S5). For the KH model,

(Uaa)µi,νj = (Uaa|KH)µi,νj ≡

{
(ULJ)µi,νj + (1− λKH

ij )εij , if r ≤ 21/6aij

λKH
ij (ULJ)µi,νj otherwise

(S9)

where (ULJ)µi,νj is given by Eq. (S6), but now εij depends on i, j. Specifically, for the KH
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model

εij = |α(eMJ,ij − e0)| , (S10)

where eMJ,ij is the MJ statistical potential between the residue type at position i and the

residue type at position j, e0 is a constant shift of the energies, and

λKH
ij =

{
1 if eMJ,ij ≤ e0

−1 otherwise
. (S11)

We use α = 0.228 and e0 = −1.0 kcal mol−1 in the present study. The resulting pairwise

energies eMJ correspond to the KH-D parameter set for IDRs in Table S3 of Ref. S1.

Simulation method

Molecular (Langevin) dynamics simulations are carried out using the protocol outlined

in the “Simulation framework” section of Ref. S1, with parameters modified for the

present applications. For each simulation, we consider 100 copies of one of the four Ddx4

IDR sequences (Fig. S1) or the three LAF-1 IDR sequences (Fig. S5), governed by one

of the above coarse-grained model potential functions. At the initial step, all the IDR

chains are randomly placed in a relatively large, 300 × 300 × 300 Å3 simulation box.

Energy minimization is then applied to minimize unfavorable steric clashes among the

amino acid residues. Equilibrating NPT simulation is then performed for 50 ns at a

temperature of 100 K and pressure of 1 bar, maintained by Martyna-Tobias-Klein (MTK)

thermostat and barostatS13,S14 with a coupling constant of 1 ps. It should be noted that

the simulation pressure does not correspond to physical pressure because solvent (water)

pressure is not accounted for in the present coarse-grained, implicit-solvent model setup.

In this regard, pressure is used entirely as an efficient computational device for achieving

condensed configurations as starting point of subsequent simulations. Throughout the

dynamics simulation, equations of motion are integrated with a timestep of 10 fs and

periodic boundary conditions are applied to all three spatial dimensions. After the

initial NPT step, the simulation box is compressed again for 50 ns along all three spatial

dimensions at 100 K as successive NVT ensembles (P changes during the process) using

Langevin thermostat with friction coefficient 1 ps−1. The extent of compression varies

for different systems. Then the dimension along one of the three Cartesian axes of the

simulation box is expanded 20 times relative to its initial value for a period of 50 ns while

maintaing the temperature at 100 K. Equilibration NVT simulation is then performed at

the chosen temperature for 2 µs. Finally, production NVT runs are carried out for 4 µs

and the chain configurations are saved every 0.5 ns for subsequent analysis. During the

production run, the friction coefficient of the Langevin thermostat is decreased to 0.01

ps−1 for sampling efficiency. All simulations are performed by the HOOMD-blue software

package.S15,S16 After the snapshots of simulated chain configurations are collected, the

procedure for constructing phase diagrams from the configurations follows that described
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in the “Simulation framework” section of Ref. S1 and the “Results and discussion” section

of Ref. S2.

EXPLICIT-WATER SIMULATION OF IDR-CONCENTRATION-DEPENDENT

PERMITTIVITY

Computational procedure

We estimate the IDR-concentration-dependent relative permittivityS17,S18 by atomistic

explicit-water molecular dynamic simulations performed at six Ddx4 IDR (wildtype, WT)

concentrations using GROMACS, version 2016.5.S19 The simulation proceeds as follows.

Initially, a fully extended configuration of a Ddx4 IDR is prepared by PYMOL,S20 to be

used as input for PackmolS21 to place five Ddx4 IDRs at random locations in a cubic

simulation box. The size of the box is varied to achieve different Ddx4 IDR concentrations.

The Ddx4 IDRs are solvated by explicit water models in the simulation box. Each of

the systems so constructed is then charge neutralized by adding appropriate number of

Na+ ions. This is followed by energy minimization by steepest descent to minimize steric

clashes. Hydrogen bonds are constrained with the LINCS algorithm.S22 Equation of motion

is integrated using a time step of 2 fs with the leap-frog integratorS23 and cubic periodic

boundary conditions. Long spatial-range electrostatic interaction is treated with particle

mesh Ewald (PME) methodS24 with a grid spacing of 0.16 nm and an interpolation order

of 4. A cut-off of 1 nm is used for short-range van der Waals and electrostatic interactions.

Initial equilibration is carried out for 2 ns under NV T conditions at 300 K. Temperature

is maintained by Velocity-rescale thermostatS25 with a time constant of 0.1 ps for all

simulations. This is followed by equilibration for 2 ns at 300 K under NPT conditions

under 1 atm pressure, which is maintained by a Berendsen barostatS26 with a coupling

constant of 2 ps. Since the Berendsen barostat does not always yield an NPT ensemble

with high accuracy, the resulting system is equilibrated again for 1 ns as an NPT ensemble

using the Parrinello-Rahman barostatS27,S28 with the same coupling constant, after which

the production NPT run is carried out for 20 ns using the same Parrinello-Rahman

barostat. Configurations are saved every 1.0 ps during the production run for subsequent

analysis. In addition to simulations of Ddx4 IDR in essentially pure water (except a few

Na+ ions), we also conduct simulations with Na+ and Cl− ions at [NaCl] = 100 mM.

In order to enable a potentially more direct comparison with analytical theory that does

not include the charges of amino acid residues in the estimation of effective permittivity

of the aqueoue medium,S17,S18 we carry out another set of simulations with Ddx4 IDR

concentrations similar to the ones for which the above protocol is applied but with the

charges of the sidechains of the charged amino acids Arg, Lys, Asp, and Glu artifically

turned off. This set of simulation data is referred to as artificial Ddx4 or aDdx4. The

same aforementioned procedure for equilibration and production is applied for this set of
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simulations. The amber99sb-ildn force fieldS29 and the TIP3P water modelS30 are used for

both sets of simulations. To assess the robustness of the computed εr values, all simulations

are also repeated using the SPC/E water model.S31

Relative permittivity analysis

Static relative permittivity εr (dielectric constant) is determined by the fluctuation of

the total dipole moment vector, MT, of the system via the relationS32

εr =
〈M2

T〉 − 〈MT〉2

3V ε0kBT
+ 1 , (S12)

where MT ≡ (MT ·MT)1/2 is the magnitude of the system dipole moment, 〈. . . 〉 denotes

averaging over system configurations under equilibrium conditions, and V is the volume of

the simulation box. This relation, Eq. (S12), has been used to compute the static dielectric

constant of several biological systems.S32–S34 Following the formulation in Ref. S33, MT

is obtained as sum of dipole moments of individual water molecules and individual Ddx4

IDR chain molecules. Irrespective of the net charge of the molecule (water has net charge 0

whereas Ddx4 IDR has net charge ≈ −4e), the dipole moment, m, of a molecule comprising

of Nm atoms with masses ms (s = 1, 2, . . . , Nm) at positions rs with point charges qs is

given by m =
∑Nm

s qs(rs − rcm), where rcm ≡
∑Nm

s msrs/
∑Nm

s ms is the center-of-mass

position of the molecule. Accordingly, atomic ions, Na+s and Cl−s in our case, have zero

dipole moment in this formulation. Once the dipole moments of the water and Ddx4

molecules are determined in this manner, they are combined to yield MT which in turn

provides the system relative permittivity through Eq. (S12). Our computed εr for various

concentrations of Ddx4 IDR at different salt concentrations using both the TIP3P and

SPC/E water models are given in Table S1.
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Random-Phase-Approximation (RPA) Theory of Phase Separation
with IDR-Concentration-Dependent Permittivity

BACKGROUND

Our group has previously considered, within our RPA theory of liquid-liquid phase sep-

aration (LLPS), the effects of relative permittivity εr being dependent upon local protein

concentration;S17,S18 i.e., εr = εr(φm) where φm is polymer (IDR) volume fraction. An

