we will assume that the bootstrap distributions of estimates are normal. Consider first Boot MI with $M=\infty$. Following equation (8), and assuming the bootstrap distribution is normal, conditional on $Z_{\rm obs}$ this distribution will be $N(\bar{\theta}_{\infty}, \sigma_{\infty}^2(Z_{\rm obs}))$. If the bootstrap distribution is normal, the percentile interval is equal (with $B=\infty$) to $\bar{\theta}_{\infty} \pm z_{0.975} \sqrt{\sigma_{\infty}^2(Z_{\rm obs})}$. Suppose that this confidence interval, in repeated samples, has correct coverage. Now consider the same procedure with small finite M. Following equation (8), conditional on $Z_{\rm obs}$, the bootstrap distribution of estimates is now $N\left(\overline{\theta}_{\infty},\sigma_{\infty}^2(Z_{\rm obs})+\frac{\sigma_{\rm btw}^2(Z_{\rm obs})}{M}\right)$. The resulting boot MI percentile confidence interval (with $B=\infty$) is then $\overline{\theta}_{\infty}\pm z_{0.975}\sqrt{\sigma_{\infty}^2(Z_{\rm obs})+\frac{\sigma_{\rm btw}^2(Z_{\rm obs})}{M}}$. The lower limit of this interval is then less than the lower limit of the interval with $M=\infty$, and the upper limit is larger than the upper limit of the interval with $M=\infty$. Hence if the interval with $M=\infty$ has correct coverage, when M is finite the percentile interval must over-cover. Note that this argument does not apply to a normal based $B=\infty$ Boot MI interval, because this interval is constructed as $\overline{\theta}_M \pm z_{0.975} \sqrt{\sigma_\infty^2(Z_{\rm obs}) + \frac{\sigma_{\rm btw}^2(Z_{\rm obs})}{M}}$. ## Supplementary Material: Bootstrap Inference for Multiple Imputation Under Uncongeniality Jonathan W. Bartlett j.w.bartlett@bath.ac.uk ${\bf Rachael. Hughes@bristol. ac. uk}$ ${\bf Rachael. Hughes@bristol. ac. uk}$ May 14, 2020 Table 1: Parameter values for the Hughes $et\ al$ simulation study. | Parameter | Value(s) | |------------|---| | π | 0.4577 | | α_0 | (25.02, 1.774) | | α_1 | (-0.03616, -0.1336) | | Σ | $(0.5521, 0.001574 \ 0.001574, 0.003705)$ | | ι_0 | -32.98 | | ι_1 | -2.314 | | ι_2 | -0.01566 | | ι_3 | 65.38 | | λ | 12.29 | | β_0 | 1.854 | | β_1 | 0.2908 | | β_2 | 0.08003 | | β_3 | 0.01119 | | ω | 0.7887 | | η | 0.5 |