#### Supplementary Data

#### Identification of transcription factor co-regulators that drive

#### prostate cancer progression

Manjunath Siddappa<sup>1</sup>, Sajad A. Wani<sup>2</sup>, Mark D. Long<sup>3</sup>, Damien A Leach<sup>4</sup>,

Ewy A. Mathé<sup>5,6</sup>, Charlotte L. Bevan<sup>7</sup>, Moray J. Campbell<sup>1,8,9\*</sup>.

<sup>1</sup>College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, 536 Parks Hall, 500 West 12th Ave., The Ohio State University, Columbus, OH 43210. <u>smanju712@gmail.com</u> <sup>2</sup>College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, 536 Parks Hall, 500 West 12th Ave., The Ohio State University, Columbus, OH 43210. wani.16@osu.edu

<sup>3</sup> Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA. Mark.Long@RoswellPark.org

<sup>4</sup> Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK. damien.leach@imperial.ac.uk

<sup>5</sup> Biomedical Informatics Department, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.

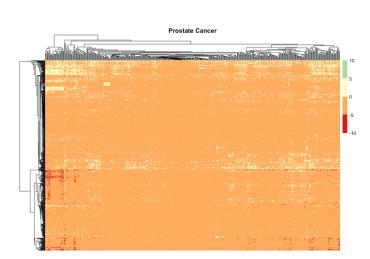
<sup>6</sup> Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20892, USA. <u>ewy.mathe@nih.gov</u>

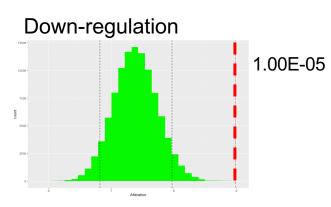
<sup>7</sup> Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK. charlotte.bevan@imperial.ac.uk <sup>8,9</sup> The James, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio,
43210, USA. Biomedical Informatics Shared Resource, The Ohio State University, Columbus,
Ohio, 43210, USA. Campbell.1933@OSU.edu
\*Corresponding author

Supplementary Figure Legends Figure legends

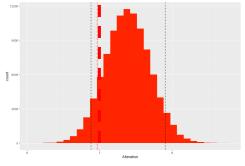
Supp. Figure 1. Family-wide analyses of transcription factors (TFs), coactivators (COAS), corepressors (CORS) and mixed function coregulators (MIXED) in PCa cohorts. Bootstrapping permutation approach was used to test if observed family-wide changes were more than predicted by chance. The heatmap (A) shows CORS expression in the TCGA cohort, indicating the genes are commonly down-regulated. To test CORS down-regulation we identified the proportion of these genes altered by > 2 Z-scores (vertical dashed red line, **A**, **right panel**) and compared this to the proportion of all gene families down-regulated in sets of the same size (green histogram); a similar analyses was applied to the up-regulated genes (red histogram). The observed proportion of CORS down-regulated by > 2 Z-scores was significantly more (and hence, to the right) than the estimated proportion of down-regulated groups of the same size and randomly sampled ( $p=1e^{.05}$ ). The CNA data and normalized exome mutation rate were treated in the same manner. Positive controls included gene groups known to be significantly altered by expression (nuclear hormone receptor (NR) down-regulation; HOX family (HOX)(61) up-regulation), mutation (Cosmic\_mutant) (B)

Supp. Figure 2. Correlation of mRNA and protein expression of transcription factors (TFs), coactivators (COAS), corepressors (CORS) and mixed function coregulators (MIXED) in PCa cohorts. Correlation between RNA (TCGA or SU2C) and protein (OICR) when considering RNA transcripts for detected proteins.


Supp. Figure 3. Identification of commonly altered transcription factors (TFs), coactivators (COAS), corepressors (CORS) and mixed function coregulators (MIXED) in the OICR cohort. Proteins commonly altered in OICR cohorts were identified and visualized as heatmaps

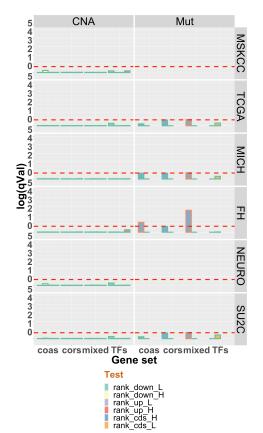

Supp. Figure 4. Enrichment of transcription factors in LNCaP cells with stable knockdown of PGC1 $\alpha$ . LISA cistrome analyses of the PGC1 $\alpha$ -dependent genes revealed that the top 50 transcription factors associated with these DEGs

Supp. Figure 5. Gene set enrichment analyses of PGC1 $\alpha$  dependent RNA-Seq. Top eight positive and negative significant (FDR < .1) normalized enrichment scores (NES) in four gene set categories; Hallmarks, Curated, GO and Reactome sets.