εr(φm) necessitates changes to our earlier RPA expressions for electrostatic interaction for

a constant, position-independent εr, viz. [Eq. (33) of Ref. S17],

fel =
1

2

∫
d3(ka)3

(2π)3

{
ln[det(1 + ĜkÛk)]− Tr(ρ̂ Ûk)

}
. (S13)

Here, as in Ref. S17, a3 is unit volume, Ĝk is the position correlation matrix, ρ̂ is the density

operator that provides the densities of various molecular species in the system (accounting

for matter, not electric charge), and Ûk accounts for sequence-dependent Coulumb interac-

tions [the expression for Ûk is provided by Eq. (35) of Ref. S17]. For the simple illustrative

case here, which is a system of only IDR polymers without salt or counterions, Ĝk reduces to

the monomer-monomer correlation (Ĝk)ij = (ρm/N)(ĜM(kl))ij = ρm exp[−(kl)2|i−j|/6]/N ,

where ρm is monomer density, l is the length of a polymer link (virtual bond length, denoted

as b in Ref. S17 as noted above), i, j = 1, 2, . . . N are monomer labels along the polymer

chain with N being the length of a chain, and ρ̂ Ûk = ρmÛk/N [Eq. (4) of Ref. S35].

When εr = εr(φm), we applied the following modified version of fel [Eq. (68) of Ref. S17]:

fel =

∫
dk̃k̃2

4π2

{
1

η
ln
[
1 + ηG1(k̃)

]
− G2(k̃)

}
, (S14)

where k̃ = kb, η = (b/a)3 (note that virtual bond length b in Ref. S17 is denoted by l in

Ref. S40) and, in the absence of salt and counterions, Eqs. (69a) and (69b) of Ref. S17

become

G1(k̃) =
4π

k̃2[1 + k̃2]T ∗0 εr(φm)

(
φm
N
〈σ|ĜM(k̃)|σ〉

)
, (S15a)

G2(k̃) =
4π

k̃2[1 + k̃2]T ∗0 εr(φm)

(
φm
N

N∑
i=1

|σi|

)
. (S15b)

As in Refs. S17 and S18, column vector |σ〉 is the charge sequence—its ith element, σi,

being the charge of the ith monomer (residue) of the IDR in units of the electronic charge e,

and 〈σ| ≡ |σ〉T; T ∗0 ≡ 4πε0kBTb/e
2 is a reduced temperature. As noted above, ε0 is vacuum

permittivity, kB is Boltzmann constant, and T is absolute temperature. Previously,S17,S18

expressions such as above Eqs. (S14) and (S15) for εr(φm) were obtained heuristically by
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replacing every instance of εr in the corresponding constant-εr expressions by εr(φm).

CONCENTRATION-DEPENDENT PERMITTIVITY IN THE RPA CONTEXT

We now examine whether—and if so what—restrictive conditions have to be satisfied for

the heuristic prescription Eqs. (S14) and (S15) to be valid.

When εr is position-independent, the electrostatic interaction energy (potential), in units

of kBT , between two unit point charges e at positions r and r′ is given by U(r, r′) =

U(r− r′) = e2/(4πε0εrkBT |r− r′|). However, when εr is position-dependent, i.e., εr = εr(r),

in general the electrostatic potential U is not expressible in a simple closed form because it

is the solution to the generalized Poisson equation

−∇r · [εr(r)∇r U(r− r′)] = 4πlBδ(r− r′) , (S16)

as noted by Wang,S36 where lB = e2/(4πε0kBT ) is vacuum Bjerrum length (unlike Ref. S17,

here lB does not include εr). Thus, position dependence of εr can entail rather complex

modifications of the charge-charge interactions. It cannot be analytically treated, in general,

by simply replacing the constant εr in U(r, r′) = e2/(4πε0εrkBT |r− r′|) by εr(r) or εr(r
′).

Another concern is that, by construction, RPA theory accounts only for the lowest-order

polymer density fluctuations beyond the mean-field homogeneous density. In contrast, some

of the proposed IDR-concentration-dependent form of εr = εr(φm), such as the “slab”S37 and

Clasusius-MossottiS38 models and the effective medium approximations of Maxwell Garnett

and of BruggemanS39 considered in Refs. S17, S18 involve higher-order dependence on φm,

raising questions as to whether application of these εr(φm) formula in the context of RPA

is consistent with the basic premises of RPA. We address these issues below.

DERIVATION OF RPA WITH CONCENTRATION-DEPENDENT PERMITTIVITY

Unless specified otherwise, the notation in this subsection follows that of Ref. S40, as

the following formal development is, on one hand, a restricted case of the theory in Ref. S40

in that here we do not consider salt, counterions or Kuhn-length renormalization. On the

other hand, the present analysis is an extension of the theory in Ref. S40, which is limited to

constant εrs, to case with a position-dependent εr(r). Accordingly, we note that the number

of chains in the system, which is symbolized by n in the main text and elsewhere in this

Supporting Information, is denoted by np (following Ref. S40) in the derivation below.

In general, the Boltzmann factor for the electrostatic interaction energy of a system

with charge density ρ(r) is given by exp[−(1/2)
∫
drdr′ρ(r)U(r, r′)ρ(r′)]. (Note that the

electric charge density ρ(r) here and in subsequent development in this section should

not be confused with the matter density operator ρ̂ or its matrix elements.) We focus

first on obtaining an equivalent mathematical form of this factor that is amenable to RPA

analyses. By standard field-theoretic Hubbard-Stratonovich transformation, this factor may

10



be expressed as a functional integral over a conjugate field ψ(r):

1

(det Û)1/2

{∏
r

∫
dψ(r)√

2π

}
exp

[
−1

2

∫
dr′dr′′ψ(r′)U−1(r′, r′′)ψ(r′′)− i

∫
dr′ρ(r′)ψ(r′)

]
,

(S17)

where Û denotes, in matrix notation, the operator U(r, r′) [i.e., the matrix element

Ûr,r′ = U(r, r′)], U−1(r′, r′′) is the r′, r′′ matrix element of the inverse operator Û−1
of Û . By definition,

∫
dr′′U−1(r, r′′)U(r′′, r′) = δ(r − r′). Consider now the operator

−∇r′′ · [εr(r′′)∇r′′δ(r− r′′)]/(4πlB). Since∫
dr′′{∇r′′ · [εr(r′′)∇r′′δ(r− r′′)]}U(r′′, r′) =

∫
dr′′[εr(r

′′)∇r′′δ(r− r′′)] · ∇r′′U(r′′, r′)

=

∫
dr′′δ(r− r′′){∇r′′ · [εr(r′′)∇r′′U(r′′, r′)]}

(S18)

follows from repeated applications of integration by parts under the reasonable assumption

that the values of the integrand cancel or vanish at the pertinent boundaries of integration,

and by Eq. (S16) the quantity in curly brackets in the last term in Eq. (S18) is −4πlBδ(r
′′−

r′), Eq. (S18) is evaluated as −4πlB
∫
dr′′ δ(r− r′′)δ(r′′− r′) = −4πlBδ(r− r′) and therefore

−∇r′′ · [εr(r′′)∇r′′δ(r− r′′)]/(4πlB) is the r, r′′ matrix element of the inverse of Û , viz.,

U−1(r, r′′) = − 1

4πlB
∇r′′ · [εr(r′′)∇r′′δ(r− r′′)] . (S19)

Equivalently, the r′′, r matrix element of Û−1 takes the form

U−1(r′′, r) = − 1

4πlB
∇r · [εr(r)∇rδ(r

′′ − r)] . (S20)

It follows that the −(1/2)
∫
dr′dr′′ψ(r′)U−1(r′, r′′)ψ(r′′) factor in Eq. (S17) is given by

−1

2

∫
dr′dr′′ψ(r′)U−1(r′, r′′)ψ(r′′) =

1

8πlB

∫
drdr′ψ(r){∇r′ · [εr(r′)∇r′δ(r− r′)]}ψ(r′)

= − 1

8πlB

∫
drdr′ψ(r)[εr(r

′)∇r′δ(r− r′)] · [∇r′ψ(r′)]

=
1

8πlB

∫
drdr′ψ(r)[εr(r

′)∇rδ(r− r′)] · [∇r′ψ(r′)]

= − 1

8πlB

∫
drdr′εr(r

′)δ(r− r′)[∇rψ(r)] · [∇r′ψ(r′)]

= − 1

8πlB

∫
dr εr(r)[∇rψ(r)] · [∇rψ(r)]

= − 1

8πlB

∫
dr εr(r)|∇ψ(r)|2 ,

(S21)
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where the first equality follows from a mere change in the integration variable, the sec-

ond and fourth equalities from integration by parts assuming that boundary contribution

vanishes, the third equality from ∇r′δ(r− r′) = −∇rδ(r− r′), and the r subscript of ∇r

is dropped in the final expression because there is little danger of notational ambiguity.

