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Endocytic Pathway

In Fig. S1 the role of ILVs within the endocytic pathway is shown schematically.
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Figure S1: Endocytic pathway Transmembrane proteins (cargo), for example activated growth factor receptors, can enter the degradative
endocytic pathway via endocytosis. To allow degradation in the lysosomes by lysosomal digestive enzymes, the cargo needs to be internalized
into intraluminal vesicles (ILVs). Cargo sorting and the formation of ILVs is mediated by the ESCRT machinery, giving rise to multivesicular
endosomes.

Energy Barrier

For a diffusive process in one-dimension in a harmonic potential E of the form E(x) = 4∆EB
x
L

(
1− x

L

)
, with the energy barrier EB, the

diffusion coordinate x and the maximal value of the diffusion coordinate L, Kim et al. derived the following expressions for the transition

path time τd, i.e. the time to cross the barrier if the process starts at x=0 and does not return to x=0, and the waiting time τwt, i.e. the
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mean time to cross the barrier, when starting from x=0, where the process may return to x=0 multiple times [1]:
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with F2,2(y) = F2,2({1, 1}; 3/2, 2; y) the generalized hypergeometric function and D the diffusion constant. In the limit of small and large

energy barriers Eq. S1 is approximated by the analytic expression:
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Eq. S1 and Eq. S2 show that the ratio τd/τwt only depends on the energy barrier ∆EB. Fig. S2 shows the ratio τd/τwt as a function of the

energy barrier. For a small energy barrier the curve approaches as value of τd/τwt=1/3. The experimentally obtained values for the dwell

time and the waiting time are: τd=(161±94)s, τwt(203±47)s [2], which leads to a ratio 0.3≤ τd/τwt ≤1.6 (indicated as gray shaded are in Fig.

S2 ). Hence the upper limit exceeds the maximal theoretical value of 1/3, which we attribute to the shape of the energy landscape, which is

not a perfectly harmonic potential for the case of ILV formation. Within the limit of the experimental uncertainty, we obtain an upper limit

for the energy barrier of ∆EB ≈0.6kBT from the point where the theoretical curve (black line in Fig. S2) leaves the grey area.
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Figure S2: Energy barrier The ratio of transition path time and waiting time in dependence of the energy barrier ∆EB (Eq. S1, S2 solid
black line, Eq. S3a, S2 dotted, red line and Eq. S3b, S2 dashed, red line). The range of experimental values is indicated as gray shaded area.

Mean and Gaussian Curvature

A key assumption in our theoretical model is that ESCRTs induce a concentration dependent Gaussian bending rigidity. The membrane

energy therefore depends on the mean curvature as well as on the Gaussian curvature. To gain a better understanding on how mean and

Gaussian curvature proceed along the membrane shape, as the membrane transitions from a flat surface to a spherical vesicle, Fig. S3 shows

both curvatures for three exemplary membrane shapes. The same shapes are shown in Fig. 3 in the main text.

We rescale both mean and Gaussian curvature with the ILV curvature Cg:

Mean curvature: κm =

dψ
dS

+ sinψ
R

2Cg
(S4)
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Gaussian curvature: κg =

dψ
dS

sinψ
R

C2
g

(S5)
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Figure S3: Mean and Gaussian Curvature The membrane shape is shown for different angles α, corresponding to the three categories:
pit-shape (α = 0.35π), U-shape (α = 0.5π) and Ω-shape (α = 0.7π). The top row shows the mean curvature along the membrane shapes.
The bottom row shows the Gaussian curvature along the membrane shapes.

Numerical Method

The minimal energy shape of the outer region is obtained by parametrizing the angle φ as

φ(s) = α

(
1−

s

send

)
+
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i=1

φi sin

(
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s

send

)
(S6)

The prefactors φi are obtained by minimizing the energy, Eq. 6 in the main text, using the python basinhopping routine [3] with 100 iteration

steps and an initial step size of 0.01.

To optimize the number of terms N , we perform an energy minimization considering only the bending energy (Eq. 2 in the main text).

Evidently the energy is minimal and equal to zero, if the mean curvature is zero. Hence, a membrane only subjected to bending energy is a

suitable test case to compare the numerically and the analytically obtained minimal energy shape.

In Fig. S4 the bending energy of the outer membrane region is shown in dependence of the angle α for different N . As initial guess, we set

the prefactors to φ1=-1.6 and φi=0 for i >1. With increasing N the energy curve approaches the analytic result of Eκ=0. N=30 does not

lead to a significant improvement compared to N=25. For numerical efficiency we hence chose N=25 for all numerical calculations.
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Figure S4: Bending Energy The numerically obtained bending energy of the outer membrane region. For a zero-mean-curvature shape
the bending energy is zero, independent of the angle α.

For all N the numerically obtained bending energy deviates from Eκ=0 as α approaches π. Hence, the bending energy is over estimated

around α = π. However, the energy curves investigated in the main text show a maximum for much smaller α, i.e. numerical error around

α = π do not influence our findings reported in the main text.
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Figure S5: Membrane Shape Numerically obtained minimal energy shape (dashed, black line) and zero-mean-curvature shape (solid, red
line). The shapes are shifted in z-direction for better visibility.

