

we will assume that the bootstrap distributions of estimates are normal. Consider first Boot MI with $M=\infty$. Following equation (8), and assuming the bootstrap distribution is normal, conditional on $Z_{\rm obs}$ this distribution will be $N(\bar{\theta}_{\infty}, \sigma_{\infty}^2(Z_{\rm obs}))$. If the bootstrap distribution is normal, the percentile interval is equal (with $B=\infty$) to $\bar{\theta}_{\infty} \pm z_{0.975} \sqrt{\sigma_{\infty}^2(Z_{\rm obs})}$. Suppose that this confidence interval, in repeated samples, has correct coverage.

Now consider the same procedure with small finite M. Following equation (8), conditional on $Z_{\rm obs}$, the bootstrap distribution of estimates is now $N\left(\overline{\theta}_{\infty},\sigma_{\infty}^2(Z_{\rm obs})+\frac{\sigma_{\rm btw}^2(Z_{\rm obs})}{M}\right)$. The resulting boot MI percentile confidence interval (with $B=\infty$) is then $\overline{\theta}_{\infty}\pm z_{0.975}\sqrt{\sigma_{\infty}^2(Z_{\rm obs})+\frac{\sigma_{\rm btw}^2(Z_{\rm obs})}{M}}$.

The lower limit of this interval is then less than the lower limit of the interval with $M=\infty$, and the upper limit is larger than the upper limit of the interval with $M=\infty$. Hence if the interval with $M=\infty$ has correct coverage, when M is finite the percentile interval must over-cover. Note that this argument does not apply to a normal based $B=\infty$ Boot MI interval, because this interval is constructed as $\overline{\theta}_M \pm z_{0.975} \sqrt{\sigma_\infty^2(Z_{\rm obs}) + \frac{\sigma_{\rm btw}^2(Z_{\rm obs})}{M}}$.

Supplementary Material: Bootstrap Inference for Multiple Imputation Under Uncongeniality

Jonathan W. Bartlett j.w.bartlett@bath.ac.uk

 ${\bf Rachael. Hughes@bristol. ac. uk}$ ${\bf Rachael. Hughes@bristol. ac. uk}$

May 14, 2020

Table 1: Parameter values for the Hughes $et\ al$ simulation study.

Parameter	Value(s)
π	0.4577
α_0	(25.02, 1.774)
α_1	(-0.03616, -0.1336)
Σ	$(0.5521, 0.001574 \ 0.001574, 0.003705)$
ι_0	-32.98
ι_1	-2.314
ι_2	-0.01566
ι_3	65.38
λ	12.29
β_0	1.854
β_1	0.2908
β_2	0.08003
β_3	0.01119
ω	0.7887
η	0.5