Equation (S21) is identical to the corresponding terms in the Hamiltonians in Eq. (3) of

Ref. S41 and Eq. (2.7) of Ref. S36 for systems with an inhomogeneous dielectric medium.

We turn next to the (det Û)−1/2 factor in Eq. (S17). For any matrices A and B,

(detA)−1 = (detA−1) and (detAB) = (detA)(detB), we write (det Û)−1/2 = (det Û−1)1/2
= (det ε̂r)

1/2(det Û−10 )1/2, where Û−1’s matrix elements U−1rr′ ≡ U−1(r, r′) is given by

Eq. (S19), the r, r′ matrix elements of the operators ε̂r and Û−10 are defined, respectively, by

(ε̂r)rr′ ≡ εr(r)δ(r− r′) , (S22)

(Û−10 )rr′ ≡ −
1

4πlB
∇2

rδ(r− r′) . (S23)

Then, ε̂r Û−10 = Û−1 can be ready verified using integration by parts:

(ε̂r Û−10 )rr′ =

∫
dr′′(ε̂r)rr′′(Û−10 )r′′r′

= − 1

4πlB

∫
dr′′εr(r)δ(r− r′′)∇2

r′′δ(r
′′ − r′)

=
1

4πlB

∫
dr′′εr(r

′′)[∇r′′δ(r− r′′)] · [∇r′′δ(r
′′ − r′)]

= − 1

4πlB

∫
dr′′∇r′′ · {εr(r′′)[∇r′′δ(r− r′′)]}δ(r′′ − r′)

= − 1

4πlB
∇r′ · [εr(r′)∇r′δ(r− r′)]

= Û−1rr′ , Q.E.D.

(S24)

Because ε̂r in Eq. (S22) is a diagonal matrix,

(det ε̂r) =
∏
r

εr(r) . (S25)

Using Fourier transformation from r to k space,S40

(det Û−10 ) =
∏
k6=0

k2

4πlB
, (S26)

where k2 ≡ |k|2. Note that the k = 0 term is excluded in the above and subsequent

considerations because it does not contribute to the exponential factor in Eq. (S17) for our

electrically neutral system of overall neutral polyampholytes.
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The free energy per unit volume l3 in units of kBT of our system is given by

f =
φm
N

lnφm + (1− φm) ln(1− φm)− l3

Ω
lnZel, (S27)

where N is the chain length (number of monomers) of the polyampholyte, Ω is solution

(system) volume, φm ≡ l3npN/Ω is monomer volume fraction with np being the total

number of identical polyampholyte chains in the solution [np corresponds to the variable n

used above in the formulation for explicit-chain simulations; it should also be noted here that

the alternately defined φm = a3npN/Ω in Eq. (3) of Ref. S17—which applies to Eqs. (S14)

and (S15) in the present work—is equal to polyampholyte volume fraction only when the

size of a monomer is equal to the volume unit a3 of the model, i.e., when rm = 1; whereas

polyampholyte volume fraction is given by rmφm in generalS17; for simplicity, rm = 1 is

assumed below unless specified otherwise], and Zel is the electrostatic partition function,

which may be viewed as a special case of Z ′ in Eq. (A9) of Ref. S40 with no salt, no

counterion, and v2 = 0, but now extended to εr = εr(r). Zel is given by integrals over

monomer coordinates,

Zel =

∫ np∏
α=1

N∏
τ=1

dRα,τe
−H [R] , (S28)

where Rα,τ denotes the coordinate of the τth monomer in the αth polyampholyte [Rα,τ

corresponds to the position variable Rµi defined before Eq. (S1) in the formulation for

explicit-chain simulations; the monomer label τ corresponds also to the label i in Eq. (S15b)],

and

H [R] =
3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2 +

1

2

np∑
α,β=1

N∑
τ,µ=1

Vτµαβ (Rα,τ ,Rβ,µ) . (S29)

The first term of H [R] is for Gaussian-chain connectivity of the polyampholyte chains and

Vτµαβ in the second term is the interaction potential energy between the τth monomer in the

αth chain and the µth monomer in the βth chain, viz.,

Vτµαβ (r, r′) = lBστσµU(r, r′) , (S30)

where στ , σµ are the charges, respectively, of monomers τ , µ along each of the np polyam-

pholyte chains. We may now rewrite Eq. (S28) as a functional integral over the charge

density ρ(r) by including in the integrand a δ-functional for ρ(r):

Zel =

∫ ∏
r

dρ(r)

∫ np∏
α=1

N∏
τ=1

dRα,τe
−H [ρ,R] δ[ρ(r)−

np∑
α=1

N∑
τ=1

στδ(r−Rα,τ )] , (S31)
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which follows from ρ(r) =
∑np

α=1

∑N
τ=1 στδ(r−Rα,τ ), whereas H [ρ,R] is defined as

H [ρ,R] =
3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2 +

1

2

∫
drdr′ ρ(r)U(r, r′)ρ(r′) . (S32)

Now, by applying Eqs. (S17) and (S21), the partition function Zel in Eq. (S31) may be

expressed as a functional integral over ρ(r), Rα,τ , and the conjugate fields ψ(r):

Zel =

∫ ∏
r

dρ(r)

∫ np∏
α=1

N∏
τ=1

dRα,τ exp

[
− 3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2

]
× 1

(det Û)1/2

{∏
r

∫
dψ(r)√

2π

}
exp

[
− 1

8πlB

∫
dr εr(r)|∇ψ(r)|2 − i

∫
dr′ρ(r′)ψ(r′)

]

× δ[ρ(r)−
np∑
α=1

N∑
τ=1

στδ(r−Rα,τ )] .

(S33)

After performing the
∏

r dρ(r) functional integrals in the above expression, Zel becomes

Zel =

∫ np∏
α=1

N∏
τ=1

dRα,τ
1

(det Û)1/2

{∏
r

∫
dψ(r)√

2π

}
e−H [ψ,R] , (S34)

where

H [ψ,R] =
3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2 +

1

8πlB

∫
dr εr(r)|∇ψ(r)|2 + i

np∑
α=1

N∑
τ=1

στψ(Rα,τ ) .

(S35)

We now proceed to evaluate the (det Û)−1/2 factor in Eq. (S34) via the aforementioned

relations (det Û)−1/2 = (det Û−1)1/2 and Û−1 = ε̂r Û−10 . Using Eq. (S25) and applying the

correspondence ∑
r

→ Nr

Ω

∫
dr (S36)

where Nr is formally the number of r positions in the system, we may write

√
det ε̂r =

∏
r

√
εr(r) = exp

{
1

2

∑
r

ln[εr(r)]

}
= exp

{
Nr

2Ω

∫
dr ln[εr(r)]

}
. (S37)

For reasons to be enunciated below, consider the case in which εr(r) is a linear combination

of polyampholyte and water relative permittivites, i.e.,

εr(r) = εpφm(r) + εw[1− φm(r)] = εw + ε′φm(r) , (S38)
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where εp and εw are, respectively, the relative permittivities of polymer and water, and

ε′ = εp − εw. Since the position-dependent monomer density

φm(r) = l3
np∑
α=1

N∑
τ=1

δ (r−Rα,τ ) , (S39)

ln[εr(r)] = ln εw + ln

[
1 +

ε′

εw
φm(r)

]
= ln εw + ln

[
1 +

ε′l3

εw

np∑
α=1

N∑
τ=1

δ (r−Rα,τ )

]
.

