

Supplementary Figure 2: *Sle1a* does not impact B cell activation and ER α does not modulate B cell activation in B6.*Sle1a* mice. (A) Dot plots show the percentage of splenocytes in female B6.*ER* $\alpha^{+/+}$ (N=14), B6.*ER* $\alpha^{-/-}$ (N=9), B6.*Sle1a*.*ER* $\alpha^{+/+}$ (N=24), and B6.*Sle1a*.*ER* $\alpha^{-/-}$

(N=12) mice that were B220⁺CD86⁺ activated B cells. (B) Representative contour plots from female B6.*ER* $\alpha^{+/+}$, B6.*ER* $\alpha^{-/-}$, B6.*Sle1a.ER* $\alpha^{+/+}$, and B6.*Sle1a.ER* $\alpha^{-/-}$ mice show the frequency of B220⁺CD86⁺ B cells. (C) Dot plots show the percentage of splenocytes in male mice B6.*ER* $\alpha^{+/+}$ (N=15), B6.*ER* $\alpha^{-/-}$ (N=9), B6.*Sle1a.ER* $\alpha^{+/+}$ (N=16), and B6.*Sle1a.ER* $\alpha^{-/-}$ (N=18) mice that were B220⁺CD86⁺ activated B cells. (D) Representative contour plots from male B6.*ER* $\alpha^{+/+}$, B6.*ER* $\alpha^{-/-}$, B6.*Sle1a.ER* $\alpha^{+/+}$, and B6.*Sle1a.ER* $\alpha^{-/-}$ mice show the frequency of B220⁺CD86⁺ B cells. (E) Dot plots show CD22 surface expression measured as mean fluorescence intensity (MFI) in B220⁺CD22⁺ B cells in female B6.*ER* $\alpha^{+/+}$ (N=10), B6.*ER* $\alpha^{-/-}$ (N=7), B6.*Sle1a.ER* $\alpha^{+/+}$ (N=24), and B6.*Sle1a.ER* $\alpha^{-/-}$ (N=13) mice. (F) Dot plots show CD22 surface expression measured as mean fluorescence intensity (MFI) in B220⁺CD22⁺ B cells in male B6.*ER* $\alpha^{+/+}$ (N=13), B6.*ER* $\alpha^{-/-}$ (N=5), B6.*Sle1a.ER* $\alpha^{+/+}$ (N=30), and B6.*Sle1a.ER* $\alpha^{-/-}$ (N=18) mice is shown. Splenocytes were collected from mice that were 5-6 months of age. The longer horizontal bar in each panel denotes the mean for each group, and the shorter black bars indicate the standard error of the mean. The * indicates p≤0.05, and the ** indicates p≤0.01.