As a further test, we compare in Fig. S5 the numerically obtained minimal energy shape with a zero-mean-curvature shape for N=25 and

different α, which shows good agreement. To determine the zero-mean-curvature shape we solve the following initial value problem with the

python odeint routine [3]:

dφ

ds
= −

sinφ

r
φ(0) = α (S7)

dr

ds
= cosφ r(0) = sinα (S8)

dz

ds
= sinφ z(0) = 1− cosα (S9)

The minimization of the full energy function (Eq. 6 in the main text) is performed in two steps. First, an energy minimization is performed

considering only the bending energy. The thus obtained prefactors φi serve as an initial guess for the second step, where the full energy
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function is minimized.

Line Tension

A non-uniform protein density leads to an effective surface tension, which acts to flatten the density profile:

∆Eλ = 2π

∫ ∞
0

dSλ

(
dρ

dS

)2

≈ 2πλρ02

(
C1(S∗)C2(S∗)

Cg

)2

R(S∗), (S10)

with the proportionality factore λ. Since the largest density gradient is found at the boundary between the protein coated and uncoated

region, the term
(
dρ
dS

)2
is well approximated by a delta-distribution around S∗, with S∗ the arc length at the boundary of the coat-free

vesicle. Hence, ∆Eλ acts like a line tension energy with an effective line tension λρ2
0 that is scaled by the Gaussian curvature at the boundary

between coated and uncoated region. Mercker et al. estimated the line tension of ESCRT proteins in the range of λρ2
0 ≈0.005pN [4], which at

about two orders of magnitude smaller than the typical line tension of lipid rafts [5]. Assuming this value for the line tension was motivated

mainly by the observation that ESCRT-I and ESCRT-II do not form large clusters [6], which indicated a weak interaction among proteins.

To evaluate the impact of the line tension on the energy landscape, we write Eq. S10 in rescaled units as:

∆Eλ

πκ
= λ̃

[
r (c1c2)2

]
s=s∗

, with λ̃ =
2λρ2

0

Cgκ
(S11)

and c1 = C1/Cg, c2 = C2/Cg. The rescaled radius at the boundary between coated and uncoated region is obtained analytically as

r(s∗) = sinα, whereas the Gaussian curvature c1c2 is obtained from the energy minimization for λ̃=0. This approximation serves as an upper

limit of the energy term ∆Eλ. In Fig, S6 the total energy is shown in dependence of α for ε=2.0 and σ̃=0.1. For a curvature of Cg=(23nm)−1,

a bending rigidity κ=10kBT [7] and a line tension λρ2
0=0.005pN the rescaled line tension becomes λ̃=0.006. Fig. S6 shows that the energy

landscape is not significantly altered for λ̃=0.006.

If we assume an effective line tension that is several orders of magnitude larger, the line tension hinders the formation of a vesicle, which seems

counter intuitive at first, since the radius at the boundary between coated and uncoated region decreases as the membrane transforms from a

U-shape to an Ω-shape. However, the line tension is scaled by the squared of the Gaussian curvature at s = s∗, which increases rapidly with

increasing α as a consequence, the term λ̃
[
(c1c2)2

]
s=s∗

opposes neck closure.
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Figure S6: Line tension a) Energy (Eq. 6 main text and Eq. S11) for ε=2.0 and σ̃=0.1 and different λ̃. b) Squared rescaled Gaussian
curvature at the boundary between coated and uncoated region.
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ESCRT-III depletion

Figure S7: Characterization of ESCRT-III depleted HeLa cells by immunofluorescence stainings, Western Blot and electron
microscopy analysis a) Western blots showing depletion of CHMP2A, CHMP4A and CHMP4B. CHMP4B siRNA oligo#2 was used in all
subsequent experiments. b) Immunofluorescence micrographs showing that ESCRT-III depleted cells can internalize EGF, and that LAMP1
positive endosomes are enlarged and accumulate HRS in ESCRT-III depleted cells compared to control treated cells. c) Electron micrographs
showing examples of endosomes from control and siRNA treated cells from 200 nm thick sections. The larger 15 nm gold particles represent
fiducial markers and the smaller 10 nm gold particles represent labeled EGFR, which have been internalized following stimulation with EGF
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for 12 minutes. Scale bar 100 nm. d) Graph representing the quantification of the number of ILVs per endosome area from EM sections as in
c. The total number of endosomes are collected from 3 independent experiments (control: n=47 endosomes; siCHMP4: n=47 endosomes) or 2
independent experiments (siCHMP2A: n=31 endosomes). Shown is mean +/- SD. Kruskal-Wallis test with Dunn’s Multiple Comparison test.
***: p<0.001, n.s., not significant. e) Graph representing the quantification of endosome area from electron micrographs from the dataset in
c, d. Shown is mean +/- SD. Kruskal-Wallis test with Dunn’s Multiple Comparison test. n.s., not significant. Note that the endosome area is
slightly, but not significantly increased in ESCRT-III depleted cells compared to control treated cells. This is in contrast to the enlarged late
LAMP1 positive endosomes observed by IF in a), and expected since the gold labelled endosomes investigated by EM represent newly formed
EGF-induced endosomes (12 min) that did not yet gain a prominent Class E phenotype.

Supporting Movies Movies

The Supporting Material includes two movies:
Movie S1: Electron tomograms of different stages during ILV formation on endosomes. Early U-shaped structure (left
panel), omega shaped bud (middle panel) and fully abscised ILV (right panel). Lower panels depict a 3D model of the
respective structures (membrane in green).
Movie S2: Electron tomogram and model of an endosome with several ILV formation sites (for a detailed view of each
of the different stages, see movie 1). An omega shaped bud that has not completely abscised into the lumen of the
endosome contains still an opening towards the cytosol.
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