(S40)

To be consistent with RPA which accounts only for lowest-order polymer density fluctua-

tions, we approximate the above expression for ln[εr(r)] by including terms only up to the

one linear in φm, viz.,

ln[εr(r)] ≈ ln εw +
ε′l3

εw

np∑
α=1

N∑
τ=1

δ (r−Rα,τ ) . (S41)

Hence the argument of the exponential function in Eq. (S37) is given by

Nr

2Ω

∫
dr ln[εr(r)] ≈

Nr

2
ln εw +

Nrε
′l3npN

2εwΩ
=
Nr

2
ln εw +

Nrε
′

2εw
φm

≈Nr

2
ln εw +

Nr

2
ln

(
1 +

ε′

εw
φm

)
=
Nr

2
ln[εr(φm)] ,

(S42)

where the position-independent φm ≡ (l3/Ω)
∫
dr
∑np

α=1

∑N
τ=1 δ(r−Rα,τ ) = l3npN/Ω is the

overall average monomer volume fraction, the second approximate relation is in line with

that in Eq. (S41), and the last equality follows from definition Eq. (S38). In formulations

involving a size-dependent mean-field lattice model with φm defined in terms of unit volume

with rm 6= 1 (Ref. S17), the actual average monomer volume fraction φ is given by φ = rmφm
where rm is the monomer size factor, in which case εr(φm) is understood to represent the

εr expression in which all φm is replaced by φ = rmφm; i.e., εr(φm)→ εr(φm → φ = rmφm).

With Eq. (S42), further application of Eqs. (S26) and (S37) yields

(det Û)−1/2 =
√

det ε̂r

√
det Û−10 ≈

[√
εr(φm)

]Nr ∏
k 6=0

√
k2

4πlB

=
∏
k 6=0

√
k2[εr(φm)]Nr/(Nr−1)

4πlB
≈
∏
k 6=0

√
k2εr(φm)

4πlB

(S43)
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for the (det Û)−1/2 factor in Eq. (S34). To arrive at this expression, we made use of the fact

that the total number of reciprocal space positions k is Nr (same as the total number of

coordinate space positions r when k = 0 is included in the count), and that Nr � 1. It

follows that Zel in Eq. (S34) may be written as

Zel =

∏
k 6=0

√
k2εr(φm)

4πlB


∫ np∏

α=1

N∏
τ=1

dRα,τ

{∏
r

∫
dψ(r)√

2π

}
e−H [ψ,R] , (S44)

where H [ψ,R] is given by Eq. (S35) with εr(r) given by Eq. (S38):

H [ψ,R] =
εw

8πlB

∫
dr [∇ψ(r)]2 +

ε′

8πlB

∫
dr φm(r) [∇ψ(r)]2

+
3

2l2

np∑
α=1

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2 + i

np∑
α=1

N∑
τ=1

στψ(Rα,τ )

=
εw

8πlB

∫
dr [∇ψ(r)]2 +

np∑
α=1

{
3

2l2

N−1∑
τ=1

(Rα,τ+1 −Rα,τ )
2

+
N∑
τ=1

[
iστψ(Rα,τ ) +

ε′l3

8πlB
[∇ψ(Rα,τ )]

2

]}
,

(S45)

where Eq. (S39) for φm(r) has been applied to yield the last equality. Utilizing the Fourier

transformation ψk = (Ω/Nr)
∑

r ψ(r) exp(−ik · r) of the conjugate field ψ(r) [which may

then be expressed as the inverse transformation of ψk, i.e., ψ(r) = (1/Ω)
∑

k ψk exp(ik · r)]
and the

∑
r ↔ (Nr/Ω)

∫
dr correspondence in Eq. (S36), the first term in the above

Eq. (S45) can be rewritten as

εw
8πlB

∫
dr [∇ψ(r)]2 → εw

8πlB

(
Ω

Nr

)∑
r

[(
1

Ω

∑
k

ψk∇e−ik·r
)
·

(
1

Ω

∑
k′

ψk′∇e−ik′·r

)]

= − εwΩ

8πlB

1

Ω2

∑
k

∑
k′

ψk(k · k′)ψk′δk+k′

=
1

2Ω

∑
k

εwk
2

4πlB
ψkψ−k =

1

2Ω

∑
k 6=0

εwk
2

4πlB
ψkψ−k ,

(S46)

where the last equality follows because the k = 0 term vanishes by virtue of the k2 fac-

tor. The remaining terms of H [ψ,R] in Eq. (S45) can be rewritten as the summation of

contributions from np independent polymers, as follows. Consider the partition function

Qp[ψ] =

∫
D [R]e−Hp[ψ,R] (S47)
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for a single polymer, where D [R] =
∏N

τ=1 dRτ , and

Hp[ψ,R] ≡ 3

2l2

N−1∑
τ=1

(Rτ+1 −Rτ )
2

+
N∑
τ=1

[
i

Ω

∑
k

στψke
−ik·Rτ − ε′l3

8πlB

1

Ω2

∑
k

∑
k′

(k · k′)ψkψk′e−i(k+k′)·Rτ

]

=
3

2l2

N−1∑
τ=1

(Rτ+1 −Rτ )
2

+
N∑
τ=1

[
i

Ω

∑
k 6=0

στψke
−ik·Rτ − ε′l3

8πlB

1

Ω2

∑
k,k′ 6=0

(k · k′)ψkψk′e−i(k+k′)·Rτ

]
.

(S48)

Note that the label α in Rα,τ is dropped in
∏N

τ=1 dRτ and Eq. (S48) because the pertinent

integration is only over the monomer coordinates of a single polymer chain. The k,k′ = 0

terms can be excluded in the summations of the last line of Eq. (S48) because in the first

summation
∑N

τ=1 στ = 0 for the overall neutral polyampholytes considered here and the

(k · k′) factor in the second summation means that the k,k′ = 0 terms are identically zero.

Utilizing the definition of ψ(r) to ψk Fourier transformation stated after Eq. (S45), it can

readily be verified that Hp[ψ,R] is precisely the k-space version of the quantity enclosed in

curly brackets on the right hand side of Eq. (S45). Upon changing the functional integration

variables ψ(r) in Eq. (S44) to ψk and including the k-independent functional Jacobian

|δψ(r)/δψk| (which have no effect on the configurational distribution of the system),{∏
r

∫
dψ(r)√

2π

}
→

{∏
k

∫ √
Nr

2πΩ2
dψk

}
(S49)

formally, and thus Eq. (S44) can now be recast in the equivalent form

Zel =

∏
k 6=0

√
k2εr(φm)

4πlB


{∏

k

∫ √
Nr

2πΩ2
dψk

}
exp

[
− 1

2Ω

∑
k 6=0

εwk
2

4πlB
ψkψ−k

]

×
∫ np∏

α=1

{
N∏
τ=1

dRτ exp (−Hp[ψ,R])

}
,

(S50)

where we have made use of the fact that in the above expression, the first exponential

factor [from Eq. (S46)] is independent of Rα,τ , and the quantity enclosed in the last set of

curly brakets [from Eq. (S48)] is identical for all np values of α, thus the entire last line of

Eq. (S50) is equal to np lnQp[ψ] in accordance with Eq. (S47). Because, as argued above,

there is no k = 0 contribution to Hp[ψ,R], the
∏

k(Nr/2πΩ2)1/2
∫
dψk functional integral in

Eq. (S50) may be restricted to
∏

k 6=0(Nr/2πΩ2)1/2
∫
dψk with no impact on configurational
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distribution. Therefore, Zel takes the simplified form:

Zel =

∏
k 6=0

∫ √
Nr

2πΩ2
dψk

√
εr(φm)k2

4πlB

 e−H [ψk] , (S51)

where

H [ψk] =
1

2Ω

∑
k 6=0

εwk
2

4πlB
ψkψ−k − np lnQp[ψ] . (S52)

We are now in a position to apply RPA by expanding lnQp around ψk = 0 up to second

order in ψk,S40 namely

lnQp[ψ] ≈ lnQp[ψ = 0] +
∑
k

(
δ lnQp
δψk

)
ψ=0

ψk +
1

2

∑
k,k′

(
δ2 lnQp
δψkδψk′

)
ψ=0

ψkψk′ , (S53)

wherein the zeroth order term (first term on the right hand side) is a constant that plays

no role in determining configurational distribution. The first order term(
δ lnQp
δψk

)
ψ=0

=
1

Qp[ψ = 0]

δQp
δψk

∣∣∣∣
ψ=0

=
N∑
τ=1

〈
− i

Ω
στe

−ik·Rτ + 2× ε′l3

8πlB

1

Ω2
k ·
∑
k′ 6=0

k′ψk′e−i(k+k′)·Rτ

〉
ψ=0

=− i

Ω

N∑
τ=1

στ
〈
e−ik·Rτ

〉
ψ=0

=0

(S54)

as well. Here, the average 〈...〉ψ=0 is over monomer coordinates [R] and evaluated at ψk = 0,

the third equality follows because the second term in the second line of the above equation

contains a factor of ψ that is set to zero, and the last equality is a consequence of the overall

neutrality of the polyampholytes in the system we considered (
∑N

τ=1 στ = 0). The second

order term in the above Eq. (S53) is given by(
δ2 lnQp
δψkδψk′

)
ψ=0

=
1

Qp[ψ = 0]

δ2Qp
δψkδψ′k

∣∣∣∣
ψ=0

− 1

Qp[ψ = 0]

δQp
δψk

∣∣∣∣
ψ=0

× 1

Qp[ψ = 0]

δQp
δψ′k

∣∣∣∣
ψ=0

=
1

Qp[ψ = 0]

δ2Qp
δψkδψ′k

∣∣∣∣
ψ=0

=
1

Ω2

ε′l3

4πlB
k · k′

N∑
τ=1

〈
e−i(k+k′)·Rτ

〉
ψ=0
− 1

Ω2

N∑
τ,µ=1

στσµ

〈
e−i(k·Rτ+k′Rµ)

〉
ψ=0

,

(S55)
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where the second equality follows from Eq. (S54). The two R-averages over Gaussian chain

configurations in the above Eq. (S55) may be evaluated as follows. For
〈
e−i(k+k′)·Rτ

〉
ψ=0

,

only a single monomer coordinate variable Rτ is involved and thus it is uncontrained and

R-averaging entails only a single integration of Rτ over the entire system volume Ω. The

correspondence
∫
dRτ ↔ (Ω/Nr)

∑
Rτ

yields
〈
e−i(k+k′)·Rτ

〉
ψ=0

= δk,−k′ . Next, to compute〈
e−i(k·Rτ+k′Rµ)

〉
ψ=0

, we rewrite it as
〈
e−ik·(Rτ−Rµ)e−i(k+k′)·Rµ)

〉
ψ=0

, which indicates that the

R-averaging involves integrating over two monomer coordinates, one is unconstrained and

the other is constrained by the Gaussian chain statistics for two points separated by a

contour length l|τ − µ|. Without loss of generality, we select Rµ to be the unconstrained

coordinates. As for the first average, summing over Rµ using the
∫
dRµ ↔ (Ω/Nr)

∑
Rµ

correspondence yields the Kronecker δk,−k′ . In accordance with the Gaussian statistics

governed by the 3/2l2
∑N−1

τ=1 (Rτ+1−Rτ )
2 term ofHp[ψ,R] in Eq. (S48), Rτ−Rµ is weighted

by exp(−3|Rτ − Rµ|2/2l2|τ − µ|), and therefore the R-averaging of e−ik·(Rτ−Rµ) yields

exp(−k2l2|τ − µ|/6). These considerations allow us to arrive at the expression(
δ2 lnQp
δψkδψk′

)
ψ=0

= −δk,−k
′

Ω2

[
ε′Nl3k2

4πlB
+ 〈σ|ĜM(kl)|σ〉

]
(S56)

for Eq. (S55), where [ĜM(kl)]τµ = exp[−(kl)2|τ−µ|/6] as defined above. Therefore, accord-

ing to Eqs. (S53) and (S54), the np lnQp[ψ] term in Eq. (S52) is given by

np lnQp[ψ] ≈ 1

2
np
∑
k,k′

(
δ2 lnQp
δψkδψk′

)
ψ=0

ψkψk′

= − np
2Ω2

∑
k,k′

δk,−k′

[
ε′Nl3k2

4πlB
+ 〈σ|ĜM(kl)|σ〉

]
ψkψk′

= − 1

2Ω

∑
k 6=0

[
ε′φmk

2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

]
ψkψ−k ,

(S57)

where we have used the definition of polymer volume fraction φm = l3npN/Ω, and the fact

that the k = 0 terms vanishes: the first term because of the k2 factor and the second term

because of the overall neutrality of the polyampholytes, i.e.,
∑

τ στ = 0, and [ĜM(0)]τµ = 1.

Combining this result with Eq. (S52), we arrive at

H [ψk] ≈ 1

2Ω

∑
k 6=0

[
(εw + ε′φm)k2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

]
ψkψ−k

=
1

2Ω

∑
k 6=0

[
εr(φm)k2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

]
ψkψ−k ,

(S58)

where we have made use of the above definition of εr(φm) which is linear in φm. We may

now evaluate Zel by performing the functional integral
∏

k 6=0

∫
dψk in Eq. (S51). Because
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the ψks are Fourier transformations of the real-valued field ψ(r), ψ∗k = ψ−k and
∏

k 6=0

∫
dψk

=
∏

k>0

∫
dψk

∫
dψ∗k, where the k > 0 notation means that the product or summation

excludes the origin and is over k = (k1, k2, k3) but not −k = (−k1,−k2,−k3). This can

be effectuated by first excluding (k1, k2, k3) = (0, 0, 0) and then restricting the product or

sum to k1 ≥ 0 (or to k2 ≥ 0 or to k3 ≥ 0). Expressing ψk in terms of its real part ψR
k and

imaginary part ψI
k, i.e., ψk = ψR

k +iψI
k and ψ∗k = ψR

k−iψI
k where ψR

k and ψI
k are real numbers,

one obtains
∏

k>0

∫
dψk

∫
dψ∗k =

∏
k>0 2

∫∞
−∞ dψ

R
k

∫∞
−∞ dψ

I
k. Since ψkψ−k = (ψR

k )2 + (ψI
k)2,

Zel =

{∏
k>0

(
Nr

πΩ2

)[
εr(φm)k2

4πlB

] ∫ ∞
−∞

dψR
k

∫ ∞
−∞

dψI
k

}

× exp

{
1

Ω

∑
k>0

[
εr(φm)k2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

] [
(ψR

k )2 + (ψI
k)2
]}

=
∏
k>0

(
Nr

πΩ2

)[
εr(φm)k2

4πlB

]
× πΩ

[
εr(φm)k2

4πlB
+
φm
Nl3
〈σ|ĜM(kl)|σ〉

]−1
=
∏
k 6=0

√
Nr

Ω

[
1 +

4πlB
εr(φm)k2

φm
Nl3
〈σ|ĜM(kl)|σ〉

]−1/2
.

