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SUPPLEMENTAL FIGURES 
 

 
 
FIG S1 Rarefaction curves computed using mothur with default parameters (1) for cgST 
(i.e., 0 allelic difference), the outbreak threshold (i.e., 7 allelic differences), and the 
sublineage threshold (i.e., 133 allelic differences). 



Liang et al.             V. cholerae Core Genome Multilocus Sequence Typing 

 3 

 
 
FIG S2 Evaluation of network similarities between the cgMLST sublineage threshold and 
MLST ST. Networks of all sublineages identified using only V. cholerae isolates from 
Bangladesh (n = 255). Each cluster represents a sublineage and includes isolates with 
less than or equal to 133 allelic differences with each other. Each node represents a cgST 
and is colored by ST based on the 2013 MLST scheme (2). Size of the nodes are 
proportional to the number of isolates. The length of the connecting lines within a cluster 
is proportional to the number of allelic differences. 
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FIG S3 Adjusted Rand Index for individual pairwise comparisons between predefined 
clustering thresholds (FIG 2) and the 2013 MLST scheme (2). The sublineage clustering 
threshold (i.e., 133 allelic differences) and outbreak threshold (i.e., 7 allelic differences) 
are indicated in blue and red bars, respectively.
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SUPPLEMENTAL TABLES* 
 
TABLE S1 Meta-information for all 1,262 isolates used in this study. ST designations are 
based on the 2016 MLST scheme by Kirchberger and colleagues (3) and the 2013 MLST 
scheme by Octavia and colleagues (2). 
 
TABLE S2 Allelic profiles for the cgMLST scheme (as defined in this study), the 2016 
MLST scheme by Kirchberger and colleagues (3), and the 2013 MLST scheme by Octavia 
and colleagues (2). The cgSTs and their corresponding STs and PubMLST IDs are 
indicated. All missing genes are indicated as NA. The most likely cgSTs are indicated in 
parentheses where applicable. 
 
TABLE S3 V. cholerae isolates from the Yemen cholera outbreak and neighbouring 
countries, as well as other isolates from different lineages. 
 
TABLE S4 Genome completeness for the cgMLST scheme (using 2,443 core genes). All 
genomes with less than 90% completeness were subsequently removed. 
 
TABLE S5 Genome completeness information for the final set of 679 genomes. 
Completeness for the cgMLST scheme is represented as the percentage of the of the 
2,443 core genes present in each genome. 
 
TABLE S6 All NCBI accession numbers for isolates, PubMLST IDs, and PubMLST links 
to online storage of genomes. 
 
*See separate Excel sheets for complete supplemental tables.
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