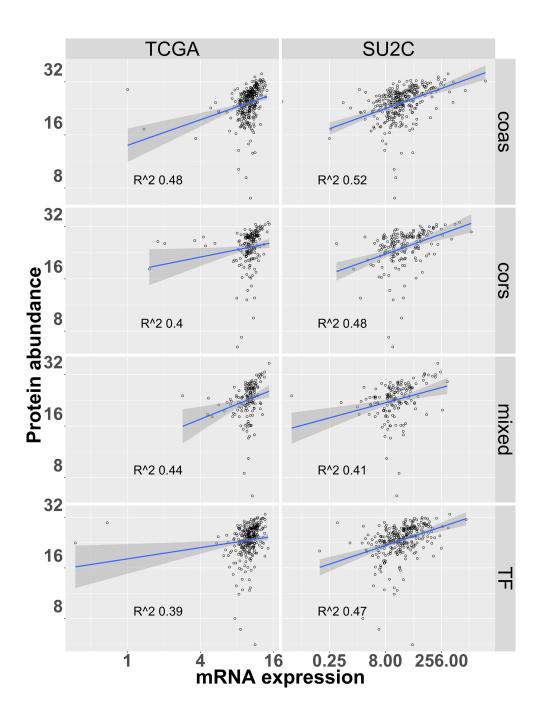

**Supp. Figure 6. Cumulative correlation of PGC1** $\alpha$  and target genes. Cumulative correlation plots revealed that the empirical correlation between the expression of *PPARGC1A* and genes regulated by *PPARGC1A* shRNA (green symbol, KS test; p<1e-9) and genes directly bound by PGC1 $\alpha$  (purple symbol, KS test; p<1e-9).

**Supp. Figure 7. Expression of PPARGC1A in prostate cancer cell lines.** PPARGC1A in a PCa cell lines in the Broad Cancer Cell Line Encyclopedia