(S59)

Hence, up to an additive constant ∝ Nr ln(Nr/Ω) that does not affect configurational

distribution, the electrostatic contribution to the free energy in Eq. (S27) is equal to

fel ≡ −
l3

Ω
lnZel = − l

3

Ω

∑
k 6=0

ln

[
1 +

4πlB
εr(φm)k2

φm
Nl3
〈σ|ĜM(kl)|σ〉

]−1/2
→ l3

2

∫
d3k

(2π)3
ln

[
1 +

4πlB
εr(φm)k2

φm
Nl3
〈σ|ĜM(kl)|σ〉

]
,

(S60)

where we have applied the correspondence

1

Ω

∑
k

→
∫

d3k

(2π)3
(S61)

and noted that the k → 0 contribution vanishes inside the integral in Eq. (S60) because

d3k ∝ k2dk and thus
∑

k 6=0 may be approximated by Ω
∫
d3k/(2π)3 for this quantity. The

last expression in Eq. (S60) is formally identical to the one we obtained previously by

heuristically replacing the position- and φm-independent εr in simple RPA theory with

εr(φm) [Eq. (S14)]. This can be readily verified by setting b = a = l, hence η = 1 in

Eqs. (S14) and (S15), and noting that (1/2)d3k/(2π)3 = k2dk/4π2, in which case the last

line of Eq. (S60) is seen to be equal to Eq. (S14) with the G1(k̃) term [Eq. (S15a)] present but

the G2(k̃) term [Eq. (S15b)] omitted (no subtraction of self interaction) as well as k̃2(1+ k̃2)

→ k̃2 (no short-range cutoff for Coulomb interaction).
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In other words, the heuristic RPA formulas for εr → εr(φm) in Eqs. (S14) and (S15)

can be rigorously established in the context of RPA approximation provided that εr is a

linear function of φm. Indeed, if εr was a more complicated function of φm, the last term

in Eq. (S45) would have individual interaction terms, such as δ(Rα,τ − Rβ,µ), etc., that

involve different polymer chains, and that would necessitate an additional summation
∑

α

over polymer chains instead of a single
∑

τ over monomers on a single chain. In that case,

the subsequent simplification in terms of the single-chain partition function Qp [Eq. (S50)]

and thus the RPA expansion of lnQp [Eq. (S53)] cannot proceed in the manner described

above. Therefore, it remains unclear whether Eq. (S60) holds in general for εr(φm) that is

not linear in φm.

In our previous applications, we considered a Coulomb potential with a physical short-

range cutoff by the modification

U(r, r′) =
lB

εr|r− r′|
→ U(r, r′) =

lB
εr|r− r′|

(
1− e−|r−r′|/l

)
(S62)

[cf. Eq. (6) of Ref. S35; Eq. (34) of Ref. S17], which for constant, position-independent εr
results in a fel with 1/k2 replaced by 1/[k2(1 + k2b2)]. In the context of a general position-

dependent εr, this feature can in principle be accounted for by introducing an εr(|r−r′|), but

the necessary formalism has not been developed. In the present work, we incorporate this

feature by simply replacing the 1/k2 factor by 1/[k2(1 +k2b2)] in Eq. (S60) so as to capture

this physical property as much as possible and place our present results on an essentially

equal footing with our earlier results for position-independent εr. Mathematically, this

procedure may be viewed as a regularization for “ultraviolet” large-k (i.e., small-|r − r′|)
divergence. As such, it does serve to impart a physical short-spatial-range cutoff, though

it may not correspond exactly to any particularly modified form of fel in Eq. (S62) that is

applicable to a general position-dependent εr(r).

Taking all of the above into consideration, we use the general formula in Eqs. (S14) and

(S15) above (which allows for a 6= b = l and thus η = (b/a)3 6= 1 and rm 6= 1) for comparing

RPA theory against explicit-chain simulation, with the understanding that εr must be a

linear function of polymer volume fraction φ = rmφm. Following previous practice,S17,S35

the electrostatic self-interaction term G2(k̃) = 4πlBφm/[k
2(1 + k2b2)εr(φm)Nb3]

∑N
τ=1 |στ | is

subtracted in Eq. (S14). In the context of a position-dependent εr(r), however, we recognize

that this term can be physically significant for capturing the polyampholyte chains’ varying

preference for different dielectric environments.S44 Hence we consider also an electrostatic

free energy

f
[self]
el ≡

∫
dk̃k̃2

4π2η
ln
[
1 + ηG1(k̃)

]
= a3

∫
dkk2

4π2
ln

[
1 +

b3

a3
G1(kb)

]
(S63)

that includes (does not substract) electrostatic self-interaction, and use both Eq. (S14) and
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Eq. (S63) in our comparison of analytical theory with chain simulation.

UNIT CONVERSION FOR COMPARISON WITH EXPLICIT-CHAIN SIMULATIONS

The theory-predicted phase diagrams (coexistence curves) in Fig. S7 of the Supporting

Information for position- and IDR concentration-independent εr are computed numerically

using the RPA+FH model described in Ref. S17. Specifically, translational and mixing

entropy is given by Eqs. (13) and (14), the RPA formula for fel is provided by Eqs. (39)

and (40), and the augmented FH term is the one in Eq. (61) of this reference. Values of the

parameters in these formulas are adapted to the present application, as follows:

• a: Unit length of the model. We set the unit volume, a3, to be that of the volume

occupied by a water molecule in pure water, i.e., φpure
w = ρpurew × a3 = 1, where the

number density of pure water ρpurew = 106 g m−3NA/18.01528 g where 106 g m−3 is

density of water, NA = 6.02214086 × 1023 is Avogadro’s constant and 18.01528 g is

molar mass of water. Thus, a = (1/ρpurew )1/3 = 3.104 Å= 3.104× 10−10m.

• b: The Cα–Cα virtual bond length of polypeptides b = l = 3.8 Å= 3.8× 10−10m.

• η [in Eq. (39) of Ref. S17]: From the above values for a and b, η = (b/a)3 =

(3.8/3.104)3 = 1.835.

• rm (monomer size factor in Eq. (14) of Ref. S17): The rm ratio between the size of

one amino acid residue in Ddx4 IDR and the unit volume a3 is obtained as follows.

Because the density of pure protein = 1, 587 mg ml−1, number of amino acid residues

(monomers) in Ddx4 IDR is N = 241, and the molar mass of Ddx4 IDR is 25, 833

(Ref. S43), the monomer (amino acid residue) number density of pure protein is given

by

ρpurem = (1.587× 106) g m−3 × 241×NA/25, 833 g . (S64)

Since the volume fraction φ of pure protein is unity by definition, i.e., φ = ρm×rm×a3,
it follows that

rm = (a3ρpurem )−1 = ρpurew /ρpurem =
25833

18.0
· 1

1.587
· 1

241
= 3.752 . (S65)

• rs and rc [size factors for salt and counterions, respectively, in Eq. (14) of Ref. S17]:

Both rs and rc are set to 1.

The conversion between the φm = npNa
3/Ω in analytical theory to Ddx4 concentration,

[Ddx4], in units of mg/ml (mg ml−1), is given by

φm =
{

[Ddx4(mg/ml)]× 1000 g/mg × 236/(Ddx4 molar mass in g)
}
×NA × a3 , (S66)
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where N = 236 is the chain length of the Ddx4 IDRs, (Ddx4 molar mass in g) of the four

Ddx4 IDR sequences are 25412.48, 25412.48, 24346.80, and 24740.48, respectively, for WT,

CS, FtoA, and RtoK.S43 It should be noted that there is a slight mismatch in the lengths

of Ddx4 IDRs (236 vs 241) because a Ddx4N1 sequence with six amino acids added to its

C-terminus as a tag was used in experiments.S42,S43 Nonetheless, N = 236 is adopted in

Eq. (S66) because the N = 236 sequence published in Ref. S42 is used in our simulations.

In the context of our approximate analytical theory and coarse-grained chain model, the

numerical difference between using N = 236 and N = 241 is not expected to be significant.

The mean-field Flory-Huggins (FH) χ parameters of non-electrostatic interactions for

the four Ddx4 IDR sequences are obtained from averaging the KH potential energies εij(r0)

(= Eij(r0) [KH] in Fig. 1a of main text) for a given sequence (seq) over all i, j pairs of

sequence positions except those entailing a charge-charge interaction [i.e., RR (Arg-Arg),

RK (Arg-Lys), RD (Arg-Asp), RE (Arg-Glu), KK (Lys-Lys), KD (Lys-Asp), KE (Lys-Glu),

DD (Asp-Asp), DE (Asp-Glu), EE (Glu-Glu); see main-text], yielding 〈E〉KH,seq = −0.1047,

−0.1047, −0.0689, and −0.0924 kcal mol−1, respectively, for seq = WT, CS, FtoA, and

RtoK. These average sequence-dependent mean-field non-electroatic interaction energies

〈E〉KH,seqs are converted to the FH χ = εh/T
∗ in Eq. (61) of Ref. S17 as follows:

1. Convert per-mole units to per-interaction units:

〈E〉KH,seq[(J/amino acid pair)]

=
{
〈E〉KH,seq[(kcal/mole of amino acid pairs)]/NA

}
× 1000 cal/kcal× 4.18 J/cal .

(S67)

2. Convert to the reduced variables used in analytical theory:

(z/2)× 〈E〉KH,seq[(J/amino acid pair)]/(kBT ) = −εh/T ∗ , (S68)

where T ∗ is the reduced temperature given by Eq. (38) in Ref. S17 (see below) and

z is an FH geometric factor representing the maximal number of monomers (amino

acid residues) that are spatial nearest neighbors to a given monomer; e.g., z = 6

for three-dimensional simple cubic lattices. We obtain z/2 = 3.512 by fitting our

RPA+FH predictions to our explicit-chain simulation results.

3. Convert absolute temperature T in K to the reduced temperature T ∗:

1

T ∗
=

e2

4πε0εrkBb

1

T
, (S69)

where the electronic charge e = 1.6 × 10−19 C, ε0 = 8.854 × 10−12 C V−1m−1,

b = 3.8 × 10−10 m, and εr = 80, 40, or 20 in accordance with the corresponding
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simulations with position- and IDR concentration-independent relative permittivities.

Note that T ∗ = εrT
∗
0 where T ∗0 is defined after Eq. (S15) above and in Eq. (67) of

Ref. S17.

4. Convert 〈E〉KH,seq to FH εh:

Based on the above consideration,

εh = −T ∗
(z

2

) 〈E〉KH,seq[(J/amino acid pair)]

kBT

= −
(

4πε0εrb

e2

)(
z

2

)
×
{
〈E〉KH,seq[(kcal/mole of amino acid pairs)]/NA

}
× 1000 cal/kcal× 4.18 J/cal

= −4π × (8.854× 10−12)× (3.8× 10−10)

(1.6× 10−19)2
3.512× 1000× 4.18

(6.02214086× 1023)

× εr〈E〉KH,seq[(kcal/mole of amino acid pairs)]

= −0.04026× εr × 〈E〉KH,seq[(kcal/mole of amino acid pairs)] .

(S70)

Accordingly, the εh values for WT, CS, FtoA, and RtoK Ddx4 IDRs are, respectively, εh =

0.337, 0.337, 0.222, and 0.298 when εr = 80; εh = 0.169, 0.169, 0.111, and 0.149 when

εr = 40; and εh = 0.0843, 0.0843, 0.0555, and 0.0744 when εr = 20.

Note that εh decreases with decreasing εr because the reduced temperature T ∗ in

Eq. (S69) is proportional to εr. In this formulation using T ∗, the result of decreasing εr is

a reduction in the strength of favorable FH interactions relative to that of the electrostatic

interactions, which is equivalent to the physical situation (with temperature measured in K)

of enhanced electrostatic interactions under a reduced εr while keeping the non-electrostatic

interactions unchanged.
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SI Figures

WT:
MGDEDWEAEINPHMSSYVPIFEKDRYSGENGDNFNRTPASSSEMDDGPSR
RDHFMKSGFASGRNFGNRDAGECNKRDNTSTMGGFGVGKSFGNRGFSNSR
FEDGDSSGFWRESSNDCEDNPTRNRGFSKRGGYRDGNNSEASGPYRRGGR
GSFRGCRGGFGLGSPNNDLDPDECMQRTGGLFGSRRPVLSGTGNGDTSQS
RSGSGSERGGYKGLNEEVITGSGKNSWKSEAEGGES

CS:
MGDRDWRAEINPHMSSYVPIFEKDRYSGENGRNFNDTPASSSEMRDGPSE
RDHFMKSGFASGDNFGNRDAGKCNERDNTSTMGGFGVGKSFGNEGFSNSR
FERGDSSGFWRESSNDCRDNPTRNDGFSDRGGYEKGNNSEASGPYERGGR
GSFDGCRGGFGLGSPNNRLDPRECMQRTGGLFGSDRPVLSGTGNGDTSQS
RSGSGSERGGYKGLNEKVITGSGENSWKSEARGGES

FtoA:
MGDEDWEAEINPHMSSYVPIAEKDRYSGENGDNANRTPASSSEMDDGPSR
RDHAMKSGAASGRNAGNRDAGECNKRDNTSTMGGAGVGKSAGNRGASNSR
AEDGDSSGAWRESSNDCEDNPTRNRGASKRGGYRDGNNSEASGPYRRGGR
GSARGCRGGAGLGSPNNDLDPDECMQRTGGLAGSRRPVLSGTGNGDTSQS
RSGSGSERGGYKGLNEEVITGSGKNSWKSEAEGGES

RtoK:
MGDEDWEAEINPHMSSYVPIFEKDKYSGENGDNFNKTPASSSEMDDGPSK
KDHFMKSGFASGKNFGNKDAGECNKKDNTSTMGGFGVGKSFGNKGFSNSK
FEDGDSSGFWKESSNDCEDNPTKNKGFSKKGGYKDGNNSEASGPYKKGGK
GSFKGCKGGFGLGSPNNDLDPDECMQKTGGLFGSKKPVLSGTGNGDTSQS
KSGSGSEKGGYKGLNEEVITGSGKNSWKSEAEGGES

Fig. S1: The amino acid sequences (residues given by one-letter code) of the 236-residue

Ddx4 IDR (wildtype, WT) and its charge scrambled (CS) variant (introduced by Nott

et al.S42), phenylalanine-to-alanine variant (FtoA) (corresponds to the 14FtoA in Brady

et al.S43 and Vernon et al.S12) and arginine-to-lysine (RtoK) variantS12 considered in the

present study. Residues of amino acids A, D, E, F, K, and R are shown in the same colors

as those in Fig. 3a of the main text. Other residues, including Y which is considered in

subsequent simulations, are shown in black.
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(a) Tyr (b) Phe (c) Trp

Fig. S2: Statistics of cation-π-like contacts. Distributions of Cα–Cα distance between a

positively charged residue [arginine (solid curve) or lysine (dashed curve)] and an aromatic

residue [tyrosine (a), phenylalanine (b), or tryptophan (c)] are obtained from the same

dataset of 6,943 high-resolution X-ray structures (from a non-redundant setS12) used in

Fig. 2 of the main text. The bin size for Cα–Cα distance and the color code for different

residue pairs are also identical to those in Fig. 2 of the main text. For a given residue

pair [Arg-Tyr, Lys-Tyr (a); Arg-Phe, Lys-Phe (b); or Arg-Trp, Lys-Trp (c)], the relative

frequency of a given Cα–Cα distance bin is the total number of instances in the dataset

in which the Cα–Cα distance between the given pair of residues falls within the bin,

normalized (divided) by the product of the two total numbers of residues in the dataset

for the two residues making up the pair. Cumulative relative frequency at a given distance

is the sum of relative frequencies for distances lower or equal to the given distance. Here,

cumulative relative frequencies are reported up to Cα–Cα distance of 6.5 Å, which is

illustrative of common criteria for a residue-residue contact. The plotted distributions show

clearly that arginine-aromatic contacts are consistently and significantly more numerous

than lysine-aromatic contacts when compared on the same footing, suggesting strongly

that the overall arginine-aromatic interactions are energetically more favorable than the

overall lysine-aromatic interactions.S9
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WT, 350 K CS, 300 K