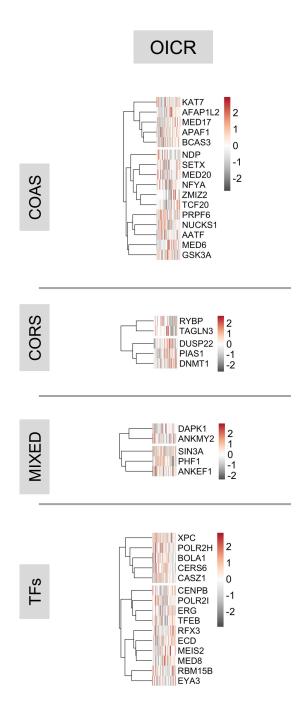




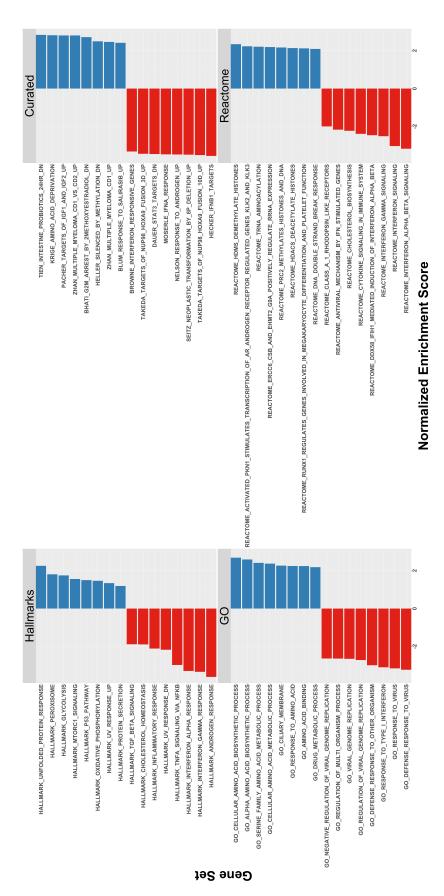


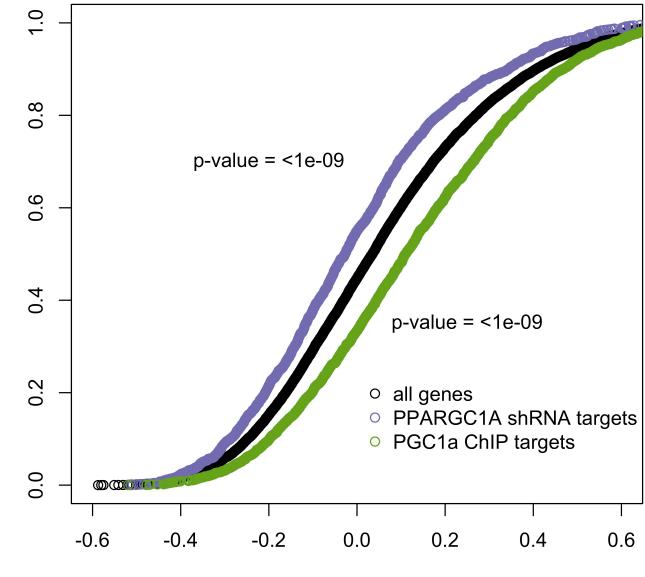

| Group   | center | Test        | logPV    | threshold   |
|---------|--------|-------------|----------|-------------|
| NR      | TCGA   | rank.up.L   | 1.978981 | Significant |
| NR      | MSKCC  | rank.up.L   | 1.074692 | Significant |
| Hox.nkl | TCGA   | rank.up.H   | 3.193824 | Significant |
| Hox.nkl | NEURO  | rank.up.H   | 1.539870 | Significant |
| HOX     | FH     | rank.up.H   | 1.510649 | Significant |
| Hox.nkl | FH     | rank.up.H   | 2.434157 | Significant |
| Hox.nkl | TCGA   | rank.down.L | 3.795884 | Significant |
| Hox.nkl | MSKCC  | rank.down.L | 3.795884 | Significant |
| NR      | NEURO  | rank.down.L | 3.795884 | Significant |
| Hox.nkl | NEURO  | rank.down.L | 3.795884 | Significant |
| HOX     | FH     | rank.down.L | 2.079881 | Significant |
| Hox.nkl | FH     | rank.down.L | 3.290734 | Significant |
| NR      | TCGA   | rank.down.H | 1.074692 | Significant |
| NR      | MSKCC  | rank.down.H | 2.892794 | Significant |
|         |        |             |          |             |


| Group          | center | Test       | logPV    | threshold   |
|----------------|--------|------------|----------|-------------|
| cosmic.mutants | TCGA   | rank_cds_H | 1.928122 | Significant |
| cosmic.mutants | NEURO  | rank_cds_H | 1.928122 | Significant |
| cosmic.mutants | SU2C   | rank_cds_H | 1.896885 | Significant |
| cosmic.mutants | FH     | rank_cds_H | 3.698974 | Significant |
| cosmic.mutants | MICH   | rank_cds_H | 1.928122 | Significant |




А




**Supplementary Figure 2** 



| Transcription.Factor | rank | logPV     |
|----------------------|------|-----------|
| FOXA1                | 1    | 42.045275 |
| AR                   | 2    | 41.221849 |
| GATA2                | 3    | 30.764472 |
| HOXB13               | 4    | 30.143271 |
| PIAS1                | 5    | 29.229148 |
| NR3C1                | 6    | 26.408935 |
| CTRL                 | 7    | 21.096367 |
| FOXA2                | 8    | 19.420216 |
| CEBPB                | 9    | 17.274905 |
| GATA3                | 10   | 15.135489 |
| NKX3–1               | 11   | 14.410050 |
| LMNB1                | 12   | 14.238824 |
| HDAC3                | 13   | 13.655608 |
| TET2                 | 14   | 13.389340 |
| SOX4                 | 15   | 12.995679 |
| PRDM6                | 16   | 12.924453 |
| PBX3                 | 17   | 12.920819 |
| NUP98-HOXA9          | 18   | 10.494850 |
| LMNA                 | 19   | 10.490797 |
| ESR1                 | 20   | 10.430626 |
| BMI1                 | 21   | 10.386158 |
| SP140                | 22   | 10.343902 |
| RNF2                 | 23   | 10.130182 |
| SUMO2                | 24   | 10.049635 |
| HES2                 | 25   | 9.966576  |
| PR                   | 26   | 9.600326  |
| PSMA7                | 27   | 9.559091  |
| SMARCA4              | 28   | 9.422508  |
| FOS                  | 29   | 9.208309  |
| NANOG                | 30   | 9.111821  |
| SOX2                 | 31   | 8.869666  |
| ERG                  | 32   | 8.747147  |
| MYC                  | 33   | 8.425969  |
| FOXH1                | 34   | 8.403403  |
| ZBTB48               | 35   | 8.294136  |
| CTCF                 | 36   | 8.218245  |
| PDX1                 | 37   | 8.199283  |
| AFF1                 | 38   | 8.186419  |
| SIX2                 | 39   | 8.025949  |
| GLI2                 | 40   | 8.014125  |
| LHX2                 | 41   | 7.838632  |
| SMC1A                | 42   | 7.804100  |
| BATF3                | 43   | 7.777284  |
| PPARG                | 44   | 7.739929  |
| STAT3                | 45   | 7.705534  |
| 5MC                  | 46   | 7.655608  |
| GATA6                | 47   | 7.542118  |
| WDR5                 | 48   | 7.467246  |
| HLF                  | 49   | 7.255707  |
| RELA                 | 50   | 7.176526  |
|                      | 00   | 1.110020  |



### Correlation of PPARGC1A target genes in TCGA PRAD cohort



**PPARGC1A** correlation

**Supplementary Figure 6** 

cumulative fraction

| Cell_Line              | V1         |
|------------------------|------------|
| NCIH660_PROSTATE       | 0.47613    |
| VCAP_PROSTATE          | -3.426818  |
| MDAPCA2B_PROSTATE      | -0.9270735 |
| DU145_PROSTATE         | -5.0276    |
| LNCAPCLONEFGC_PROSTATE | -3.660012  |
| X22RV1_PROSTATE        | -4.357137  |
| PC3_PROSTATE           | -9.887421  |
| PRECLH_PROSTATE        | -4.978315  |