FtoA, 250 K RtoK, 300 K
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Fig. S3: Verification of liquid-like dynamics of simulated condensed phases. As in Dignon

et al.,S1 a relevant time-dependent mean-square deviation MSD(t) of molecular coordinates

was simulated to provide evidence for liquid-like behavior in our model systems, viz.,S45

MSD(t) =
1

n

〈 n∑
µ=1

∣∣∣[rµ,CM(t+ t0)− rCM(t+ t0)
]
−
[
rµ,CM(t0)− rCM(t0)

]∣∣∣2〉
t0

,

where µ = 1, 2, . . . , n labels the model IDR chains, n is the total number of IDR chains

in the simulation system, rµ,CM =
∑N

i=1mirµi/
∑N

i=1mi is the center-of-mass position of

the µth chain, with mi being the mass of the ith bead (residue) along an IDR chain, rCM

=
∑n

µ=1 rµ,CM/n is the center-of-mass of the entire collection of n chains, and the average is

over the initial time point t0. By subtracting drifts in molecular coordinates arising solely

from the diffusion of the entire system’s center of mass (see Fig. S4), the above-defined

MSD(t) values, which are provided by the circles in the plots, are a useful measure of the

liquidity of our simulated system. Diffusion coefficients, D = {limt→∞ d[MSD(t)]/dt}/6,

were then estimated, as indicated by the fitted straight line in each plot. Shown examples

for the four Ddx4 IDR variants were simulated using the KH model with relative permittivity

εr = 40 at the indicated temperatures, each of which is lower than the respective system’s

critical temperature. The magnitudes of our simulated Ds are similar to those simulated by

Dignon et al. for their model FUS systems (Fig. S12 of Ref. S1). Note that our simulated

Ds for the model Ddx4 IDR systems are, not unexpectedly, approximately three orders

of magnitude higher than the corresponding experimental valuesS43 because a unphysically

low friction coefficient was necessitated in our Langevin dynamics simulations in order to

accelerate sampling and also because a coarse-grained representation of the IDRs was used.
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Fig. S4: Center-of-mass diffusion of the simulated Ddx4 IDR systems. Data are from the

same systems as those in Fig. S3. The solid curves provide the mean-square deviation of

the center-of-mass positions of the IDRs without subtracting the the center-of-mass position

of the entire system, in which case

MSD(t) =
1

n

〈 n∑
µ=1

∣∣∣rµ,CM(t+ t0)− rµ,CM(t0)
∣∣∣2〉

t0

,

whereas the dashed curves represent the diffusion of the center of mass of the entire system

of n IDRs, given by MSD(t) = 〈|rCM(t + t0) − rCM(t0)〉t0 . Echoing the findings in Fig. S3,

a comparison of the solid and dashed curves in the present figure indicates that there is

significant diffusion of individual IDRs relative to the center of mass of the entire collection

of IDR chains.
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LAF-1 RGG WT:
MESNQSNNGG SGNAALNRGG RYVPPHLRGG DGGAAAAASA GGDDRRGGAG 
GGGYRRGGGN SGGGGGGGYD RGYNDNRDDR DNRGGSGGYG RDRNYEDRGY
NGGGGGGGNR GYNNNRGGGG GGYNRQDRGD GGSSNFSRGG YNNRDEGSDN
RGSGRSYNND RRDNGGDGLE HHHHHH

LAF-1 RGG RtoK:
MESNQSNNGG SGNAALNKGG KYVPPHLKGG DGGAAAAASA GGDDKKGGAG 
GGGYKKGGGN SGGGGGGGYD KGYNDNKDDK DNKGGSGGYG KDKNYEDKGY
NGGGGGGGNK GYNNNKGGGG GGYNKQDKGD GGSSNFSKGG YNNKDEGSDN 
KGSGKSYNND KKDNGGDGLE HHHHHH

LAF-1 RGG YtoF:
MESNQSNNGG SGNAALNRGG RFVPPHLRGG DGGAAAAASA GGDDRRGGAG 
GGGFRRGGGN SGGGGGGGFD RGFNDNRDDR DNRGGSGGFG RDRNFEDRGF
NGGGGGGGNR GFNNNRGGGG GGFNRQDRGD GGSSNFSRGG FNNRDEGSDN 
RGSGRSFNND RRDNGGDGLE HHHHHH

Fig. S5: LAF-1 IDR sequences simulated in Fig. 6 of the main text. Amino acid residues

are given by one-letter code. The 176-residue LAF-1 RGG WT sequence and its RtoK

and YtoF mutants (all with a polyhistidine tag) are the same as those used for in-vitro

studies and given in the Supporting Information of Ref. S46. Underscoring the substitution

positions considered in our simulations, K, F, R, and Y residues are shown, respectively, in

cyan, magenta, blue, and pink, as in Fig. 6a of the main text. Other residues, including A,

D, and E which are highlighted in Fig. 3a and Fig. S1 for Ddx4 IDRs, are shown here in

black.
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Fig. S6: Simulated IDR-concentration-dependent relative permittivity. Shown results—

part of which are also provided in Fig. 7a of the main text—are for the WT Ddx4 IDR.

Simulations were conducted using the SPC/E water model with 100 mM NaCl (circles),

the TIP3P water model without salt (squares), and the TIP3P model with 100 mM NaCl

(diamonds). Red symbols represent εr values simulated using the full force field, whereas

blue symbols denote εr values simulated while the electric charges on the sidechains of

arginine, lysine, glutamic acid, and aspartic acid are artifically turned off. The εr values

plotted here are tabulated in Table S1.

30



0 250 500 750
Density (mg/ml)

200

250

300

350

400

450

500
WT
CS
FtoA
RtoK

0 250 500 750
Density (mg/ml)

0 250 500 750
Density (mg/ml)

M
o
d

e
l 
Te

m
p

e
ra

tu
re

(a)     = 80 (b)     = 40 (c)     = 20 

Fig. S7: Comparing analytical theory with simulation for sequence-dependent liquid-liquid

phase separation of model Ddx4 systems. Phase diagrams simulated using the explicit-chain

KH model under different permittivities (εr) for the four Ddx4 IDRs from Fig. 4 of the main

text are replotted here as dashed curves. Predicted phase diagrams by the RPA+FH theory

that afford the best overall fit, at z/2 = 3.512, are shown as solid curves.
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SI Table

Table S1: IDR-concentration-dependent relative permittivity, εr, simulated for WT Ddx4

IDR using the SPC/E and TIP3P atomic models of water at T = 300 K.

SPC/E + saltb TIP3P, no salt TIP3P + saltb

[Ddx4]a εr [Ddx4]a εr [Ddx4]a εr

51.1 79.0 51.3 108.2 50.5 107.7

(52.04) (71.5) (51.1) (92.8) (52.7) (89.5)

101.8 65.4 101.9 93.4 100.6 89.1

(103.6) (61.5) (103.0) (85.9) (104.9) (85.8)

204.3 56.2 205.8 79.7 202.4 78.3

(207.3) (55.0) (206.5) (78.2) (209.9) (76.4)

302.5 53.6 307.0 72.2 299.4 68.6

(306.4) (49.2) (315.0) (70.5) (311.0) (70.5)

403.1 48.0 414.1 55.9 400.1 57.7

(408.7) (45.0) (424.6) (54.9) (413.3) (59.3)

531.6 37.0 545.2 46.7 529.4 50.0

(536.9) (36.1) (543.8) (47.1) (543.7) (47.3)

a Concentrations (in mg ml−1) and simulated εr values given in bold font are for systems

that apply the full force field; those given in ordinary roman (non-bold) font and in paren-

theses are for systems in which the electric charges on the sidechains of arginine, lysine,

glutamic acid, and aspartic acid of WT Ddx4 IDR are artifically turned off.
b [NaCl] = 100 mM.
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